
 

 

Article from 
Predictive Analytics & Futurism 
December 2018 
Issue 19 
 



20 | DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM 

The Possible Role of 
Convolutional Neural 
Networks in Mortality 
Risk Prediction
By Holden Duncan

How might a computer tell the difference between the 
road and a tree while steering a car at 40 miles per hour? 
A rules system for each possible object that might be 

encountered could be created; however, such a system only 
allows for a limited amount of features, and is only as effective 
as the rules themselves. Increasing the number of rules might 
make for a more accurate classification, but such an engine 
would become unmanageable. In addition, attempting to 
hand-engineer such features limits a model to human intuition 
of pixel-by-pixel photo recognition.

There are already articles about random forests or linear/logistic 
regressions, but these methods involve the use of functions and 
hand-engineered features composed of different categories. As 
such, these models are generally unable to identify wholly new 
ideas without specific encoding. However, a model that excels in 
using the spatial relationship between complex features in data 
to generate accurate classification could learn to recognize new 
patterns. A convolutional neural network, or CNN, learns to 
use concrete low-level features in order to extract identifying 
abstract ideas. The nodes or “neurons” of the network are orga-
nized into different interconnected layers and through training 
becomes a predictive engine similar to the human brain. While 
CNNs are most commonly used in image classification, I hope 
to instead apply them to model mortality risk through visual 
representations of medical history.

WHAT IS A CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks are specialized neural networks. 
Regular neural networks take some fixed-shape input and pro-
duce an output. The input propagates through the network via 
the weighted connections between different layers of nodes, and 
the transformations which take place in and between nodes pro-
duce optimized predictions. Assuming layer A is the layer just 
before layer B in a given network then:

• Each node in layer A has a weighted connection to every 
node in layer B.

• Let Ax represent a given node in layer A, similarly for By

in B, and let Weightxy be the weight of the connection 
between those two nodes. Then the input from Ax to By may 
be expressed as:

 

• The net input to node By is the sum of the inputs from each 
node in A to By:

 

• The output of node By is determined by the result of the 
activation function, F, applied to the net input:

 

This process is shown visually in Figure 1 (pg. 21).

Generally, a neural network consists of an input layer and an 
output layer with any number of hidden layers in between. 
Each layer may contain any number of nodes. The model makes 



 DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM | 21

accurate predictions using the weight associated with each con-
nection and is able to learn by optimizing these weights. When a 
fresh network is initialized, these weights are randomly assigned 
small nonzero values.

Unfortunately, we are unable to hand-wave meaningful weights 
into existence, but thankfully the network learns through a vari-
ant of trial and error and not human intuition. Training occurs 
through backpropagation, a form of supervised training which 
compares the network generated output with the expected out-
put by using labeled data, e.g., data labeled “Duck” would have 
an expected output of 1.0 for “Is Duck” and 0.0 in any other 
category. In essence, the training data is passed forward through 
the network and the error is found, and then the network works 
backwards making adjustments. The Mean Squared Error is 
commonly used to measure error, thus the total error, Etotal, for 
the output layer may be expressed as:

Because Etotal represents the amount of change needed to reduce 
the error to zero, the partial derivative with respect to a given 
weight yields the amount by which that weight must change 
to minimize the total error. This change is often multiplied 
by some learning rate to make training more efficient. (These 
examples assume a learning rate of 1 for simplicity.)

Convolutional neural networks go a step further and use spe-
cialized convolution and pooling layers. The output of these 
layers may be a two-dimensional matrix, or a matrix of matrixes 
called a tensor. Convolution layers and pooling layers both have 
kernel and stride dimensions. These variables remain constant 
within a layer, but may change between layers. The shape of the 
kernel acts like a spotlight and highlights a limited region of 
the total input. The region is processed and then the kernel is 
translated across the input according to the stride.

