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Managing Investment 
and Liquidity Risks Within 
Nonfundamental Market Sell- off 
and Volatility Feedback Loops: 
A Market Impact Perspective
By Aymeric Kalife

Market impact is an illustration of market inefficiency. Theories of efficient 
markets typically expect that investors buy and sell assets based on assess-
ments of their intrinsic value, in contrast with large derivatives players 

who often act based on market price movements, which may not be linked to 
fundamentals. Market impact risk actually refers to the degree to which large 
transactions can be carried out in a timely fashion with minimal impact on prices. 
As a result, managing investment and liquidity risks for large players requires 
introducing an explicit market impact function; its application to derivatives sig-
nificantly depends on whether or not there is significant delta hedging activity. In 
the case of no significant delta hedging activity, risk appetite has significant influ-
ence on the optimal execution strategy. With significant delta hedging activity, 
the optimal trading involves feedback hedging effects, translating into a modified 
Black- Scholes hedging strategy.

Soaring market volatility necessitates updated hedging strategies. In the last six 
years, we have had more short- lived but sharp transitions from low volatility to 
high volatility with no well- known fundamental catalysts than in the prior two 
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decades1—growing evidence that we are in a new volatility 
regime. Low liquidity and low conviction environments lead to 
this becoming increasingly more common.

Although fears about growth or sovereign debt sustainability 
are valid explanations for the significant volatility spikes expe-
rienced during the May 2006, May 2010, August 2011, August 
2015, June 2016 or February 2018 market sell- offs, they do not 
fully explain either the extreme magnitude of the shocks or the 
repeated occurrence at the close in European and U.S. markets. 
Also, the Volatility Index averaged 11 through 2017—the lowest 
since 1990, in the context of easy monetary policy, share buy-
backs and solid fundamental factors such as continued global 
growth, solid- to- positive earnings and falling unemployment. 
(There was a short VIX futures strategy profit and loss at +150 
percent in 2017, making money every single month that year.)

Derivatives activity by large players might have exacerbated the 
acuity of such volatility spikes from the illiquidity premium in 
option markets since the late 1990s2 stemming from a struc-
tural imbalance between supply and demand in derivatives, as 
illustrated by the 70 percent more put options outstanding than 
outstanding call positions1, or the growing hedging of U.S. vari-
able annuities, Asian structured products and U.S. mortgages 
convexity. Such imbalance in the derivatives markets is at the 
source of hedging inefficiencies, where market makers tend to 
sell more as the market drops or buy more as the market rallies, 
independent of fundamentals.

As a result, the cost of placing one large order to close a position 
becomes far greater than the sum of infinitely small orders dif-
fered in time. For this reason, an explicit modeling is required 
through a market impact function, the influence of which the 
agent will try to minimize. The optimal execution turns out 
to be the sequence of small trades over the course of several 
days that optimizes a target, (e.g., minimizes the mean cost 
of trading). In this article, we consider the optimal execution 
price and strategies of options when market impact is a driver of 
the option price, which depends on whether the options’ delta 
hedging is significant or not.

• No or insignificant delta hedging (like for a life insurance 
company aiming to minimize the cost of buying a large 
quantity of put options to hedge liabilities). The optimal 
execution turns out to be strongly dependent on the risk 
appetite. Within a mean cost minimization objective, as the 
maturity approaches, the agent must make faster acquisi-
tions as time passes; in contrast, within a mean- variance risk 
appetite (where the dispersion of revenues is also taken into 
account), the agent tends to liquidate her position at the 
beginning to reduce the P&L variance.

• Significant delta hedging. The optimal execution strategy 
is determined by a no arbitrage framework that incorporates 
the specific impact of the large trader’s hedging activity 
(hedging feedback effects), which translates into a fully 
nonlinear modified Black- Scholes delta hedging strategy.

In this article, the most observed types of market impact on the 
investment and liquidity risks within derivatives strategies is 
illustrated and analyzed from a qualitative perspective. We then 
examine the optimal strategies in derivatives based on appropri-
ate modeling of the market impact, depending on whether there 
is significant associated delta hedging activity or not.

EMPIRICAL MARKET IMPACT OF 
DERIVATIVES STRATEGIES
Hedging Financial Risk of Life Insurance Liabilities
Insurance companies utilize derivatives in a variety of ways to 
manage and mitigate risks inherent in their liability portfolios, 
which can be characterized by three main features: medium 
long- term duration, large volumes and significant market 
risk exposure. Specifically, guaranteed minimum income and 
withdrawal benefits greatly increase insurers’ risk exposure 
to market volatility, while pension and other post- retirement 
benefits could be hurt if equity returns fall short of expected 
long- term rates of return.

