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All About Them Curves: 
Ordered Lorenz Curves 
and Li� Curves
By Michael Niemerg

Often, models are crafted to optimize some objective 
function. However, in the real world, the quality of a 
model is multidimensional and can’t really be sum-

marized in a single metric. One of the goals in any thorough 
model validation process is the evaluation of a model with 
an entire array of diagnostics. The more perspectives we can 
judge a model from, the better sense we can get of what the 
model is truly achieving.

Two very closely related validation measures I’ve found myself 
employing continually more often are Lorenz curves and Gini 
gain. Both give a sense of how well a model is able to stratify 
risk in the sense of rank ordering. The Lorenz curve is a visu-
alization of this stratification, while the Gini gain is a way to 
transform such a visualization into a single summary statistic. 

These two model validation diagnostics are great alternatives 
and complements to lift curves, which are another commonly 
utilized visualization technique used to measure model strati-
fication. The term “lift curve” has multiple meanings, so I’m 
going to define precisely what I mean.

The best way to define a lift curve is to explain how it is created. 
To start, you need three elements for each observation in your 
dataset: the predicted value of an outcome (coming from either 
a manual rate, mortality table or any other type of predictive 
model), the actual value of that outcome, and a grouping by 
which to bin the observations. The chosen grouping can vary; 
for example, quantiles or prediction ranges are often used. 

For consistency and concreteness, I will call predicted outcomes 
“claim costs.” From these claim costs, I will also frequently refer 
to as “actual relativities” and “predicted relativities”—where both 
of these values are expressed as ratios relative to some baseline 
expectation. Using health rating as an example, we may reference 
a manual rate as our expected value. Then, if the actual experience 
of one member was $500 per member per month (PMPM) and 
their manual rate was $400, the actual relativity is 1.2 ($500/$400). 
If we were trying to build a predictive model to adjust this manual 

rate, and for this member the predicted outcome was $600, the 
predicted relativity would be 1.5. In certain situations, using these 
relativities instead of the claim costs themselves can be simpler. 
For instance, if we want to see how much a single variable from 
our rating formula stratifies risk while holding everything else 
constant, we can use the baseline in the relativity to account for all 
the variables in the rating process.  

Now, with all the data in hand, we create our graphic to display 
our lift curve. Taking our observations sorted into groupings, 
we calculate the actual relativity for each grouping and plot the 
results (with predicted relativities on the x-axis and actual relativ-
ities on the y-axis). Figure 1 offers an illustrative example. For the 
example in Figure 1, as the grouping increases, so does the actual 
relativity. If we made this example more concrete and said that the 
grouping represented predicted relativities, then this chart would 
be demonstrating that as our predicted relativity increases, the 
actual relativity also increases (exactly what we were hoping for). 

Figure 1 
An Illustrative Lift Curve
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Now, let’s define Lorenz curves and Gini gain. When one 
typically thinks of Lorenz curves, the immediate association is 
with economics, since Lorenz curves have a storied history of 
being used to measure income inequality. In a typical construc-
tion of Lorenz curves, the function measures the cumulative 
proportion of individuals on the x-axis (I’m going to instead 
use the more neutral lingo described earlier and call these 
observations) and the cumulative proportion of income on the 
y-axis where the observations are ordered on income (this will 
be replaced by our claim costs). The basic idea is to measure 
how unequal the distribution is. See Figure 2 for an example. 
The line of perfect equality is what we would expect if we had a 
perfectly equal distribution (everyone has the exact same claim 
cost) and the line of perfect inequality is the line we would 
get if we had a perfectly uneven distribution (one observation 
generates 100 percent of the claim costs). 

Figure 2 
An Illustrative Lorenz Curve 

an ordered Lorenz curve with a bowed shape, similar to that 
in Figure 2. 

The Gini statistic allows us a succinct way to summarize a 
Lorenz curve or ordered Lorenz curve with a single metric. 
It is equal to the total area between the Lorenz curve and 
the line of perfect equality divided by the total area between 
the Lorenz curve and the line of perfect inequality (since the 
total area under the line of perfect equality will be equal to 
0.5, this is also equivalent to two times the area between the 
Lorenz curve and the line of perfect equality). Having this 
single summary metric is nice when values are either close and 
the Lorenz curves are hard to visually distinguish from the 
line of equality or if you want to summarize an entire array 
of model validation metrics in a single table to compare them 
simultaneously. 

What are lift curves and ordered Lorenz curves achieving for 
us? Remember that our end goal is to create a visualization 
that helps us see risk stratification in a meaningful way. With 
the alternative approach of plotting every single data point 
(comparing predicted versus actual), the result would be a 
line bouncing all over the place, because insurance claim costs 
are highly volatile. By way of contrast, lift curves and ordered 
Lorenz curves are both employing a form of smoothing to 
make results visually interpretable. An ordered Lorenz curve 
smooths out the variance in actual results between different 
ranges by showing a cumulative value (any single observation 
will only contribute a small amount to the cumulative distri-
bution resulting in a curve that appears smooth), whereas a lift 
curve is doing that with its grouping.  

One thing that needs to be kept in mind is that by its very 
nature, smoothing removes granularity to make underlying 
trends more visible. One caution when using lift curves here is, 
therefore, that the break points in a lift curve are arbitrary, and 
slightly different break points can result in massively different 
looking curves. Compare Figure 3 (Pg. 12) and note how dif-
ferent these two models’ results are. Now look closer—Figure 
3(a) is based on the same model (I pulled a sleight of hand). 
The only difference is that the range on the x-axis in Figure 
3(b) is shifted slightly—by a mere 0.01. This slight difference 
in binning created a massively different looking result. This 
isn’t even a contrived example. I was able to create these 
graphs using data from a real project and without much exper-
imentation. Moreover, the model represents several hundred 
thousand lives, so it isn’t just a consequence of using a small 
sample. Most lines of business in insurance are volatile, and 
this variability impacts the lift curves. 