In convolution layers, the highlighted region is multiplied by 
a filter. The filter may be matrix or tensor. The sum of the 
elements in the product represents the similarity between a 
given region and the filter. The resulting activation map not 
only shows whether the filter was activated, but also where in 
the input that filter was activated. There may be any number of 
filters in a given layer. Multiple filters in a layer will produce a 
tensor of the various activation maps “stacked” one after another. 
In early layers these filters detect simple features from concrete 

Figure 1
Node Output Depends Upon Net Input and Activation Function

An important feature of backpropagation is that changes are 
applied to each weight individually. The weight of each connec-
tion is increased or decreased by the partial derivative of the 
total error, Etotal, with respect to the given weight wx. Using 
the chain rule the error associated with a given weight may be 
expressed as:



The Possible Role of Convolutional Neural Networks in Mortality Risk Prediction

22 | DECEMBER 2018 PREDICTIVE ANALYTICS AND FUTURISM 

input values. In later layers however, filters tend to represent 
more abstract ideas using the spatial relations between earlier 
filters. The network operates much like how a human identifies 
a high-level idea, like a square versus a rectangle, by the low-
level information such as the relative positions of each edge.

Pooling layers, on the other hand, serve to only down sample 
input. A typical method is max pooling, during which the largest 
value from the input region becomes a single value in a smaller 
matrix. The result is similar to the input except the location of 
details are more generalized. Pooling layers are useful because 
not only do they reduce the dimensions of the matrices within 
the model, but these layers also help prevent overfitting. 

An overfit model begins to simply memorize strict patterns found 
in training examples. A network trained to detect cars might overfit 
and expect any detected wheels to be perfectly horizontal. Pooling 
the layer that detects wheels retains any spatial relationships, but is 
less sensitive to the exact locations of the features. This generaliza-
tion makes for a more flexible model. 

APPLYING CONVOLUTION NEURAL 
NETWORKS TO UNDERWRITING DATA
CNNs are not limited to computer vision, however. Because of how 
these networks use different low-level features to extrapolate com-
plex and abstract relationships, such networks may be used beyond 
classical images. While the ability to recognize abstract ideas from 
spatially related features is commonly used for image classification, 
images are just organized tensors. As such, any tensor or matrix of 
spatially related data may be used as the input to a CNN. 

I have generated visual representations of individuals’ pre-
scription histories. The x-axis represents time and the y-axis 
represents how dangerous the prescription is considered. 
Darker sections represent a higher number of prescriptions of 
that severity filled within a given time interval. I have chosen 
this approach because a convolutional model trained this way 
may be able to find and use unknown patterns. A note of caution, 

however: Because most data in columns may be shuffled verti-
cally without the loss of information, tabular data tends not to 
be a good candidate for a CNN. If one could shuffle the col-
umns of an image and not scramble the picture, then the spatial 
relationships would be insignificant. The prescription histories, 
like a picture, have an inherent ordering to the columns. Thus, 
they can benefit from a CNN analysis.

CONCLUSIONS AND FUTURE DIRECTIONS
The output of a convolution layer with more than one filter is a 
matrix of matrices. This resulting tensor is passed through the 
network in order to generate some target output. In order to 
build, train and test different models, I used Google’s Tensor-
Flow library for Python as the backend for the Keras module 
by François Chollet. The logic for the actual training and cre-
ation of the model is based in C and C++ with Google’s Python 
wrapper for interaction. The Keras package is then used to 
implement TensorFlow as Keras has friendlier syntax and added 
tools for data manipulation. 

Moving forward I plan to use major drug groups, sub groups 
or even active ingredients in place of severity scoring, thereby 
possibly capturing new relationships between medications. The-
oretically, this network could even diagnose patients through 
symptom history. In addition, the output may be more than a 
yes or no answer, but instead a vector predicting the mortality 
risk of the individual for each coming year. And while I have 
generated actual images, any two- or three-dimensional input 
of spatially related data could be used. Such technology is only 
limited by human creativity and available data. ■

Holden Duncan is a data scientist at RGA 
Reinsurance Company, in Chesterfield, Mo. He can 
be reached at HoldenDDuncan@gmail.com


