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1 ABSTRACT

A study on numerical methods for computing non-ruin probabilities under a classical risk

process is conducted. A Monte Carlo simulation-based method to compute ruin probabilities

in the ordered risk model is proposed. A numerical comparison, in terms of accuracy and

computing time, between a Monte Carlo based estimator relying on Appell polynomials

and a standard Monte Carlo evaluation is made. After selecting a numerical method, the

sensitivity of the ruin probability with respect to the claim sizes distribution and the claim

arrival process is studied.

2 INTRODUCTION TO RISK THEORY

A non-life insurance company holds an initial capital of amounts u, receives premiums

and pays claims as time goes by. The premiums are collected linearly in time at a rate c.

The number of claims up to time T is modeled by a counting process {N (t) , t ≥ 0}. Each

claim filed is associated to a loss, a compensation paid to the policyholder. The claim sizes

W1, . . .WN (T ) form a sequence of iid (independent, identically distributed) non-negative

random variables, independent of N (T ). We define the surplus of the insurance company at

time t ≥ 0 as

R(t ) = u + ct −
N (t )∑
i=1

Wi . (1)

The claim arrival process N (t ) is governed by an order statistic point process (OSPP) which

means that conditioned upon N (t ) = n, the successive jump times (τ1,τ2, ...τn) are distributed

as the order statistics of n iid random variables. We are interested in the distribution of the

ruin time at which R(t ) becomes negative:

τu = inf{t ≥ 0 : R(t ) < 0} . (2)

Ruin occurs while R(t ) is making a downward jump and crosses the horizontal axis, meaning

that the company went bankrupt. Denote by

Φ(u,T ) =P(τu > T ) (3)

Page 4 of 22



the survival probability up to time T andΨ(u,T ) = 1−Φ(u,T ) as the ruin probability by time

T .

In the Cramer-Lundberg risk model, the claim arrivals are governed by a Poisson process.

We assume that the claim arrival process enjoys the order statistic property. By doing so, we

consider a broad class of risk processes which encompasses the standard Cramer-Lundberg

risk model. The ruin probabilities admit a tractable expression only in a few particular cases,

which motivates the development of numerical methods.

The ruin probability is a risk measure, useful for decision making. This allows, for instance,

an actuary to determine how likely a company is to become insolvent given a certain time

horizon T and initial capital u. Actuaries are in charge of two things: rate making and claim

reserving. Using the model, an actuary can determine the premium he needs to charge in

order to remain insolvent with a certain probability. Figure 1 is an example of a trajectory

until some time T . The amount of claims accumulate through jumps by size, Wi , at times τi .

If the aggregate claim amount, S(t ) =∑N (t )
i=1 Wi , ever crosses the boundary u+ct (the amount

of premium), then ruin has occurred.

t

u + ct

u

T

W1

W2

W3

S(t )

τ1 τ2 τ3

Figure 1: Risk Process Visualization
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3 PRELIMINARIES AND NOTATION

3.1 Order Statistic Point Process

Recall that a Poisson process is a stochastic process in which the inter-arrival times are

distributed as exponential random variables. The Poisson process is actually a special case of

a more general family of point processes called Order Statistic Point Process (OSPP).

Definition 1. Let {N (t), t ≥ 0} be a point process generated by arrival times τ1,τ2, . . . . Then

N (t ) is an OSPP if for every k ≥ 1, given N (t ) = k, the successive jump times τ1,τ2, ...,τk are

distributed as the order statistics of k iid random variables with the distribution function

Ft (x) for x ≤ t .

The homogeneous Poisson process is the most famous process enjoying this property, in

which case Ft (x) is the Cumulative Distribution Function (CDF) of the uniform distribution on

[0,t]. The Poisson process is the only process with independent increments which possesses

the order statistic property.

Other OSPPs also include the Polya-Lundberg process, the linear birth process with immigra-

tion, the linear death process, and the mixed Poisson process. Our study emphasizes on the

mixed Poisson process.

