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Climate Impact on Tick-Borne Illnesses 
An Illustration of Lyme Disease: Modelling Drivers, Health Care Costs, 
and Trends 

Executive Summary 
Climate change is at the forefront of changes in ecosystems, biodiversity, and implicitly researchers are only just 
beginning to understand climate change’s effect on human health. 

In previous generations, the spread of rodents and other animals paved the way for infectious disease and 
pandemic such as the infamous Black Death. This arguably came about in part due to climate, with the “so-called 
medieval climatic optimum.”1 Is the world entering an era of pandemics and infectious disease? With this as a 
backdrop, this report researches the complex relationship between climate variables and the spread of one 
infectious disease, Lyme Disease (LD), in the United States. 

LD is a well-known disease particularly in the eastern U.S., and also endemic in other geographies explored in 
Section 5. While by no means a major contributor to causes of death, it is a debilitating and long-term disease 
particularly if left untreated. Its costs can range from small amounts, such as a course of antibiotics, to expensive 
and lengthy complications from neurological and musculoskeletal impairments to paralysis, according to a sample 
dataset explored. 

This report explores the shifting geography of LD in the U.S. and beyond and some of the potential determinants of 
its spread. The host (ticks) and intermediate host activity, range, and survival ultimately determine potential for 
exposure to LD; the other factor is human activity in high-exposure areas. As humans and nature come closer 
together, the prognosis here may not be positive; on the other hand, models do suggest some extreme weather 
events to have both a mitigating effect on tick survival as well as, in layman’s terms, the supposition that no one 
enjoys hiking in high-tick areas on high-precipitation weeks. For example, with extreme weather events, drought 
appears to be negatively correlated with LD incidence – so while in Germany, recent drought years have brought 
devastation to mature forests and invite disease from beetles, this does not provide ideal climate for tick activity. 
Climate and other influential determinants of incidence going forward are found to be minimum average 
temperature and ranges, land use, and to a less extent precipitation, drought or frost, and certain socioeconomic 
factors which we explored as proxy for LD awareness and reporting. 

In addition to the finding that climate has a material if complex relationship in LD increase in the U.S., the authors 
add to existing literature on the topic by 

• Linking disease to health care costs and complications 
• Offering an international scan  
• Using a modelling approach which accounts for geographic dependence through novel use of spatial 

autoregressive model with autoregressive disturbances (SARAR) 
• Extended feature engineering over the period of a tick’s life span, accounting for time lags effects of 

precipitation and temperature 

 

 

1 Henson R, The Rough Guide to Weather, p383. ISBN 1-85828-827-4 
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• Offering the regression model as a framework for other infectious diseases and their link to climate 
In particular, the modelling techniques described in Section 5.1 and the Appendix A.2 leverages largely unexplored 
spatial models in the actuarial profession and insurance industry. There exist applications of spatial models to non-
life insurance pricing (see, for example, (Rivas-Lopez, et al. 2021)), but there are implications of this modelling 
approach elsewhere in the industry as well. 

 

 

 

 

 

 

 

 

 

 

  

https://soa.qualtrics.com/jfe/form/SV_8Bo8Co6tQJqPunQ
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Section 1: Introduction 
Lyme disease (LD) is a tick-borne infectious disease, transmitted through the Spirochetes tick species named Borrelia 
burgdorferi. LD is also sometimes referred to simply as borreliosis. Borrelia is named after biologist Amédée Borrel, 
and is perhaps false friends with the term boreal, since transmission to humans usually occurs in forests or forest-
adjacent areas. Hiking and outdoor exposure without protection is associated with transmission. 

The disease, prevalent in most of central and increasingly northern Europe, is also endemic in the U.S. The disease 
was first recognized in the U.S. in the 1970s due to a large number of juvenile representations of rheumatoid 
arthritis and emerged at that time according to some due to modified land use and reforested farmland. LD can be a 
helpful example of how regional health care claims costs might be impacted by changes in climate trends, and 
potentially the movement of known diseases to new geographic regions that may not have experienced them as 
prominently in the past. Changes in temperature or precipitation trends have the potential to bring higher incidence 
of some infectious diseases to new geographies. Similarly, severe weather events may impact where certain 
diseases may quickly arise in new areas. For example, a type of fungus which causes coccidioidomycosis, thrives in 
the soil of dry areas of the Southwest United States and Mexico, where summers are warm but with short, moist 
winters. Humans become infected when they inhale the fungus from the soil. Extreme windstorms have been cited 
that lift soil and deposit it further north in California, outside the normal endemic region of the disease (Flynn, et al. 
1979). 
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Section 2: Patterns of Lyme disease in the U.S. 

2.1 GEOGRAPHIC SHIFTS OVER TIME 

 

Residents of the northeast and surrounding areas of the disease’s namesake Lyme, Connecticut, are acutely aware 
of LD and its dangers. This is less true elsewhere in the U.S. and internationally, though regions with long histories of 
LD exhibit exceptions (see Section 5.2 and 5.3). Awareness may be picking up as incidence spreads, and we note the 
driver of increased reported cases is from outside the earlier epicenter of the states of New York, Connecticut and 
New Jersey.  

     
 
Note on data preparation and case count quality: The Centers for Disease Control and Prevention (CDC) reports 
cases in two ways: weekly and annual by state (Centers for Disease Control and Prevention (CDC) 2021) and annual 
by county (Centers for Disease Control and Prevention (CDC) 2022). The weekly statistics are published immediately 
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as provisional information and therefore are subject to change. New or updated information will not be corrected in 
already published tables, but only used for future publications. Consequently, cumulative counts can increase or 
decrease depending on the type of the new information. Only finalized and quality reviewed data will be published 
as annual report. We assessed both publications and decided to proceed with the annual dataset by county, which 
provided us with better data quality and geographic granularity.  

