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A Smart Way to 
Accelerate Model Runs 
Through In-force Data 
Compression
By Ramandeep Nagi, Dean Kerr and Xin Yao Li

Liability in-force data compression is a solution to shorten 
model runtime by reducing the number of model points. 
In this article, we will dive into compression approaches, 

specifically clustering algorithms, and outline how compres-
sion can be implemented effectively.

Section 1 provides an overview of cluster analysis and describes 
two common clustering algorithms: K-means and hierarchical 
agglomerative clustering. Section 2 outlines how to implement a 
hierarchical agglomerative clustering algorithm. Section 3 illus-
trates runtime savings achieved by a compression model under 
different levels of in-force data compression.

Definitions of certain technical terms are provided on page 29; 
these terms are bolded the first time they are used.

group of data points with short distances among members or as 
dense areas in the data space. While clustering algorithms differ 
in the methodology used to combine data points, all share com-
mon properties:

• Clustering is accomplished by setting specific characteris-
tics of data points as location variables. (See Exhibit 1)

• The chosen clustering algorithm then iteratively groups 
data points to optimize a defined objective function.

Clustering Algorithms
Two common clustering algorithms are K-means and hierarchi-
cal agglomerative clustering. (See Exhibit 2)

Exhibit 2: K-means Clustering Algorithm
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Exhibit 1 
Plot of data points based on two location variables

Randomly select k data 
points as centroids, where 
k represents the desired 
number of clusters.

Assign every data point to 
its nearest centroid.

Redetermine the centroid 
of each cluster based on 
available data points in 
the cluster.

Repeat steps 2 and 3 
until clusters reach their 
target state, which is when 
additional iterations have 
no impact on the cluster 
selection.

K = 2

Centroid changes
after recalculation

Data point re-assigned

Step 1: 

Step 2: 

Step 3: 

Step 4: 

SECTION 1: CLUSTER ANALYSIS
Compression is a type of cluster analysis that groups data points 
based on a set of characteristics. Clusters can be defined as a 



 APRIL 2019 COMPACT | 29

A K-means clustering algorithm is simple to define and illus-
trate. It partitions the data into a well-distributed set of clus-
ters when k is relatively small. However, this technique can be 
sensitive to outliers and random initial assignment of the k data 
points. (See Exhibit 3)

SECTION 2: PERFORMING COMPRESSION
Exhibit 4 outlines key steps involved in compressing in-force 
data with a hierarchical agglomerative clustering algorithm.

Treat every data point 
as an individual cluster. 
Calculate the distance 
between each cluster.

Merge the closest pair of 
clusters.

Repeat step 2 until the 
target clustering level is 
reached.

The result is a set of 
clusters meeting the target 
clustering level.

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Exhibit 3
Agglomerative Hierarchical Clustering Algorithm

 
DEFINITIONS

Centroid: The arithmetic mean position of a given set of 
data points.

Cluster analysis: Data analysis technique that groups data 
points into clusters.

Compression: Type of cluster analysis technique that 
compresses large sets of data points into more compact sets.

Compression ratio: Number of data points (e.g., model 
points) after compression relative to the original number of 
data points (e.g., seriatim policies).

Distance: Normally the Euclidian distance between two 
data points in terms of their location variables.

Distortion: Alteration of the original characteristics of 
the data. As a clustering algorithm executes, distortion is 
inherently introduced into the data model.

Location variables: Location variables reflect policy 
characteristics or risk drivers of the underlying policies in the 
clustering algorithm.

Measure: A metric an actuary attempts to control, or 
preserve, between the full seriatim and compressed data 
models (e.g., total reserves).

Weight: Importance assigned to each location variable used 
to determine the measure metric.
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Exhibit 4
Compressing In-force Data
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Step 1: Specify and Parameterize Clustering Algorithm
It is important to select a suitable compression algorithm for the 
problem at hand. K-means has an advantage of being a very fast 
algorithm but requires predetermination of how many natural 
clusters exist in the data at the beginning of the process. This 
information is unknown at the beginning and is generally gained 
through repetitions of the clustering algorithm. On the other 
hand, agglomerative hierarchical clustering does not require 
knowledge of the number of clusters at the beginning of the 
process but is a much slower algorithm compared to K-means.