3.2 Mixed Poisson Process

Definition 2 (Mixed Poisson Process). A Mixed Poisson Process is a generalization of a Poisson

process where the intensityΛ is itself a random variable.

A key property of the Mixed Poisson Process is conditioning on N (T ) = n, the successive jump

times (τ1,τ2, . . . ,τn) are distributed as the order statistics of n iid uniform random variables

on [0,T].

It is worth mentioning that the Poisson process is a special case of the Mixed Poisson Process

whereΛ is a constant λ.

A comprehensive overview on mixed Poisson process is provided in Grandell’s monograph

[Gra97].
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Let N (T ) be the number of claims that an insurance company experiences during a year

T = 1.

It is common in actuarial science to model the claim frequency, N (T ), with the Poisson

distribution with intensity λ. However, It may be more practical to use a Mixed Poisson

process if we have a non-homogeneous population.

For example, assume we have two groups of policy holders: risky and non-risky. Then we can

model the claim frequency as a Mixed Poisson process N (Λt ), where

Λ=
{

λ1, p

λ2, (1−p)

In this model, we take into account the different frequencies at which each group experiences

claims; p in this context may be proportion of risky policy holders.

3.3 Appell Polynomials

Let U = {ui , i ≥ 1} be a sequence of real, non-decreasing numbers. Then define the unique

family of Appell polynomials of degree n, An(x|U ), as follows.

An(x|U ) = n!
∫ x

un

[∫ yn

un−1

d yn−1 · · ·
∫ y2

u1

d y1

]
d yn , n ≥ 1,

A0(x|U ) = 1,

An(un |U ) = 0,n ≥ 1.

Appell polynomials satisfy recursive relationships, useful for numerical calculations:

An(x|U ) =
n∑

k=0

(
n

k

)
An−k (0|U )xk ,n ≥ 1 , and

An(0|U ) =−
n∑

k=1

(
n

k

)
An−k (0|U )uk

n ,n ≥ 1
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3.3.1 Probabilistic Interpretation

Let U1:n , ...,Un:n be the order statistics associated to the sample of n iid random variables

uniformly distributed on [0,1]. Then

fU1:n ,...,Un:n (u1, ...,un) = n!I0<u1≤...≤un≤1

is the joint probability density function, and

P(U1:n > u1, ...,Un:n > un) = n!
∫ 1

un

∫ Un:n

un−1

dUn−1:n ...
∫ U2:n

u1

dU1:ndUn:n = An(1|U )

is the probability that each order statistic is larger than its corresponding index in the set U .

3.4 Constant Claim Sizes

Let N (t) from model (1) be a Mixed Poisson process. Then the jump times of the process

given N (t ) = n are distributed as n uniform order statistics U1:n , . . . ,Un:n . Also, let βn denote

the time at which h(t) = u + ct reaches n. Then An(1|β) is the probability that each jump

occurs after the accumulated premium income has reached the level n:

P(U1:n >β1, . . . ,Un:n >βn) = An(1|β).

The following result gives an explicit formula for the ruin probabilities.

Proposition 1. Assume the claim size is constant equal to d , then we have

P(τβ > t ) =
u+ct

d∑
n=0

(λt )ne−λt

n!
An(1|β1, . . . ,βn),

where βn = max
(
( dn−u

ct ),0
)

,n = 0,1, . . .

Proof. The number of claims N (t ) cannot exceed u+ct
d since u+ct > N (t )d . We condition on

N (t ) = n, then add the probabilities that each jump time occurs after the surplus has reached

the level n, thus ensuring no ruin has occurred. This is a direct application of proposition 4.1

of [GL17].
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4 MONTE CARLO METHOD TO EVALUATE RUIN PROBABILITIES

Monte Carlo methods rely on the simulation of a process many times, which is useful in the

case where there exists no closed-form solution. A Crude Monte Carlo (CMC) method is a

brute force approach. While this technique can be used for almost any process, it has a few

pitfalls. Primarily, the CMC method is computationally expensive and takes a lot of time to

execute, and for events with low probability, it is inefficient in capturing the true probability.