Given the persistent low interest rate environment across 
the curve since the 2008 financial crisis, these large players 
need to hedge their liabilities even more, as illustrated by the 
significant increase in notionals from $786 billion as of fiscal 
year 2010 to $1,885 billion as of FY 2014. As the guarantees 
embedded within those liabilities hold a convex risk profile 
with respect to the underlying stock, traders need to buy some 
convex equity hedge assets such as options (in contrast to linear 
instruments like futures) in order to match the liability risk pro-
file to improve hedge effectiveness. In that respect, the use of 
downside protection options is appropriate, such as put options, 
which accounted for 44 percent of the transactions (versus 24 
percent for the call options) with 90 percent of them purchased, 
implying the growing cost of hedging.3

As equity derivatives are highly sensitive to supply/demand bal-
ance, buying large hedge portfolios requires taking into account 
the transaction size explicitly, which is not considered by tradi-
tional models.

Large Derivatives Imbalances
Large derivatives imbalances are likely to imply net short posi-
tions in options by market makers, thus synthetic replication 
with significant delta hedging activity is likely to exacerbate 
market moves through hedging feedback effects.
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Effects on Short- dated Vanilla Options
Investors typically buy index put options as downside protec-
tion (with little or no hedging), thus market makers short put 
options, which they delta hedge by selling futures to be market 
neutral. If the market suddenly drops, they would need to sell 
further to adjust, which amplifies the down market move and 
volatility.

Effects on Long- dated Exotic Options
Autocallables are upside (capped) participation with capital guar-
anteed (floor) and an embedded- up and knock- out barrier that 
can cause their gamma to reverse across very small movements 
as spot rallies toward the barrier while the expiry approaches. 
This requires the seller to sell large amounts, which tends to 
prevent the spot market from actually hitting the barrier.

Despite this selling of spot and gamma, the barrier may at 
some point break, where the option disappears, and the trader 
is left only with his hedge (i.e., a naked position), which he has 
to cover by buying back spot and gamma. Delta hedging tends 
to exaggerate spot moves even more (higher spot → needs to 
buy → drives spot higher; lower spot → needs to sell → drives 
spot lower), which will cause the spot market to become more 
liable to choppy trading and can cause the market to gap higher. 
Because of leverage in barrier options, the delta amounts grow 
to multiples of the size of the original option.

The hedging of variable annuities can also be a major driver of 
such market feedback loops given those embedded life insur-
ance guarantees are upside (capped) participation with capital 
guaranteed (floor), while their positions tend to leave the vari-
able annuities players “the same way around”—either buying 
or selling particular types of hedging instruments. As such, 
insurers buy volatility when it rises and vice versa, exaggerating 
any move. While the impact on the derivatives markets gamma 
is still under control given most hedge assets (futures, options, 
varswaps) are short dated, the vega hedging needs are huge as a 
result of the very long dated life insurance policies.

OPTIMAL DERIVATIVES STRATEGIES
No Significant Delta Hedging Activity
Here we consider that delta hedging is either nil or negligible in 
terms of market impact, which is consistent with practice on the 
main market indices as their exchanged volumes are far larger 
than for the options contracts. The average shares traded per 
day for the S&P 500 has grown from 2.3 million to 4.1 billion, 
with Oct. 10, 2008, the busiest trading day ever for the S&P 
500 when a phenomenal 11,456,230,400 shares changed hands. 
Options contracts exchanged volumes are significantly lower.4 
See Figure 1.

Figure 1
S&P 500 Historical Volume Data  
(Jan. 2, 1951, to March 31, 2012)

Total Shares Avg. Shares Correlation R2

1950s 5,777,550,000 2,298,150 0.66 0.44
1960s 19,072,060,000 7,656,387 0.73 0.53
1970s 57,655,100,000 22,833,703 0.48 0.23
1980s 306,188,530,000 121,118,881 0.76 0.58
1990s 1,195,610,210,000 473,134,234 0.93 0.86
2000s 7,091,918,888,000 2,819,848,464 (0.07) 0.01
2010s 1,274,419,730,000 4,058,661,561 (0.32) 0.10
Total 9,950,642,068,000 0.72 0.52

Source: Yahoo Finance, CFA Institute

As a result, an agent who is willing to trade a large quantity 
of options will see the impact as an important dilemma, as the 
cost of placing one large order to close his position will be far 
greater than the sum of infinitely small orders differed in time. 
In practice, the orders are usually broken up into smaller ones 
and executed over the course of several days.5 Only 20 percent 
of the market value of the trades split in their set of data are 
completed within a day, and 53 percent are spread over four 
trading days or more.