We kept CDC LD cases for 48 states, except for Hawaii and Alaska, and all counties within these states except for 
Nantucket County, MA, and San Juan County, WA, since these do not have any neighbors in the context of spatial 
modeling. We then imputed the LD cases for a handful of counties with either missing values or stark changes in 
reporting over the observation period (Massachusetts for 2016–2018 and county code 46102 for 2000–2009). The 
case of Massachusetts highlights that surveillance of infectious disease relies on accurate reporting, which has been 
contested in Massachusetts in recent years.2 Our approach to correcting this via imputation was through 
extrapolating a simple moving average (rolling 5 years). Alternate approaches via random sampling, spline 
interpolation, and interpolation using linear weighted moving averages all proved similar. 

2.2 REPORTING AND AWARENESS 
The trouble with reported cases through the CDC or other governments’ disease surveillance is similar to what we 
have come to understand with COVID-19: unreported cases, and skew in reported cases based on access to testing 
and socioeconomic bracket. Increasing awareness for Lyme disease can be observed in Google trends. Since 2010 
there has been a rapid increase in Google searches for Lyme-related search terms. 

    
 
The Google search volumes were obtained from Google Trends. For a given search term, Google assigns a value 
between 0 and 100 as an indicator of the number of searches relative to all other searches, thus controlling for 
increasing search engine usage. The highest search volume of an observed period (here: 2004–2018) is set to 100, 
and, for each search term, the rest of the observations are relative to this. Data is available monthly from 2004 
onwards. Here, due to the strong seasonality component, we chose to calculate yearly values by averaging over 
months. To visualize changes over time, Lyme incidence (nationwide, per 100,000 inhabitants) and search volumes 
are expressed in percentage point changes relative to the observations in 2004. 

 

 

2 https://www.lymedisease.org/massachusetts-disputes-cdcs-claim-drop-lyme-cases/  

https://www.lymedisease.org/massachusetts-disputes-cdcs-claim-drop-lyme-cases/
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One alternate measure of LD incidence could be through tracking health care intervention, such as hospitalization 
rates. This data was not nationally available, but the regional estimates help us to quantify the impact of 
underreporting, for example a study suggests underreporting of cases meeting surveillance criteria of 29% 
(Schiffman, et al. 2018). A recent study on national health claims data suggests that in states with low Lyme 
incidence only 2% of claims get reported to the CDC whereas in high incidence states approximately 14% of the 
cases get reported (Schwartz, et al. 2021). The reality of underreporting is likely lower because health claims include 
suspected cases of LD and therefore are prone to overestimating the actual incidence. Still, this clearly shows that 
awareness plays a role in CDC’s case counts.  

An analogy to Germany (Section 5.2) shows that reported cases are on the rise whereas hospitalizations have 
decreased over time – perhaps not incongruous due precisely to awareness enabling early treatment by primary 
doctor and hence usually no hospitalization required.  

2.3 LYME VERSUS BROADER VECTOR-BORNE ILLNESSES 
The role of climate change in the general setting of vector-borne diseases is not clean cut: other factors are at play. 
There are various concerning vector-borne illnesses in the U.S. and elsewhere, many of which have been observed 
with increasing frequency across the U.S. Anaplasmosis/ehrlichiosis exhibits a stark trend. Malaria is a major killer 
globally outside of North America but has also seen increased trends in the United States. While surveillance data to 
infer the true incidence rate may be flawed – subject to reporting completion and definition changes – the CDC 
reporting does give indication to increases in vector-borne illness over the past few decades. 

  

 
We have selected a deeper dive on LD given its increases in reported incidence, expanded geography and being the 
most common reported tick-borne disease in the U.S. and Europe (Marques, Strle und Wormser 2021). Importantly, 
it is also endemic in the U.S. and most of Europe. There are also travel-based diseases, or mixed travel/endemic, 
which make the county of reporting or diagnosis under CDC surveillance less relevant. 
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Section 3: Existing literature on climate’s role 

3.1 CLIMATE CHANGE AND LIFE CYCLE OF TICK-BORNE DISEASES 
Hosts play a key role in the tick life cycle, which means that the tick population is not only affected directly by their 
reaction to environmental factors but also indirectly by the impact environmental changes have on their hosts. The 
following table describes the four stages of the life cycle of Ixodes scapularis3. 

Stage Season Host Description 
Eggs Spring (-1) - 

Summer (-1) 
 The adult females, made larger and sustained by their adult stage 

ingestion of mammalian host blood,  lay eggs on the ground.  The egg 
laying typically begins in late spring, and usually occurs near the site 
where they detach from their mammalian hosts. 

Larva Summer (-1) - 
Spring (0) 

Small 
mammals 
and birds 

In summer, eggs that were deposited in late spring begin to hatch into 
larvae.  The larvae begin to feed on a variety of small mammals or birds. 
After dropping from the host to the ground they begin to pass through 
and wait out the winter season and molt. After hatching, larvae do not 
carry tick-borne pathogens but they may have the tendency to pick up 
pathogens during their sourcing of nutrients from a diseased host. 
Animals such as the white-footed mouse are often the principal source 
of the disease pathogens causing LD, babesiosis and a type of 
ehrlichiosis. 

Nymph Spring (0) - 
Fall (0) 

Wild and 
domestic 

mammals, 
humans 

In the spring of the following year, larvae emerge as nymphs. Nymphal-
stage ticks will begin to feed and peak activity is often from the months 
of May through July.  Depending on the climate, however, the process 
may start earlier. Nymphs may transmit disease-causing organisms to 
hosts, including humans. Due to its small size the tick is more likely to 
transmit pathogens to humans in their nymphal stage (less than 2 mm) 
when detection and removal is less likely.  

