

Article from
CompAct
April 2019
Issue 59

28 | APRIL 2019 COMPACT

A Smart Way to
Accelerate Model Runs
Through In-force Data
Compression
By Ramandeep Nagi, Dean Kerr and Xin Yao Li

Liability in-force data compression is a solution to shorten
model runtime by reducing the number of model points.
In this article, we will dive into compression approaches,

specifically clustering algorithms, and outline how compres-
sion can be implemented effectively.

Section 1 provides an overview of cluster analysis and describes
two common clustering algorithms: K-means and hierarchical
agglomerative clustering. Section 2 outlines how to implement a
hierarchical agglomerative clustering algorithm. Section 3 illus-
trates runtime savings achieved by a compression model under
different levels of in-force data compression.

Definitions of certain technical terms are provided on page 29;
these terms are bolded the first time they are used.

group of data points with short distances among members or as
dense areas in the data space. While clustering algorithms differ
in the methodology used to combine data points, all share com-
mon properties:

• Clustering is accomplished by setting specific characteris-
tics of data points as location variables. (See Exhibit 1)

• The chosen clustering algorithm then iteratively groups
data points to optimize a defined objective function.

Clustering Algorithms
Two common clustering algorithms are K-means and hierarchi-
cal agglomerative clustering. (See Exhibit 2)

Exhibit 2: K-means Clustering Algorithm

LO
C

AT
IO

N
 V

A
R

IA
B

LE
 2

LOCATION VARIABLE 1

Exhibit 1
Plot of data points based on two location variables

Randomly select k data
points as centroids, where
k represents the desired
number of clusters.

Assign every data point to
its nearest centroid.

Redetermine the centroid
of each cluster based on
available data points in
the cluster.

Repeat steps 2 and 3
until clusters reach their
target state, which is when
additional iterations have
no impact on the cluster
selection.

K = 2

Centroid changes
after recalculation

Data point re-assigned

Step 1:

Step 2:

Step 3:

Step 4:

SECTION 1: CLUSTER ANALYSIS
Compression is a type of cluster analysis that groups data points
based on a set of characteristics. Clusters can be defined as a

 APRIL 2019 COMPACT | 29

A K-means clustering algorithm is simple to define and illus-
trate. It partitions the data into a well-distributed set of clus-
ters when k is relatively small. However, this technique can be
sensitive to outliers and random initial assignment of the k data
points. (See Exhibit 3)

SECTION 2: PERFORMING COMPRESSION
Exhibit 4 outlines key steps involved in compressing in-force
data with a hierarchical agglomerative clustering algorithm.

Treat every data point
as an individual cluster.
Calculate the distance
between each cluster.

Merge the closest pair of
clusters.

Repeat step 2 until the
target clustering level is
reached.

The result is a set of
clusters meeting the target
clustering level.

Step 1:

Step 2:

Step 3:

Step 4:

Exhibit 3
Agglomerative Hierarchical Clustering Algorithm

DEFINITIONS

Centroid: The arithmetic mean position of a given set of
data points.

Cluster analysis: Data analysis technique that groups data
points into clusters.

Compression: Type of cluster analysis technique that
compresses large sets of data points into more compact sets.

Compression ratio: Number of data points (e.g., model
points) after compression relative to the original number of
data points (e.g., seriatim policies).

Distance: Normally the Euclidian distance between two
data points in terms of their location variables.

Distortion: Alteration of the original characteristics of
the data. As a clustering algorithm executes, distortion is
inherently introduced into the data model.

Location variables: Location variables reflect policy
characteristics or risk drivers of the underlying policies in the
clustering algorithm.

Measure: A metric an actuary attempts to control, or
preserve, between the full seriatim and compressed data
models (e.g., total reserves).

Weight: Importance assigned to each location variable used
to determine the measure metric.

SERIATIM
DATA

COMPRESSION
MODEL

EXECUTION
PROGRAM

COMPRESSED
DATA

Specify and parameterize clustering algorithm Execute clustering algorithm

Compare model results

1 2

3

Exhibit 4
Compressing In-force Data

30 | APRIL 2019 COMPACT

A Smart Way to Accelerate Model Runs Through In-force Data Compression

Step 1: Specify and Parameterize Clustering Algorithm
It is important to select a suitable compression algorithm for the
problem at hand. K-means has an advantage of being a very fast
algorithm but requires predetermination of how many natural
clusters exist in the data at the beginning of the process. This
information is unknown at the beginning and is generally gained
through repetitions of the clustering algorithm. On the other
hand, agglomerative hierarchical clustering does not require
knowledge of the number of clusters at the beginning of the
process but is a much slower algorithm compared to K-means.

The main inputs into the clustering algorithm are full seri-
atim data, location variables, weight of location variables and

the measure. In addition, data segments can also be defined to
achieve better compression results. Segmenting policies (e.g., by
major product line, GAAP cohort, gender, etc.) and separately
compressing each segment (e.g., different compression ratios,
location variables, etc.) will generally lead to the best fit of results
and decrease the time required to run the clustering algorithm.

Once the clustering algorithm determines which policies are
compressed to create a cluster, it becomes important to deter-
mine which policy will represent the cluster. This is achieved by
creating rules that determine the representative policy for each
cluster and its characteristics. A cluster is thus represented by a
real policy whose characteristics are already part of the seriatim
data. Four possible output linkage rules are shown in Exhibit 5.