Tailor-made Monte Carlo procedures may be put together to handle specific risk models. We

present in this work a Monte Carlo estimator, named the Appell Polynomial Monte Carlo

(APMC), and we show its superiority over the standard Crude Monte Carlo approach.

4.1 Crude Monte Carlo

Monte Carlo simulations are advantageous in that we can run them for any claim size distri-

bution Wi > 0. The CMC method replicates the entire insurance model R(t) by simulating

the claims arrival process N (t ) and claim amounts Wi and then checking if the total losses∑N (τk )
i=1 Wi have surpassed the premium income u + cτk for each jump time τk , 0 < τk < T . If

claims surpass the premium income, the simulation stops and counts one ruin. However, if

the premium earnings absorb the losses due to claims, the simulation has to go until time

T , and then counts no ruin. This process is repeated many times and the final fraction:
number of non-ruins

number of simulations is the estimated non-ruin probability. This corresponds to the empirical

evaluation of the expectation of a Bernoulli random variable that can be observed as:

1τu>T =
{

1 P(τu > T )

0 P(τu ≤ T )
,

an indicator function equal to one if ruin occurred and zero otherwise. As a result, the non-

ruin probability can be defined as an expected value. This means that we can take advantage

of the law of large numbers and approximate the expected value by an empirical mean of a

sample of replications of the random variable inside the expectation: τu will be greater than

T :

Φ(u, t ) =P(τu > T ) = E [1τu>T ].
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4.2 Appell Polynomial Monte Carlo

Another method is the APMC simulation, which uses the recursive Appell structure described

in Section 2, and only applies to processes that have claim arrivals following an OSPP. This

method is based on the formula:

P(τu > T ) = E
{

AN (T )

[
1

∣∣∣∣FT

(
S1 −u

c

)
+

, . . . ,FT

(
SN (T ) −u

c
l

)
+

]
1SN (T )≤u+cT

}
,

from Picard and Lefèvre [PL97].

We can calculate this finite-time non-ruin probability as the expectation of the APMC random

variable, X , that can be observed as:

X =


1, SN (T ) < u

AN (T )

[
1

∣∣∣∣FT

(
S1−u

c

)
+ , . . . ,FT

(
SN (T )−u

c

)
+

]
, u ≤ SN (T ) < u + cT

0, SN (T ) ≤ u + cT

, so that

the Monte Carlo evaluation of the expectation above defines the APMC estimator. We com-

pare the error of the CMC and APMC procedure so as to keep the most accurate estimator;

the variance is the common way to measure accuracy in this context.

The simulation process generates n observations xi where x1, . . . , xn
i i d∼ X , and for

• CMC: xi = 0,1

• APMC: 0 ≤ xi ≤ 1

The non-ruin probability is approximated by X = 1
n

∑n
i=1 xi , and we want our observations to

be as close to X as possible. For a large enough n, we then can construct a (1-α)% confidence

interval around X :

X ± z∗
1−α

√
V ar [X ]

n

Our goal is to minimize this interval without sacrificing computational time, so we hold

n constant. Thus, to minimize the range of the confidence interval, we have to minimize

V ar [X ]. Therefore, the most accurate estimator is the estimator with the smallest variance.
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Proposition 2. The variance associated to the APMC estimator will never be larger than the

variance associated with the CMC estimator. Namely, we have

σ2
AP MC ≤σ2

C MC ,

where σ2
C MC is the variance of the CMC estimator and σ2

AP MC is the variance of the APMC

estimator.

Proof. Since CMC estimator E [1τu>t ] takes the expected value of a Bernoulli random variable

1τu>t , where t > 0 and τu is the time of ruin, the variance isΦ(1−Φ), whereΦ=P(τu > t ) is

the non-ruin probability.