Adult Fall (0) - 
Spring (+1) 

Medium to 
large wild 

and 
domestic 

mammals, 
humans 

During the fall nymphs molt into adult ticks. They seek to find 
mammalian hosts, particularly white-tailed deer during the fall, warm 
days of winter and the spring. The females feed, mate, lay eggs, and die. 
If they don’t feed in the fall, they try to find a large mammal host the 
following spring. Frost conditions do not kill blacklegged ticks and they 
can become active as soon as it is warm and above cold or freezing 
temperatures. Males attach to a host to wait for females but are not 
thought to take a blood meal and therefore are not known to transmit 
tick-borne pathogens. White-tailed deer are the principal host for the 
adult ticks, an important means of transport and tick abundance is 
closely linked to the abundance of these animals. 

 

Geographical distribution and magnitude of LD incidence depend on a variety of factors including the availability of 
(infected) hosts, transportation via hosts such as white-tailed deer, temperature and humidity. In all stages, host-
seeking requires temperatures above 7° Celsius (Süss, et al. 2008) and high humidity (European Centre for Disease 
Prevention and Control 2014) increases the activity. White-tailed deer density in high-LD areas of the U.S. may 
change over time with hunting practices and land management. Of temperature, precipitation, and extreme 
weather, increasing temperature is thought to be the key determinant of disease spread and longer seasonal tick 
activity. There may be mitigating factors with climate change bringing increasingly extreme weather events; while 

 

 

3 https://wisconsin-ticks.russell.wisc.edu/ixodes-scapularis-life-cycle/ 
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these extreme events are inversely correlated with tick survival, they are thought to be more mitigating for 
mosquitoes than for ticks who can seek cover in forest (Bouchard, et al. 2019). 

Apart from temperature and precipitation we do incorporate land use in Section 5’s modelling, which may affect 
both the interaction between humans and ticks as well as the availability of a variety of hosts. Land use 
(subsequently referred to as a variable group “land class”) is indirectly symbiotic with climate, with modified use of 
Amazonian rainforests being perhaps a visceral example. Also, with climate change and increasing extreme events, 
forests can become weakened in periods of drought; old forests can be very resilient, yet quickly destroyed by 
wildfires and preyed on by insects such as the bark beetle in Germany currently. Hence land use is an important 
variable in the report’s modelling and is not unrelated to climate change. 

3.2 IPCC FRAMEWORK 
The IPCC (Intergovernmental Panel on Climate Change) published its sixth assessment report in August 2021 
(Delmotte, et al. 2021). They find that North America will see an increase in temperatures and in extreme high 
temperatures amongst all evaluated climate projections with a high probability. The increase is likely to exceed the 
global average increase. The expectations for precipitation changes are somewhat more mixed. In the high northern 
regions (Canada, Alaska) precipitation is expected to increase with high confidence. In most of the U.S. it is highly 
likely that extreme precipitation increases and at medium confidence the scenarios also show increases in mean 
precipitation, which is in some regions restricted to winter season.  

Like the US, there is a high confidence that Europe will see above-historical-average increases in temperature in all 
scenarios. However, precipitation projections for Europe show a more diverse picture but most areas can expect an 
increase in both flooding events and droughts.  

This prognosis for the climate appears according to both existing literature and our modelling to have mixed signals 
on the direction of LD and possibly other tick-borne illnesses. The increasing temperature and higher precipitation 
could mean increased potential for tick activity and survival, but with droughts and extreme events 
counterbalancing this. The next section provides a scan of existing literature on these relationships. 
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3.3 OTHER NOTABLE LITERATURE 
Study Objective Modeling Results 

Burtis, et al. 
(2016) 

To investigate the impact of 
extreme weather factors 
(the number of hot and dry 
days) on the LD incidence in 
the long-term versus 
recently endemic regions in 
the United States (p. 2). 

Mixed effects generalized 
additive models were used, 
with the log-transformed LD 
incidence as a target 
variable (p. 5). The models 
also included county 
random effects and CDC’s 
reporting type and 
accounted for spatial 
correlation in the LD 
incidence (p. 5). 

In the long-term endemic regions, the 
LD incidence was found to be 
negatively associated with dry 
summer weather during the questing 
period of nymphs in a given year (p. 
5). In the recently emerging regions, 
the time trend was detected, 
indicating that the LD was increasing 
over the period 2000–2011 (p. 5). 

Couper, 
MacDonald, 
& Mordecai 
(2020) 

To investigate the impact of 
temperature, precipitation, 
and dry summer weather on 
the LD incidence in six U.S. 
regions as well as to predict 
LD incidence under the RCP 
4.5 and RCP 8.5 climate 
scenarios (p. 4). 

A nonspatial fixed effects 
model with county and time 
effects was used for each 
U.S. region and included 
also tick and LD awareness, 
health-seeking behavior, 
and land cover factors as 
potential LD drivers (pp. 4–
6). AIC-based procedure was 
applied for variable 
selection and cluster-robust 
standard errors were 
computed to account for 
spatial correlation (p. 6). 

The LD incidence was found to be 
positively associated with average 
winter temperature (Northeast, 
Midwest, and Pacific Southwest) and 
cumulative temperature (Northeast) 
and negatively associated with 
average spring precipitation 
(Northeast, Midwest, Pacific, and 
Southwest) and precipitation variance 
(Southwest) (p. 27). The effects of 
other climatic variables differed in 
sign across regions (p. 27).  

Dong, 
Huang, 
Zhang, 
Wang, & La 
(2020) 

To investigate the impact of 
climatic and land cover 
factors on the number of LD 
cases in the Northeast and 
Upper Midwest regions of 
the United States (p. 2). 

Negative binomial 
regression was used to 
account for the 
overdispersion in LD cases 
(p. 4). 
 

Based on the model-averaging 
results, in the Upper Midwest, LD 
case counts were found to be 
positively associated with the edge 
length and density of developed-
open space as well as with the 
percentage of deciduous forest (p. 6). 
In the Northeast, LD case counts 
were found to be positively 
associated with the edge density of 
deciduous forests, the edge length of 
developed-low intensity space, as 
well as the percentage of developed-
high intensity space and negatively 
associated with the evergreen forest 
(p. 6). 
 