For this reason, an explicit modeling is made through a market 
impact function, the influence of which the agent will try to 
minimize. The market impact function depends on the tem-
porary impact strength proportional to the main empirically 
observed drivers, such as the speed of option trading (i.e., the 
number of options per unit of time), the equity stock level and 
the option sensitivity to the equity stock. The optimal execution 
turns out to be the sequence of trades that optimizes the target 
(e.g., minimizes the mean cost of trading over a fixed period) or 
the mean- variance criterion if the volatility of revenues is taken 
into account.

Market Impact Function, Resulting Option Price
The model is inspired from Leland’s option replication with 
transaction costs6 incorporated into the option price as an addi-
tional variable within the volatility function:

where σ is the asset volatility and ƒ is the market impact function 
(dependent on time, volatility, inventory and trading speed).

In terms of market impact function, we follow the approach 
by Almgren7 where the price impact is a combination of two 
components: a permanent component that reflects the informa-
tion transmitted to the market by the buy/sell imbalance, and a 
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temporary component that reflects the price concession needed 
to attract counterparties within a specified short time interval. 
We adapt such approach to derivatives through the enlarged 
volatility expression as follows:

 

where  and .

And η and γ are constants. The number of shares is x(t) while ,  
its derivative with regards to time, corresponds to the speed of 
trading of the security. The term  corresponds to the tempo-
rary or instantaneous impact of trading  shares at time t and 
only affects this current order. The term  is the per-
manent price impact that was accumulated by all transactions 
until time t.

The option effective price is then expressed through a Black- 
Scholes- like partial differential equation with such modified 
enlarged volatility in order to compensate for the market impact 
cost, where buying the option will typically lead to increasing its 
price. The higher the trading speed and quantity, the higher the 
volatility and thus the option price:

Using a simple Taylor approximation to the first order, we can 
rewrite the expression as a sum of the Black- Scholes option 
price and an additional term corresponding to the option mar-
ket impact:

where  is the Black- Scholes vega of the option:

We will next develop the framework under the Black- Scholes 
case as a temporary market impact only, with permanent impact 
excluded (i.e., ). In that case, the effective price is given by:

.

Optimal Execution Problem
The optimal execution is a strategy that unfolds over the course 
of several days [0,T] by means of a dynamic order execution 
strategy that ought to adapt to changing market conditions. The 
end user’s purpose is to hedge the risk of a complex product 
(structured product, variable annuity, etc. . . .) indexed on an 
underlying asset, by acquiring vanilla put options on that same 
underlying asset.

Let us consider a buying trade execution strategy x(t) in which 
an amount of options X with fixed strike K and maturity T needs 
to be bought by a fixed time horizon [0,T] with the conditions 
x(0) = X and x(T) = 0.

Let  be the usual probability space on the filtration 
 satisfying the usual assumptions. In the absence of 

market impact and under a null risk- free rate, the no- arbitrage 
price of a put option is defined by  
under the risk- neutral probability measure Q in which the asset 
price is a martingale. At each time t,  options are bought 
at price  which is the option impact price defined by the 
price equation above. Thus, the cost arising from the strategy x 
is :

,

,

where Δ is the Black- Scholes delta of the option.

The agent’s objective is then to minimize a certain objective 
function, which takes into account his risk aversion, and may 
involve both cost and risk terms. Here we will consider two risk 
appetite cases:

• The mean cost 

• A risk/reward criterion, the mean- variance cost case 
 (which includes the mean case with 

λ = 0), where λ > 0 is the variance penalty.

The mean cost is usually used for an agent who does not moni-
tor the risk of his strategy:

.
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Theorem 1. The optimal strategy  resulting in minimizing 
the mean cost under the Black- Scholes framework is character-
ized by 8

where

.

The theorem is illustrated in Figure 2 for t = 1, T = 0.5, X –1:

Figure 2
Optimal Execution Trade Quantity and Speed 
Depending Residual Time

In summary, the optimal execution strategy to minimize the 
mean cost provides a rather stable pace of trading. The pace is 
rather constant at the beginning and then gradually increases as 
it gets close to maturity, which is intuitive given the fixed quan-
tity to buy within a fixed time period, implying the insurer must 
acquire at a faster rate as time passes.