Also, since the APMC estimates the non-ruin probability as

Φ(u, t ) =
bu+ctc∑

n=0
AN (t )[1|{Ft (β1), ...,Ft (βn)}]P [N (t ) = n],

we can use the law of total variance to find σ2
AP MC as

σ2
AP MC = E [V ar (Y |N (t )]+V ar [E(Y |N (t )],

where Y = AN (t )[1|{Ft (β1), ...,Ft (βn)}]. Let M = E [AN (t )[1|{Ft (β1), ...,Ft (βn)]] and PN =
P [N (t ) = N ]. Also, let σ2

N =V ar (Y |N (t )). Then the variance becomes

σ2
AP MC =

∞∑
n=0

σ2
N PN +

∞∑
n=0

M 2PN −
( ∞∑

n=0
MPN

)2

.

Since 0 ≤ y ≤ 1, E [y2] ≤ E [y] and E [y2]−E [y]2 +E [y]2 ≤ E [y]. Then σ2
N +M 2 ≤ M .

Thus ∞∑
n=0

σ2
N PN +

∞∑
n=0

M 2PN − (
∞∑

n=0
MPN )2 ≤φ(1−φ),

and

σ2
AP MC ≤σ2

C MC .
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To actually calculate the non-ruin probability, we follow these steps:

1. Simulate N (T ), set n = N (T )

2. Generate n claims, with aggregated claim sizes: Sk ,k = 0,1,2, · · · ,n

3. Calculate vk = ( Sk−u
c )+,k = 0,1,2, · · · ,n

4. Check:

(a) If Sn < u, then not ruined, return a non-ruin probability of one

(b) If Sn ≥ u + cT , then ruined, return a non-ruin probability of zero

(c) If u < Sn ≤ u + cT , then continue

5. Substitute the vector V that contains all of the vk ’s into an Appell Polynomial of the

form: AN (T )(1|FT (V )), producing a non-ruin probability

This process is repeated many times and the estimated non-ruin probability is the empirical

mean of the Appell polynomials computed over each Monte Carlo run.

t

u + ct

u

T

S1

S2

S3

v1 v2 v3τ1 τ2 τ3

Figure 2: APMC Method

One should note that the APMC method

only require the simulation of the number

of claims and their size while CMC requires

also the arrival times of the claims.

Figure 2 to the right is a visual representa-

tion of understanding the Appell Polynomial

method. We take our total claims: Sk ,k =
1,2, · · · , N (T ) and compare them to our pre-

mium: u + ct , t ∈ (0,T ), generating our vk ’s,

k = 1,2, · · · , N (T ). We then observe the dis-

tribution of vk ’s vs the distribution of τk ’s

(P [(τ1 > v1)∩(τ2 > v2)∩·· ·∩(τN (T ) > vN (T ))]),

which can be evaluated using Appell polyno-

mials for OSPPs.
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5 NUMERICAL ILLUSTRATIONS

While the CMC works for any situation, it suffers from a lack of accuracy in the rare event

simulation situation. The computation of small ruin probabilities associated to large initial

reserve is interesting in practice. Variance reduction techniques are designed to cope with

this flaw. We aim at quantifying the difference between the variances associated to the APMC

and the CMC. We also demonstrate that it goes along with a reduction in process time.

5.1 Checking Consistency

We first begin by comparing the CMC and APMC non-ruin probabilities to ensure that they

produce the same results. To generate fair results, we used the same simulation process for

both methods. The parameters we used were as follows:

• u = 10

• T = 1

• λ ∈ {
5,10,15,20,25

}
• N (T ) ∼ Poi (λT )

• Wi ∼ E xp(1)

• η= 0.1

• c = (1+η)E [N (T )]E [Wi ]

• N ∈ {
102,103,104,105,106

}
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The table in Figure 3 below depicts the ratios of CMC non ruin to APMC non ruin. Most of

the values are the same, but they differ in low values of λ where the CMC model suffers from

lack of accuracy in rare event simulations. The CMC cannot accurately capture the few ruins

that do happen when the probability of ruin is so small. This shows that our codes coincide.