Burtis, et al. 
(2016) 

To investigate the impact of 
extreme weather factors 
(the number of hot and dry 
days) on the LD incidence in 
the long-term versus 
recently endemic regions in 
the United States (p. 2). 

Mixed effects generalized 
additive models were used, 
with the log-transformed LD 
incidence as a target 
variable (p. 5). The models 
also included county 
random effects and CDC’s 
reporting type and 
accounted for spatial 
correlation in the LD 
incidence (p. 5). 

In the long-term endemic regions, the 
LD incidence was found to be 
negatively associated with dry 
summer weather during the questing 
period of nymphs in a given year (p. 
5). In the recently emerging regions, 
the time trend was detected, 
indicating that the LD was increasing 
over the period 2000–2011 (p. 5). 
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Section 4: Disease burden – Costs and complications 

4.1  EPIDEMIOLOGY AND TREATMENT 
In Lithuania, where LD is highly endemic and exhibiting reported incidence between 80–100 annual cases per 
100,000, the most common symptom associated with the diagnosis is erythema migrans (an expanding circular rash, 
shown in 76% of cases), followed by arthralgia, headaches, weakness and fever (Petrulionienė, et al. 2020). The 
clinical representation can at first be subtle. Incubation period is 3–30 days. If the infection remains untreated and 
spreads it can cause severe damage to the nervous and cardiovascular system. Sequelae can develop within weeks 
or progress over several months in the absence of treatment. Serious health consequences can often be prevented 
if the infection is detected early and treated with antibiotics. If not treated promptly, LD can be difficult to treat and 
manage.4 

Lab diagnosis, tick autopsy and an attempt at antibiotics is the more likely initial treatment route and based on the 
presence of erythema migrans. However, the clinician or patient may not be looking for this, even if the tick bite was 
identified, due either to lack of patient awareness or sometimes skepticism in the care setting if the locality is not 
traditionally prevalent with Lyme-carrying ticks. 

4.2  ASSOCIATED CONDITIONS, COMPLICATIONS 
In-hospital mortality due to LD is rare, and short of mortality, the cases with complications are in the minority. 
However, this small minority of cases presents with both high costs and significant lifestyle impact. Using patient 
level data provides U.S. with the opportunity to track future claim costs and identify complications and conditions 
associated with a particular disease.  

Table 4-1 presents annual claim cost distributions associated with Lyme disease patients. This patient group consists 
of those with a Lyme disease diagnosis, identified by one of the relevant ICD-10 codes, in the Symphony database. 
The Symphony database is a large private repository of patient-level integrated data and contains prescription and 
health insurance claims records. The Symphony database has a broad coverage of more than 280 million patients, 
made available to us from mid-2019 by the COVID-19 Research Database partners.5 Please reference Table A2 in 
appendix for this and other data sources used throughout the report. 

Most patients have less than 3 years of history in the database since coverage only began in mid-2019. We 
therefore report the estimated claim cost distributions for the first year and the second year from the date of the 
initial Lyme disease diagnosis. Since claim costs for Lyme disease alone are typically moderate, reported claim costs 
in Table 4-1 are associated with future diagnoses of all diseases and conditions over the reporting period. Conditions 
that were present as of the initial Lyme disease diagnosis are excluded. 

  

 

 

4 https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/lyme-disease 
5 https://covid19researchdatabase.org/ 
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TABLE 4-1. FUTURE CLAIM COST DISTRIBUTIONS OF LYME DISEASE PATIENTS 

Percentile Year 1 Costs Year 2 Costs 
25th $641  $781  
50th $3,389  $3,697  
75th $17,603  $18,068  
85th $43,396  $44,317  
95th $192,626  $201,091  
Mean $53,719  $60,888  
Standard Deviation $415,556  $509,059  

 

To identify complications and conditions to which Lyme disease patients are more susceptible, we compare the 
likelihood of a specific diagnosis among Lyme-disease patients to that among a comparison group of non-Lyme-
disease patients. The comparison group is a matched random sample, with a matching age-gender-size profile.  

For each disease or condition, we use the ratio of cases in the Lyme-disease patient group to those in the 
comparison group to help identify if it mostly occurs in the Lyme-disease patient group. Table 4-2 presents the top 
10 diagnoses as ranked by this ratio. 

TABLE 4-2. TOP CANDIDATES FOR POTENTIAL COMPLICATIONS AND CONDITIONS 

ICD10 Description Proportion (%) Ratio 
A44.9 Bartonellosis, unspecified 0.0395 639 
B60.0 Bartonellosis 0.0387 417 
A68.1 Tick-borne relapsing fever 0.0053 172 
A77.40 Ehrlichiosis, unspecified 0.0100 163 
A77.0 Spotted fever due to Rickettsia rickettsii 0.0137 147 
A44.8 Other form of bartonellosis 0.0042 135 
A77.41 Ehrlichiosis chafeensis 0.0037 120 
A26.0 Cutaneous erysipeloid 0.0037 119 
A69.0 Necrotizing ulcerative stomatitis 0.0027 88 
A69.8 Other specified spirochetal infections 0.0023 75 

 

Of the 10 candidates identified in Table 4-2, most have a connection with tick-borne diseases except for erysipeloid 
and stomatitis. Our statistical approach appears to be effective in this regard. To the extent that LD is an initial 
misdiagnosis among patients from tick bites, ratios associated with tick-borne diseases may be slightly overstated by 
subsequent corrections to the LD diagnosis. In general, while medical knowledge is necessary to identify whether 
diagnoses are true complications and associated conditions of a particular disease, this statistical approach appear 
to help identify those to which such patients are most susceptible.  