We will now develop the optimal execution framework under 
the mean- variance case, where the optimal strategy turns out to 
be more sensitive to the underlying price evolution.

Optimal Execution Strategy Depends on Risk Appetite
Investors usually take into account their risk aversion using risk/
reward criterion.

For the mean cost case, we are interested in the price impact 
formulation with temporary impact only. That is, we can eas-
ily deduce that the mean- variance objective function can be 
approximated as:

We then set up the dynamic programming problem where we 
parameterize as before the strategies x by their trading speed or 

trading rate  defined as : .  

We restrict our framework to a Markovian trading rate (i.e., the 
agent’s optimal trading speed at time t is completely determined 
by the current state). Using the standard procedure of deriving 
the Hamilton- Jacobi- Bellman equation in stochastic control 
problems, the solution to the reduced optimization problem 
solves the following PDE:

combined with the so- called finite- fuel constraint (i.e.,
).

Although this minimization problem does not admit a closed- 
form solution, the quasi- linear PDE can be solved numerically 
using finite differences methods8. Table 1 shows the results for a 
long position on at- the- money put options.

Table 1
Long Position on ATM Put Options

Parameter Value
σ 30%

T (the strategy horizon) 1/12 (years)

T̂ (the option maturity) 1 (years)

μ 0

r 0

S0 1

K S0

Action Buy

x0 –1

η̃ 0.05

Trading frequency 4 trades per day

λ 0, 1, 10, 100
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Figure 3 illustrates the optimal execution strategy through the 
rate of trading as a function of the underlying price S and time 
t. The strategy hardly depends on the trader inventory position. 
However, as time increases, the trading rate increases (convex in 
time). As the maturity approaches, the agent must acquire faster 
as time passes, with a shape of an inverse function of time.

The mean case (λ = 0) is the least affected by the spot variation. 
In contrast, this representation allows seeing that the mean- 
variance (i.e., λ ≠ 0) with a high- risk aversion is most sensitive to 
price movements. The agent tends to liquidate her position at the 
beginning to reduce the P&L variance that plays a non- negligible 
role in her choice. To gain additional insight, in Figure 4 (Pg. 9), 
we plot four paths of the underlying price together with the rate 

of trading, the inventory and quantity to be traded, where adding 
the variance pushes the agent to adapt the strategy to the under-
lying level. As the risk aversion parameter increases, the traded 
quantity tends to be larger at the beginning.

In contrast, within the mean- variance case where the dispersion 
of the profit and loss becomes an additional driver of the risk 
appetite, the optimal execution strategy significantly depends on 
the stock path, with a faster pace when the stock level is low 
compared to when the stock level is high. Indeed, as the stock 
decreases, the cost of the put option increases. This prevents 
the insurance company from waiting until maturity to trade a 
large quantity, and instead favors a decreasing trading pace as 
time passes.

Figure 3
Rate of Trading as a Function of Underlying Price S, Time t for Different Values of λ

Note: Mean objective (λ = 0, top left) or mean- variance (λ = 1, top right; 10, bottom left; 100, bottom right)
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Significant Delta Hedging Activity
We consider here the interaction of one “large trader” whose 
action affects prices and many price- takers or “small traders”; the 
usual no arbitrage condition9 doesn’t apply. We use a continuous 
time version of Jarrow’s no market manipulation strategies10, 
which requires additional but relevant required assumptions:

• The asset price is independent of the large trader’s past 
holdings

• Real wealth (as if the holdings were liquidated)

• Synchronous markets condition

• Prices adjust instantaneously across underlying and derivatives

• Absence of corners

Effects on Option Prices
Large dealers are net writers of options and thus need to neu-
tralize the risk by synthetically replicating options. As a result, 

an additional process—the number of underlying assets held 
by the large trader—needs to be introduced, which gives rise to 
nonlinear feedback effects.11

Actually, traded options exist only for well established markets 
and relatively short maturities. For very long dated options, 
dynamic replication is the only way for market makers to hedge 
a short- put position. They do this by taking an offsetting posi-
tion in the underlying asset; the required size changes with the 
price of the underlying asset.