Figure 3: Non Ruin Comparison

5.2 Time Comparison

Since both the CMC and APMC methods produce similar non-ruin probabilities, we want the

method that is more efficient in running time. To generate fair times, we use the same claim

sizes and counts for each simulation for both methods. The parameters we use are as follows:

• u = 10

• T = 1

• N (T ) ∼ Poi (λT ), λ ∈ {
5,10,15,20,25

}
• Wi ∼ E xp(1)

• η= 0.1

• c = (1+η)E [N (T )]E [Wi ]

• N ∈ {
102,103,104,105

}
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We iterated through various processes having a different number of trajectories (N =
102,103,104,105) and different claim arrival rates (Poi (λ),λ= 5,10,15,20,25) and simulated

each process 30 times. We calculated CMC time
APMC time so if the ratio is greater than 1, then the CMC

time is larger and if the ratio is less than 1, then the APMC time is larger. Figure 4 below

compares the CMC to APMC with respect to total time. We note that for overall time, the

CMC is always worse than the APMC, with the difference increasing as we increase the claim

arrival process intensity and number of trajectories.

Figure 4: Total Time Comparison

5.3 Accuracy Comparison

As well as being faster, the APMC method is also more accurate. Proposition 2 proved that

theoretically, the variance of the APMC is less than the variance of the CMC. We want to

determine by how much APMC outperforms CMC. The parameters we use are as follows:

• u ∈ {
1,2, . . . ,10

}
• T ∈ {

1,2,3,4
}

• λ= 15

• N (T ) ∼ Poi (λT )

• Wi ∼ E xp(1)
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• η= 0.1

• c = (1+η)E [N (T )]E [Wi ]

• N = 105

Figure 5: Total Time Comparison

Above is Figure 5, a table portraying the ratios of CMC variance to APMC variance. The CMC

variance is always greater than APMC, with the difference increasing as we increase T and

decrease u. This relates back to the rare event situation where the CMC cannot as accurately

capture the small chances of ruin.

Overall, we have shown that the CMC and APMC methods produce similar non ruin proba-

bilities. However, the CMC process takes longer to simulate. Additionally, the CMC process

has a greater variance than the APMC process, meaning the CMC is less accurate. The APMC

method is the superior estimator and we shall utilize it to perform analysis for the rest of the

project.

6 SENSITIVITY ANALYSIS

Equipped with our faster and more accurate estimator, the APMC method, we assess the

effect of changing the parameters of the risk models on ruin probabilities. More specifically,
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we want to know what happens to ruin probability when we alter claim sizes and claim

arrivals.

6.1 Claim Size Distributions

We adjust our original risk model by assuming the claim sizes to be Weibull distributed. The

pdf is given by

fX (x) = α

β

( x

β

)α−1e−( x
β )α .

The shape parameter, α, allows us to tune the tail behavior, making it either heavier (α< 1) or

lighter (α> 1) than the that of the exponential distribution (α= 1).

We will look at three different Weibull distributions:

Wi ∼W ei b(α= 0.25,β= 0.042)

Wi ∼W ei b(α= 1,β= 1)

Wi ∼W ei b(α= 10,β= 1.051)

Figure 6: Left Tails Figure 7: Center Tails Figure 8: Right tails

The distributions are set such that the cost of one claim is 1 on average. However, the densities

of the distributions significantly vary. In Figure 6, theα= 0.25 distribution has most if its mass

toward 0 while theα= 10 distribution has a narrow range around 1, and theα= 1 distribution

is in-between. The vertical, dashed lines represent the medians of the distributions; as we

increase α, we increase the median. In Figure 7, we shift our view further along the horizontal

axis to inspect the tails of the distributions. The farther we go away from 0, the tail of the

smallest α distribution gets heavier with respect to the other distributions. Finally, on Figure

8, the tail of the α= 0.25 distribution is noticeably heavier than the other distributions. This
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is important because with small αs, most of our claims are small, but we could also have very

large claims with significant probability.