Note that the top candidate diseases and conditions identified are not necessarily the most common ones among 
Lyme disease patients. This is evident from the proportion information in Table 4-2, the top 10 candidates represent 
only 0.12% of all subsequent diagnoses. 

We can use the same approach to identify the more frequent future diagnoses to which Lyme-disease patients are 
more susceptible, by ranking the ratio associated with the most frequent future diagnoses among Lyme-disease 
patients. Results are shown in Table 4-3. The purpose of Table 4-3 is not to identify conditions medically associated 
with Lyme disease per se, but to identify frequent future conditions that are also more likely in Lyme disease 
patients.  
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TABLE 4-3. FREQUENT DIAGNOSES THAT ARE ALSO MORE LIKELY IN LYME DISEASE PATIENTS 

ICD10 Description Proportion (%) Ratio 
Z86.19 Personal history of other infectious and parasitic diseases 0.27 5.77 
M25.50 Pain in unspecified joint 0.34 4.04 
R53.82 Chronic fatigue, unspecified 0.17 3.75 
M79.10 Myalgia, unspecified site 0.21 2.35 
R20.2 Paresthesia of skin 0.20 1.93 
R51.9 Headache, unspecified 0.30 1.73 
R53.83 Other fatigue 0.73 1.72 
M54.12 Radiculopathy, cervical region 0.16 1.72 
E53.8 Deficiency of other specified B group vitamins 0.16 1.72 
R21 Rash and other nonspecific skin eruption 0.27 1.70 

 
Information on claim cost distributions and top future diagnoses can be informative, for example, for insurance and 
financial resource allocation. While Lyme disease is not a major disease, our statistical approach can be adopted for 
other major diseases of interest. 
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Section 5: The big picture - Climate impact on Lyme in multiple locations 
Tick-borne illnesses exhibit visible changes in frequency and geography in the U.S., Germany, Finland, and Japan. We 
explore this subset of countries to paint a broader picture of distinct temperate climates experiencing a prevalence 
of ticks and potential for both hosts and disease spreading around these areas. Our primary focus for modelling 
climate’s link to LD incidence is in the continental U.S. 

5.1  UNITED STATES 
Section 2 illustrated increases and movements in reported LD cases over the past two decades. In this section we 
explore regression models to account for climate-related and non-climate-linked influences of disease incidence in 
counties across the US. 

5.1.1 CLIMATE-LINKED AND OTHER VARIABLES EXPLORED 
From the literature we have identified the following variables as determinants of LD, all of which affect the tick 
population, the interaction between humans and ticks and/or the likelihood that a case of LD is diagnosed and 
reported (For a detailed list of variables and the literary foundations for climate linkage to our models, see Table A3 
in Appendix A.1 and References respectively): 

• Land cover. Land use affects the tick population, their animal hosts and human exposure to them 
(Bouchard, et al. 2019, 83). Transmission of LD occurs where humans and ticks interact. This category 
comprises percentages of the following land cover classes: cropland or pasture/rangeland, forest, as well as 
unmanaged grass/shrubland. We also include the edge density between urban areas and nature. 

• Temperature. Literature suggests that the ticks host seeking activity depends on the surrounding 
temperature (Süss, et al. 2008, Couper, MacDonald und Mordecai 2020, Burtis, et al. 2016). Two groups of 
temperature variables, average minimum temperature and temperature range in different seasons and 
years of tick life cycle, were included to capture diverse effects that temperature may have on the 
incidence.  

• Precipitation. Humidity affects the tick population differently through the various stages of their lifecycle 
(Süss, et al. 2008, Couper, MacDonald und Mordecai 2020, Burtis, et al. 2016). Therefore, precipitation is 
included for the current and proceeding years seasons.  

• Extreme weather. Tick mortality is associated with frost (low humidity and temperatures below 0°C) and 
drought (low humidity and high temperature) (Bouchard, et al. 2019, Burtis, et al. 2016). 

• Socioeconomic variables. To approximate human health-seeking behavior we used unemployment rates. In 
addition, we include population density as a control variable. 

Looking at annual Lyme disease incidence in relation to both temperature and precipitation in spring (defined as 
April to July) we observe a clear correlation between the climate variables and the nymphs host-seeking behavior. 
As soon as the average spring temperature exceeds 7°C we see a strong increase in Lyme incidence, indicating high 
host-seeking activity of ticks. Precipitation is less clear, but we can see that there is preferred range for tick activity – 
both a “too dry” where hardly any transmission occurs, as well as high precipitation at the extremes not exhibiting 
high LD transmission either.  
 



  17 

Copyright © 2022 Society of Actuaries Research Institute 

 

The focus of this research is on the impact of climate change. Hence, it is interesting to see the changes in our 
climate predictor variables over time, many of which overlap with variables utilized in the Actuaries Climate Index.  

For example, both spring temperature and spring temperature range have increased over most of the U.S. While 
temperature increases are most pronounced in the eastern and western coastal regions, temperature variability has 
increased more in central states. The average yearly change was estimated by fitting an ordinary least squares 
regression line for each county. 

 

 

5.1.2 MODELING APPROACH 
We combined data on the Lyme disease incidence as well as weather, land cover, and socioeconomic variables for 
3,104 U.S. counties over the period 2000–2018. Information about cartographic boundary files and data sources 
used is provided in Table A1 and Table A2 and the definition of predictor variables are provided in Table A3 in 
Appendix A.1. Nantucket County, MA and San Juan County, WA were excluded from the analysis, since these 
counties are islands and could not be considered for spatial modeling. The target variable is the Lyme disease 
incidence, which is the number of reported Lyme disease cases in a county per 100,000 inhabitants.  