The main inputs into the clustering algorithm are full seri-
atim data, location variables, weight of location variables and 

the measure. In addition, data segments can also be defined to 
achieve better compression results. Segmenting policies (e.g., by 
major product line, GAAP cohort, gender, etc.) and separately 
compressing each segment (e.g., different compression ratios, 
location variables, etc.) will generally lead to the best fit of results 
and decrease the time required to run the clustering algorithm. 

Once the clustering algorithm determines which policies are 
compressed to create a cluster, it becomes important to deter-
mine which policy will represent the cluster. This is achieved by 
creating rules that determine the representative policy for each 
cluster and its characteristics. A cluster is thus represented by a 
real policy whose characteristics are already part of the seriatim 
data. Four possible output linkage rules are shown in Exhibit 5.

Exhibit 5
Examples of Output Linkage Rules
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Step 2: Execute Clustering Algorithm
Many ways exist to program and execute a clustering algorithm. 
In addition to actuarial software, common approaches are to uti-
lize SQL, VBA, R and Python. 

Clustering functionality is available in most modern actuarial 
software platforms. Such functionality can be helpful when com-
pressing model points for inner loop projections. Certain reserving 
standards (e.g., AG43, VM-20, SOP 03-1) require stochastic calcu-
lations. Performing stochastic reserve calculations in an actuarial 
forecast (often referred to as stochastic on deterministic) significant-
ly increases the computational strain to generate financial results. 
To overcome this challenge, certain actuarial software platforms of-
fer the functionality to perform reserve revaluations (i.e., inner loop 
projections) using compressed model points while maintaining the 
granularity of the main forecast (i.e., outer loop projection) with full 
seriatim data. This setup improves model runtime proportionally to 
the compression ratio of the inner loop data model.

A clustering algorithm can also be implemented in SQL, VBA, 
etc. This may provide additional transparency as a modeler can 
see the building blocks of the compression algorithm. Howev-
er, it typically requires programming the clustering algorithms 
from first principles, which can be time-consuming and may also 
result in control or efficiency issues.

Finally, due to advancements in data science, clustering algorithms 
are also available in both R and Python (“scikit-learn” library). 
The modeler can leverage available libraries for existing code and 
create modified functions for a range of clustering algorithms.

Step 3: Compare Model Results
The compressed model should be evaluated by comparing mod-
el outputs between compressed and seriatim model runs. Exper-

imentation may be necessary to determine optimal parameters: 
location variables, weights, measure, output linkage rule, seg-
ments, and compression ratios.

Careful consideration is required when choosing the location 
variables. The performance of a compression model depends 
on how well the location variables represent the underly-
ing policies. For example, for a valuation model, one should 
choose location variables that drive reserve levels. If policies 
are not well represented by the location variables and weights, 
distortion will occur even with minimal compression.

Furthermore, once a compression process continues beyond 
compression ratios supported by the data and attempts to clus-
ter policies that differ more significantly, distortion will increase. 
This is called over-clustering. As an example, consider the loss 
of accuracy when attempting to group all policies into a single 
model point.

Thus, the compression process should involve a tuning phase 
specific to the intended application. This phase involves select-
ing location variables and their respective weights based on tri-
al runs and may require several iterations to achieve adequate 
calibration. However, once a suitable compression model is es-
tablished, significant efficiency can be achieved without material 
loss of fidelity in results.

SECTION 3: ILLUSTRATIVE MODEL RESULTS
Compression was performed on an illustrative variable annuity 
product using a range of compression ratios and compressing on 
key risk drivers. The following charts show resulting statutory 
reserves under a range of compression ratios along with the re-
duced model runtime. (See Exhibit 6)

Exhibit 6
Statutory Reserves Under a Range of Compression Ratios
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Exhibit 7 illustrates the significant benefit a company may real-
ize by implementing an intelligent clustering algorithm. Valua-
tion (i.e., calculation) runtime is reduced proportionally to the 
reduction in model points, while calculated reserves deviate by 
a reasonable margin. Note that overall runtime does not reduce 
proportionally due to model overhead, such as in-force loading 
and certain model aggregation and output processes.

CONCLUSION
In-force data compression provides insurers advanced data clus-
tering techniques and a practical solution to reducing model 
runtime. For computationally intensive tasks such as stochastic 
modeling and forecasting, the efficiency achieved by developing 
a robust compression process could outweigh the loss in model 
fidelity and upfront development costs.  
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Exhibit 7
Model Runtime Under a Range of Compression Ratios
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