Exhibit 5
Examples of Output Linkage Rules

CLUSTER 1

CLUSTER 2

Average
location

Shortest distance

CLUSTER 1

CLUSTER 2Measure
weighted
average
location

Shortest distance

CLUSTER 1

CLUSTER 2
Largest
in cluster

CLUSTER 1

CLUSTER 2

Average measure:

CLOSEST TO AVERAGE LOCATION CLOSEST TO MEASURE WEIGHTED AVERAGE LOCATION

LARGEST MEASURE IN CLUSTER CLOSEST TO AVERAGE MEASURE

 APRIL 2019 COMPACT | 31

Step 2: Execute Clustering Algorithm
Many ways exist to program and execute a clustering algorithm.
In addition to actuarial software, common approaches are to uti-
lize SQL, VBA, R and Python.

Clustering functionality is available in most modern actuarial
software platforms. Such functionality can be helpful when com-
pressing model points for inner loop projections. Certain reserving
standards (e.g., AG43, VM-20, SOP 03-1) require stochastic calcu-
lations. Performing stochastic reserve calculations in an actuarial
forecast (often referred to as stochastic on deterministic) significant-
ly increases the computational strain to generate financial results.
To overcome this challenge, certain actuarial software platforms of-
fer the functionality to perform reserve revaluations (i.e., inner loop
projections) using compressed model points while maintaining the
granularity of the main forecast (i.e., outer loop projection) with full
seriatim data. This setup improves model runtime proportionally to
the compression ratio of the inner loop data model.

A clustering algorithm can also be implemented in SQL, VBA,
etc. This may provide additional transparency as a modeler can
see the building blocks of the compression algorithm. Howev-
er, it typically requires programming the clustering algorithms
from first principles, which can be time-consuming and may also
result in control or efficiency issues.

Finally, due to advancements in data science, clustering algorithms
are also available in both R and Python (“scikit-learn” library).
The modeler can leverage available libraries for existing code and
create modified functions for a range of clustering algorithms.

Step 3: Compare Model Results
The compressed model should be evaluated by comparing mod-
el outputs between compressed and seriatim model runs. Exper-

imentation may be necessary to determine optimal parameters:
location variables, weights, measure, output linkage rule, seg-
ments, and compression ratios.

Careful consideration is required when choosing the location
variables. The performance of a compression model depends
on how well the location variables represent the underly-
ing policies. For example, for a valuation model, one should
choose location variables that drive reserve levels. If policies
are not well represented by the location variables and weights,
distortion will occur even with minimal compression.

Furthermore, once a compression process continues beyond
compression ratios supported by the data and attempts to clus-
ter policies that differ more significantly, distortion will increase.
This is called over-clustering. As an example, consider the loss
of accuracy when attempting to group all policies into a single
model point.

Thus, the compression process should involve a tuning phase
specific to the intended application. This phase involves select-
ing location variables and their respective weights based on tri-
al runs and may require several iterations to achieve adequate
calibration. However, once a suitable compression model is es-
tablished, significant efficiency can be achieved without material
loss of fidelity in results.

SECTION 3: ILLUSTRATIVE MODEL RESULTS
Compression was performed on an illustrative variable annuity
product using a range of compression ratios and compressing on
key risk drivers. The following charts show resulting statutory
reserves under a range of compression ratios along with the re-
duced model runtime. (See Exhibit 6)

Exhibit 6
Statutory Reserves Under a Range of Compression Ratios

500

1,500

2,500

3,500

1,000

2,000

3,000

COMPRESSION RATIO

100%
(full model)

20% 10% 2%

STATUTORY RESERVE ($MM)

1%

-3.0%

-2.0%

-1.0%

-0.0%

-2.5%

-1.5%

-0.5%

% DIFFERENCE IN RESERVES
RELATIVE TO FULL MODEL

0 -3.5%

32 | APRIL 2019 COMPACT

A Smart Way to Accelerate Model Runs Through In-force Data Compression

Exhibit 7 illustrates the significant benefit a company may real-
ize by implementing an intelligent clustering algorithm. Valua-
tion (i.e., calculation) runtime is reduced proportionally to the
reduction in model points, while calculated reserves deviate by
a reasonable margin. Note that overall runtime does not reduce
proportionally due to model overhead, such as in-force loading
and certain model aggregation and output processes.

CONCLUSION
In-force data compression provides insurers advanced data clus-
tering techniques and a practical solution to reducing model
runtime. For computationally intensive tasks such as stochastic
modeling and forecasting, the efficiency achieved by developing
a robust compression process could outweigh the loss in model
fidelity and upfront development costs.

The views or opinions expressed in this article are those of the authors
and do not necessarily reflect the official policy or position of Oliver
Wyman.

Dean Kerr, FSA, MAAA, ACIA, is a partner at the Actuarial
Practice of Oliver Wyman. He can be reached at dean.
kerr@oliverwyman.com.

Ramandeep Nagi, FSA, MAAA, FCIA, is a senior consul-
tant at the Actuarial Practice of Oliver Wyman. He can be
reached at ramandeep.nagi@oliverwyman.com.

Xin Yao Li, ASA, is a consultant at the Actuarial Practice of
Oliver Wyman. She can be reached at xinyao.li@oliverwy-
man.com.

Exhibit 7
Model Runtime Under a Range of Compression Ratios

RUNTIME (HOURS)

1

2

3

4

0
100%

(full model)
20% 10% 2% 1%

COMPRESSION RATIO

	A Smart Way to Accelerate Model Runs Through In-force Data CompressionBy Ramandeep Nagi, Dean Kerr and Xin Yao Li