We considered both nonspatial and spatial fixed effects models to estimate the partial effects of predictor variables. 
Spatial fixed effects models generalize nonspatial ones, because they relax the assumption of constant direct effects 
of predictor variables across counties and allow for the existence of spatial spillover effects (see Appendix A.2). In 
the nonspatial fixed effects model, the effect of a unit change in a specific predictor in a given county on the LD 
incidence in that county is equal to the beta coefficient associated with that predictor and, hence, is the same for all 
counties. This effect is referred to as the direct effect (LeSage und Pace 2009, 34-37). Furthermore, the effect of a 
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change in a specific predictor in a county on the LD incidence in any other county is zero by construction. This effect 
is referred to as the indirect or spillover effect (LeSage und Pace 2009, 34-37). 

In the context of infectious diseases, spillover effects might exist because more welcoming climatic conditions or the 
expansion of tick habitats in a county might increase tick density and activity during the host-seeking period. 
Consequently, host migration could potentially lead to increased LD incidence in neighboring counties. Nonspatial 
models would explain incidence variation that arises from spillover effects by overstating the true direct effects of 
included predictor variables (LeSage und Pace 2009, 20), which can be also observed in Table A4 in Appendix A.3. 

In addition to the presence of spillover effects, there may also exist spatial correlation in unobserved factors 
captured by the error term. The map of residuals from the nonspatial fixed effects model can be used to visually 
inspect whether this is the case (LeSage und Pace 2009, 5). In the year of 2000, for example, the observed LD 
incidence in most counties in the Northeast and a group of counties in the Midwest was lower than the incidence 
predicted by the model, whereas most counties in the West had incidence above the predicted one. If the 
nonspatial fixed effects model was correctly specified, then the error term would exhibit no spatial correlation 
(Greene 2008, 200) and it would not be possible to identify clusters of counties based on the sign of their residuals 
(LeSage und Pace 2009, 5). 

 

Therefore, our preferred national model specification is the fixed effects spatial autoregressive model with 
autoregressive disturbances, the SARAR model, with county and time effects (Kelejian und Prucha 1998, 100, 
Anselin, Gallo und Jayet 2008, 640, Millo und Piras 2012, 10-11). Since the direct and indirect effects of each 
predictor variable in the SARAR model vary across counties, their summary measures are provided in Table A4 in 
Appendix A.3. The summary measure of the direct effects represents the average effect of a unit change in a 
predictor variable in a county on the incidence in that county (LeSage und Pace 2009, 36-37). The summary measure 
of the indirect effects can be interpreted in two different ways: either as the total impact on the incidence in one 
county of a unit change in a predictor in all other counties, or as the total impact on the incidence in all other 
counties of a unit change in a predictor in one county (LeSage und Pace 2009, 37).  
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To determine relative importance of predictor variables, we compute variable importance scores using two different 
approaches. In the leave-one-predictor-out (LOPO) approach, the importance score of a specific predictor variable is 
computed as the percentage change in the mean squared difference between the observed and fitted values from 
the model excluding that variable relative to the model including all variables. In the second approach, predictor 
variables are first standardized, that is, centered and scaled by one standard deviation (Schielzeth 2010). The 
absolute value of the estimates of the average total effects (the sum of the average direct and indirect effects) in 
the SARAR model are then taken as the importance scores.  

5.1.3  NATIONAL SPATIAL MODELING 
The variable importance plot for the SARAR model depicts rankings of predictor variables based on the variable 
importance scores generated using the LOPO and standardization approaches. In the plot, predictor variables in 
bold are ranked in the top 10 and underlined variables, in the bottom 10 based on both approaches. 

 

All included land cover classes variables—cropland or pasture/rangeland, forest, and unmanaged grass/shrubland—
as well as average minimum summer temperature and spring temperature range appear to have relatively high total 
impact on the LD incidence.  These fields appear relatively important in two complementary approaches to quantify 
variable importance, so their intersection as illustrated in bold above bolsters our finding of their relative 
importance. In contrast, preceding-year winter and fall precipitation, given-year winter and summer precipitation, 
temperature range in fall of a preceding year and in summer of a given year, extreme weather events (drought), as 
well as the unemployment rate appear to have relatively low total impact on the incidence. 

Table A4 in Appendix A.3 contains estimates of the direct effects for the nonspatial fixed effects model as well as of 
the average direct and indirect effects for the fixed effects SARAR model with county and time effects. The estimate 
of the spatial autoregressive parameter in the SARAR model is 0.86 (p < 0.0001) (see Table A5 in Appendix A.3), 
which indicates strong positive spatial dependence in the LD incidence on the county level (LeSage und Pace 2009, 
17). Based on the SARAR estimation results, the following observations can be made for different categories of 
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predictor variables. (In parentheses below, “D” stands for the estimate of the average direct effect and “I”, of the 
average indirect effect). 

• Land cover. The effects of the forest land cover class on the LD incidence were found to be positive (D = 
0.45, p = 0.0003; I = 1.85, p = 0.0003). A percentage point increase in the forest class in a county was 
estimated to increase (on average) the LD incidence in that county by 0.45 cases per 100,000 inhabitants. 
Furthermore, a percentage point increase in the forest class in one county was estimated to increase the 
LD incidence in all other counties in total by 1.85 cases per 100,000 inhabitants. The effects of the cropland 
or pasture/rangeland as well as unmanaged grass/shrubland classes were also found to be positive. For a 
fixed population density, expanding habitats of ticks or their hosts may increase the number of infected 
ticks that could potentially come into contact with humans (Wood und Lafferty 2013, 246). In addition, we 
hypothesized that tick-human interactions were most likely to occur at the edges between the urban class 
and tick or host habitats and that increasing edge density may increase human exposure to Lyme disease. 
The estimated effects of the edge density are positive (D = 1.02, p = 0.24; I = 4.19, p = 0.24) and thus do not 
contradict our hypothesis. 
 