To understand this effect, we analyze the processes for each claim size distribution. The

parameters are set as follows:

• u ∈ {
1,2, . . . ,20

}
• T = 1

• λ= 20

• N (T ) ∼ Poi (λT )

• Wi ∼W ei b(α ∈ {
0.25,1,10

}
)

• η= 0.1

• c = (1+η)E [N (T )]E [Wi ]

• N = 105

6.1.1 Non-Ruin Probabilities

Figure 9: Non-ruin probabilities when changing
claim sizes

The graph of the non-ruin probabilities for

the different claim size distributions, Fig-

ure 9, shows that the process with the small

α claim sizes does not change much when

there is a decrease or increase in initial re-

serve. This is the same process with the

greater variance, so a smaller alpha leads to a

greater variance which results in more resis-

tance to initial reserve. This is not good from

an insurance company point of view, since

no matter how much they increase their ini-

tial reserves, they are still highly prone to

ruin.
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6.2 Claim Arrival Distributions

We will adjust our original risk model by letting our claim arrival process be a Mixed Poisson

Process, N (ΛT ). We consider two distributions forΛ:

Λ= Constant

Λ=
{

λ1, p1

λ2, (1−p1)

The second process follows the model in Section 3.2 that has two separate risk populations,

and will be referred to as Step(p1,λ1,λ2). Below are two graphs depicting a simulation for

number of claims when we have a constantΛ (Figure 10(a)) and when we have aΛ that can

take on two different values (Figure 10(b)). Figure 10(a) illustrates that under a constant

Λ,the number of claims follows a unimodal distribution with the peak at Λ. While Figure

10(b) shows that with a Λ that can take two values: λ1,λ2, the number of claims follows a

bimodal distribution with peaks at λ1,λ2. This is important because with the Step model, we

could either have a small amount of claims or a large amount of claims, greatly affecting our

chances of ruin.

(a) Constant

(b) Step

Figure 10: Mixed Poisson Processes

Page 19 of 22



To understand this effect, we analyze the processes for each claim arrival distribution. We

simulate processes with the following parameters:

• u ∈ {
1,2, . . . ,20

}
• T = 1

• E [Λ] = 10

• N (T ) ∼ Poi (ΛT )

– Λ= const ant

– Λ=
{

λ1 = 5, p1 = 0.5

λ2 = 15, (1−p1) = 0.5

• Wi ∼ E xp(4)

• η= 0.1

• c = (1+η)E [N (T )]E [Wi ]

• N = 105

6.2.1 Non Ruin Probabilities

Figure 11: Non ruin probabilities when changing claim arrivals
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The graph, Figure 11, of the non-ruin probabilities for the different claim arrival distributions

shows that the non ruin probability for the step model does not change much when there is a

decrease or increase in initial reserve. This process has a wider variety of risk, which leads

to a greater variance, resulting in more resistance to initial reserve. This is not good from

an insurance company point of view, since no matter how much they increase their initial

reserves, they are still highly prone to ruin.

7 SUMMARY

A surplus process for an insurance company is introduced, where the company collects

premium linearly over time but pays out claims when they occur, which follow an OSPP. The

subject of interest is the ruin probability, which is the likelihood of the insurance company

becoming insolvent. Two numerical methods are presented and compared to estimate the

non-ruin probability: a standard Monte Carlo approach and a Monte Carlo method tailored

to the case of OSPP claim arrivals referred to as APMC. While both estimators produce similar

non-ruin probabilities, the APMC estimator is faster and more accurate. The APMC estimator

is then used to assess the sensitivity of the ruin probabilities to the assumptions over the

claim sizes and frequencies. Our main conclusion is that a larger variance of the risk process,

for a given average cost of claim, requires a larger initial reserve to achieve targeted risk level.
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