More precisely, to compensate for an increase in the price sen-
sitivity of a call option, a hedge position in the underlying asset 
must be made larger as well, in return affecting its price process. 
If the transaction size in the underlying asset becomes very sig-
nificant, thus implying market impact, this mechanism generates 
the potential for positive feedback in price dynamics because 
the hedge adjustment is to buy (sell) the underlying asset after 
its price rises (falls), as the transactions could introduce further 
upward (downward) pressure on prices after an initial upward 
(downward) shock to asset prices.

Figure 4
Sample Paths of Evolution of Price, Rate, Inventory and Quantity
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The underlying asset price dynamics can be modeled as

where λ is a continuous function called market liquidity pro-
file, used to retrieve a particular shape of the implied volatility 
smile, while ρ represents the intensity of the liquidity impact. A 
possible choice is the ratio of change in the price of the under-
lying to the quantity traded, which is observable given an order 

book. So  represents the market depth at time t, (i.e., 

the order flow required to move prices by one unit).

If we now apply the Black- Scholes methodology, under a zero 
risk- free interest rate (for simplicity of notation), we obtain a 
modified Black- Scholes PDE:12

.

This modified Black- Scholes equation is a fully nonlinear 
parabolic PDE, requiring specific numerical implementation 
ensuring accuracy, flexibility and stability. 13

Actually, as the large trader sells European calls, she has to buy 
a large amount of the underlying assets to hedge synthetically, 
which makes the underlying asset price rise, thus the short delta 

decreases, implying a short gamma, so the feedback volatility 
rises. Consequently, the option unit price turns out to be higher 
than the usual price- taker Black- Scholes price. This can be seen 
in Figure 5.

Figure 5
European Call Price With Feedback  
Effects vs. Black- Scholes Price
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An apparent paradox arises in empirically observed markets in 
regard to large traders’ transactions: Selling a large amount of 
calls causes the price to rise. In fact, when a large amount of 
options is used in such trading strategies, the market dynamics 
may be affected by the trading strategy itself, leading to poten-
tially destabilizing price paths.

Illiquidity appears as an endogenous trading cost compensating 
for the sharing of risks measured here by the spot market vola-
tility. By buying with rising prices, the large trader’s demand is 
procyclic. Therefore, the apparent paradox is just a consequence 
of the positive feedback effect induced by the dynamic hedg-
ing of the large trader through its portfolio insurance strategy, 
designed to protect the capital during a market downturn by 
replicating option positions. In fact, this positive feedback effect 
stems from the absence of sufficient natural counterparts to 
meet the demand for puts and calls, where large dealers can meet 
the demand by selling puts and calls. In doing so, they become 
short the option. They can neutralize their net risk exposure by 
synthetically replicating long option positions, which requires 
selling as the market falls and buying as it rises. This ensures the 
hedge position is sufficient to cover the option rising exposure, 
which introduces transactions large enough to amplify the initial 
price shock. It generates precisely the kind of vicious feedback 
loop that destabilizes markets.

Effects Impact on Greeks
The gap caused by the hedging feedback effect (tracking error) 
is always positive, so the Black- Scholes delta hedging strategy 
always implies a loss, directly linked to the difference of vol-
atilities, while growing with the gamma (i.e., the large trader 
hedging activity) and with lower liquidity (higher ρ).
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In terms of delta hedging, we distinguish three effects:

• A positive moneyness effect. The large trader buys more 
underlying assets for in- the- money calls (more likely to be 
exercised).

• A negative volatility effect. For in- the- money calls, a 
higher volatility implies a higher probability to leave out of 
the money, which reduces the delta.

• A negative time to maturity effect. As residual time to 
maturity decreases, the optimal quantity to hedge is more 
predictable, which reduces the delta.

CONCLUSION
Market impact risk refers to the degree to which large size 
transactions can be carried out in a timely fashion with min-
imal impact on prices. As a result, managing investment and 
liquidity risks for large players requires introducing an explicit 
market impact function, and applying to derivatives significantly 
depends on whether or not there is significant delta hedging 
activity. In the case of no significant delta hedging activity, the 
risk appetite has significant influence on the optimal execution 
strategy. In the case of significant delta hedging activity, the 
optimal trading involves feedback hedging effects translating 
into a modified Black- Scholes hedging strategy. 

At time of writing, Aymeric Kalife was head of 
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Professor in Finance at Paris Dauphine University. 
He can be contacted at Aymeric.kalife.fr@gmail.com.
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Figure 6
Optimal Delta and Gamma Greeks under market impact 
vs. Delta and Gamma Greeks under Black- Scholes model
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