• Temperature. The effects of the average minimum temperature in spring and summer of a given and 
preceding years on the LD incidence were found to be positive, whereas the effects of spring, summer, and 
winter temperature ranges in both years were found to be negative. Temperature range variables capture 
the difference between temperature extremes in different seasons. Long-term exposure to temperature 
extremes may increase tick mortality rates due to overheating and dehydration in summer or freezing in 
winter (Eisen, et al. 2016, 252). Fieler, et al. (2021) found that the upper and lower lethal temperatures for 
Ixodes scapularis larvae in vitro were -15°C and 41°C, respectively. Hence, higher larval mortality could be 
one of reasons why the impact of lagged temperature ranges on the LD incidence was found to be 
negative. In a given year, high temperatures may, in addition, negatively affect host-seeking abilities of 
nymphs (Eisen, et al. 2016, 253) and lead to the reduction in time spent by humans in tick habitats. 
 

• Precipitation. The effects of total precipitation in all seasons and in both given and preceding years on the 
LD incidence were found to be negative. The average precipitation in May and June of a given year was also 
found to have negative impact on the LD incidence in four U.S. regions in Couper, et al. (2020, 8). 
Precipitation in a given year may have concurrent effects on the LD incidence. High humidity is generally 
beneficial for nymphal survival and questing (Eisen, et al. 2016, Rodgers, Zolnik und Mather 2007), but 
humans tend to stay indoors or use rain protection on rainy days, which protects them from tick bites. The 
negative estimates of the effects of precipitation in a given year on the LD incidence may indicate that the 
negative impact of precipitation on humans dominated its positive impact on nymphs. In previous studies, 
precipitation was also found to have positive impact on larval survival and questing; however, larvae may 
drown when precipitation is excessive (Leal, et al. 2020, 430). This indicates that precipitation in a 
preceding year may have nonlinear effects on the LD incidence, and hence the negative estimates of direct 
and indirect effects should be interpreted with caution.  
 

• Extreme weather. Extreme weather events are represented by two variables: frost, which captures below 
zero temperatures in the (near) absence of snow cover, and drought, which captures high temperatures in 
the (near) absence of precipitation. The effects of drought on the LD incidence were found to be negative 
(D = -0.13, p = 0.54; I = -0.53, p = 0.54), which is consistent with the findings in Burtis, et al. (2016, 5) for the 
long-term endemic regions. The frost effects were also found to be negative (D = -0.25, p = 0.24; I = -1.03, p 
= 0.24). An additional month in a given or preceding year with maximum temperature below 0°C and total 
precipitation below 10 mm in a county was estimated to decrease (on average) the LD incidence in that 
county by 0.25 cases per 100,000 inhabitants. Furthermore, an additional month of frost in one county was 
estimated to decrease the LD incidence in all other counties in total by 1.03 cases per 100,000 inhabitants. 
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These results are consistent with previous findings that extreme weather events, especially if they are 
repeating over time, may reduce tick survival (Stafford 1994, Eisen, et al. 2016) and host-seeking capacities 
(Schulze, Jordan und Hung 2001). 

 
• Socioeconomic variables. The effects of the population density on the LD incidence were found to be 

negative (D = -5.38, p = 0.1; I = -22.12, p = 0.1), which is consistent with the findings in Bayles and Allan 
(2014, 1918) and Xie, et al. (2018, 25). Included land cover class and edge density variables control for tick 
habitats and potential human–tick interactions. In this case, Bayles and Allan (2014) suggest that the 
negative effect of the population density on the incidence can be attributed to human behaviors that arise 
in the context of low population density and are associated with the increased risk of exposure (1922). The 
unemployment rate was included as a proxy for socioeconomic status and access to healthcare. Its effects 
on the LD incidence were found to be positive (D = 0.05, p = 0.37; I = 0.21, p = 0.37). The sign of the effects 
is at odds with a hypothesis stated in Couper, et al. (2020) that reduced ability to seek healthcare may lead 
to the underreporting of a disease (5). 

5.1.4 REGIONAL NONSPATIAL MODELING 

In addition to the national analysis, we performed the analysis for each of three U.S. regions—Midwest, Northeast, 
and Southeast (the Southwest and West were excluded due to low LD case counts) . Regional comparisons were also 
made in Couper, et al. (2020) and Dong, et al. (2020). The definitions of regions are provided in Figure A1 and the 
estimation results for the nonspatial fixed effects model, in Table A7 in Appendix A.4. The fixed effects SARAR model 
was not considered for regional modeling due to the potential misspecification of a spatial weight matrix when 
regions are considered in isolation. 

5.2 OTHER DATAPOINTS 
The U.S. model has shown that there is a possible connection between climate change and the incidence of LD. To 
emphasize the global importance of vector borne diseases we further reviewed disease and temperature trends in 
Europe (Germany and Finland) and Asia (Japan).  

5.2.1 GERMANY 
The Robert Koch Institute is Germany’s corresponding disease surveillance organization. Its reported cases have 
limitations for deriving trends because the regions with material cases only started reporting recently: eastern 
Germany has 20 years of trend but with few cases. Hence, we look at the hospitalization statistics, which comprise 
the more severe cases, available through the Federal Statistical Office of Germany (Statistische Ämter des Bundes 
und der Länder 2022, Statistisches Bundesamt 2021).  

Using hospitalization data has two major weaknesses: First, only a small fraction of LD cases reaches a severity that 
requires hospitalization and second, with improvements in medical treatments and increasing disease awareness 
people can receive more effective, earlier treatment resulting in an observed decrease in hospitalizations even 
when LD incidence is increasing.  
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The hospitalization statistics show decreasing incidence of LD in Germany in all but two states. A study on health 
claims has also shown stagnating LD incidence (Akmatov, et al. 2021). At the same time other vector borne diseases 
show increasing incidence and regional distribution, where previously unexposed geographies have just been 
labelled a high-risk area for diseases such as SSME (Spring summer meningoencephalitis) (Robert Koch-Institut 
2022). Some vector borne diseases that were previously only detected in Southern Europe are now transmitted 
within Germany (such as West Nile virus) (Robert Koch-Institut 2022). Though neither the surveillance nor 
hospitalization data in Germany lent well to a full regression model, we share a few of the key climate-related 
variables and their shifts over time. 