This underscores the fact that you can’t focus too much on 
small perturbations in the lines of lift curves.  

What I’m going to talk about from this point on are ordered 
Lorenz curves, which are very similar conceptually to Lorenz 
curves, but now we use a predicted relativity to order our 
observations. Once ordered in this fashion, we graph the 
cumulative portion of actual claim costs and the cumulative 
proportion of observations based on this ordering. In building 
our curve this way, we are able to see whether our predicted 
relativity is distributing actual claim costs unevenly (which is 
desirable—ideally, our predictions have some value beyond 
pure randomness). For instance, suppose we were using an 
ordered Lorenz curve to test the impact of a new manual 
rating adjustment factor where a 1.00 signifies no adjustment 
to the manual rate. Here, we would hope that those observa-
tions earning a score below 1.00 would be associated with a 
disproportionally small amount of losses and that those with 
an adjustment greater than 1.00 would be associated with a 
disproportionately high share of losses. This would result in 
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Although lift curves are great visual tools, they can be over-
interpreted because the binning will always be somewhat 
arbitrary. For high-variance events such as health care claims 
or mortality, these small perturbations in the predicted model 
results can move the predicted value for an observation with 
a large claim from one bin to the next, and this can result in 
a significantly different lift curve even if the prediction itself 
isn’t meaningfully different. For instance, a single million-dol-
lar claimaint may have a predicted relativity of 0.899 in one 
iteration of a predictive model and 0.902 in another version 
of a predictive model. Because of this, a Lorenz curve is much 

more invariant than a lift curve to these small perturbations of 
the scores since it does not include any binning. 

For another example, see Figure 4, where I compare two dif-
ferent models (Model 1 and Model 2) against one another. The 
difference between the two figures here is that I am simply 
using different bin sizes for my predicted relativities (deciles 
and quartiles). Although both figures show consistency in the 
sense that Model 1 stratifies risk better in both figures, the 
smoothing in Figure 4(b) masks the fact that there appears to 
be greater volatility in the values for Model 1. However, in 
this instance, the Lorenz curve may not save us because it also 

Figure 3 
Li� Curve Comparison for Slightly Di�erent Ranges of Li� Curves

Figure 4 
Li� Curve Comparison With Two Di�erent Bin Sizes: Fine (a) and Coarse (b)

(a) (b)

(a) (b)
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For a lift curve, it is easy to add a quick modification to make 
this discrepancy easy to visualize. Simply include another line 
in the graphic that includes the actual values after adjusting for 
the impact of the predicted relativity (as shown in Figure 3(b) 
and 4(a)). If the model is unbiased, its predictions will adjust 
the results to be close to a 100 percent relativity (there will 
always be some noise as well, so pay attention to sample size). 
Other validation metrics, such as mean absolute error and root 
mean-squared error, can be useful here as well. 

I use lift curves daily; by pointing out these weaknesses of lift 
curves, I am not hating on them. However, they can be fickle, 
so it’s important to always interpret them with caution. These 
pathologies of lift curves are intuitive when you think about 
them, but it is easy to get careless. That’s why I like using 
Lorenz curves as additional side information. They respond 
differently to changes in predicted relativities, and when you 
calculate the Gini gain from them, you are able to summarize 
the stratification of the model in a single statistic that isn’t 
hampered by the subjectivity of visual interpretation. 

In summary, Lorenz curves and Gini gain are good alternatives 
and complements to lift curves. Together, they form a dynamic 
combination of ways to measure risk stratification. Don’t use 
just one of them. Use all of them. ■

LIFT CURVES VS. ORDERED LORENZ CURVES
LIFT CURVES

+  Easier to tell how predicted values change as the 
predicted relativity changes

+ Simple interpretation
+ Easier-to-visualize model bias
- Hard to summarize with a single metric
-  Hard to visually distinguish differences between two 

competing models when the changes in predictive 
power are marginal

-  Small changes in how groupings are determined can 
correspond to large visual changes 

ORDERED LORENZ CURVES
+ Shape is more stable when large claims are present
+  Gini gain summarizes risk stratification in a single 

statistic that is easily compared across models 
+ Not subject to arbitrary groupings 
-  Hard to tell if the model predictions are biased without 

using other validation metrics
- Less intuitive and harder to explain

won’t obviously show the higher volatility of Model 1 when it 
is visualized either. 

Another word of caution: Although both lift curves and 
ordered Lorenz curves do a great job of displaying the rank 
ordering of a model, they don’t tell you whether your model 
is getting you close to your target. For an illustrative example, 
see Figure 5. If you compare the predicted relativity versus the 
target for the five observations here, you see a large deviance. 
The model significantly underpredicts low target values and 
significantly overpredicts very high model values. However, 
merely comparing rank orders would suggest a quality predic-
tive model. The lowest actual relativity value corresponds to 
the lowest predicted relativity, and the highest actual relativity 
corresponds to the highest predicted relativity. 

Figure 5
An Example of a Model That Rank Orders Well but 
Whose Predicted Values are Biased

Observation Predicted Relativity Actual Relativity

1    20% 100%

2    50% 120%

3 120% 140%

4 200% 160%

5 500% 250%
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