 

5.2.2 FINLAND 
LD has been endemic in Finland for decades, more in the southern regions but with ranges widening northwards 
presumably as the season of tick activity in above-freezing temperatures expands. Also, of concern and with serious 
health consequences in Finland is tick-borne encephalitis, which is most prevalent on the West Coast and where it is 
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common to be vaccinated again this. The University of Turku has a tick research unit which has concluded that 
climate change is a likely contributor to the increasing public health threat through vector borne diseases.6 

    

The plots hint towards increasing incidence of LD, that is in areas where both spring temperature and spring 
temperature range have increased most drastically between 2000 and 2018.  

5.2.3 JAPAN 
In Japan, LD is a much rarer disease, with 10 reported cases per year.7 There are other related diseases, though, 
transmitted by similar vectors, including Japanese spotted fever, Scrub typhus (tsutsugamushi disease), Severe fever 
with thrombocytopenia syndrome (SFTS) and tick-borne encephalitis. The latter peaked in the 1960s with more than 
1,000 annual reported cases, but thanks to both available vaccine and sanitation improvements, only 55 cases were 
reported in the last decade.8 

As Japanese spotted fever is the most frequent tick-borne diseases in Japan nowadays, we look at the incidence 
development over time compared to changing temperature.  

 

 

6 https://sites.utu.fi/puutiaiset/en/ 
7 https://www.niid.go.jp/niid/ja/diseases/ra/lyme.html 
8 http://idsc.nih.go.jp/disease/JEncephalitis/QAJE02/fig01.gif 
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Japanese spotted fever appears to have intensified in western Japan over the years. This partially correlates with 
areas of increasing spring temperature. However, we also see increasing temperature in the north where incidence 
has decreased slightly. Another factor that has likely contributed to the changing geographical scope of spotted 
fever is the host expansion through deer and rodents.9  

Section 6: The behavioral wild card 
We have researched the most relevant factors that affect a tick's lifecycle and incorporated them into our model. 
Not all effects are what we expected – precipitation has a negative impact even though ticks prefer a humid 
environment. What we should not forget is that we do not model the size of tick-populations but the incidence of 
tick-transmitted LD in humans. Hence, it is not only about tick-suitable environmental factors, but also about the 
interaction frequency between humans and ticks, which comes back to human behavior. We have discussed the 
implications of awareness and health-seeking behavior in section 2. This section will further look into two aspects of 
human behavior and LD: rationalizing the unexpected impact of precipitation on LD through behavioral factors and 
studying how LD was affected by behavioral changes during the Covid-19 pandemic.  

6.1 HUMANS, TICKS, AND PRECIPITATION 
Contrary to our initial assumptions the models have consistently 
shown a negative impact of precipitation on Lyme disease. One 
plausible reason is that we only regarded the impact that 
precipitation is supposed to have on ticks but not the effect it 
has on humans or other hosts. While high humidity is beneficial 
for host-seeking and survival it might decrease the likelihood of 
human-tick interactions. Leisure activities with high human-tick-
interaction such as hiking are especially negatively affected by 
high precipitation. Even if the occupation requires time to be 
spent outside the use of rain protection not only protects from 
rain but also from ticks. 

 

 

9 http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-24-t280-1.pdf  
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6.2  CASE STUDY—COVID-19 RESTRICTIONS 
While there is evidence of changed indoor/outdoor behaviors particularly in the early stages of the pandemic, what 
will ultimately occur for 2022 and beyond related to tick exposure is unclear. In earlier lockdowns, there was likely 
mixed behavior dependent on the geography: some people substituted indoor activities with outdoor hikes, and 
perhaps were not familiar with post-hike tick checks. Others rather avoided any outdoor areas, though we note that 
another vector-borne disease, dengue, can also transfer indoors, and there are signs of illness and increased death 
due to Dengue in India. This may be a tale of changed indoor/outdoor behavior but is also a signal of delayed 
treatment and missed diagnoses. Dengue, like Lyme and other vector-borne illness, is often treatable and without 
serious side effects if diagnosed and treated promptly. However, over the past two years, globally we have 
witnessed not only missed cancer screenings but an overall decreased inclination to seek treatment and diagnosis in 
traditional healthcare settings, due partly to supply disruptions and fear of contracting COVID-19. While the data is 
not available to prove increased complications with LD over the past 1-2 years, this is a cautionary tale for public 
awareness of diseases and prompt treatment. 

We explored the influence of local features, such as weather and COVID-19 restriction patterns, on tick-borne 
diseases in a specific geographical area. We used patient-level data from the Symphony database to track tick-borne 
disease cases for a specific area in Pennsylvania. Records are available from mid-2019, which covers both the period 
during and before the COVID-19 pandemic.  

We relied on the ICD-10 codes recorded for diagnosis to identify tick-borne disease cases, which for this analysis 
include Lyme disease, Ehrlichiosis, spotted fever rickettsiosis, babesiosis, tularemia, and tick-borne encephalitis.  

In the Symphony database, ZIP codes at the patient level are masked with only the first two digits disclosed. For this 
analysis, we focused on an area in Pennsylvania with 15 as the leading digits in local ZIP codes (PA15). According to 
the CDC data, Pennsylvania is one of the top U.S. states in terms of Lyme diseases cases and incidence rates. 

We obtained climate data from the Global Historical Climatology Network Database (GHCN). We focused on 
temperature and precipitation, which have been shown to have meaningful connections to the tick population and 
tick-borne diseases in literature and our long-term regression modelling in Section 5. We aggregated temperature 
and precipitation measurements from land surface stations in the PA15 area.  

Counties in the PA15 area have experienced various degrees of COVID-19 restrictions, sometimes asynchronously. 
Pennsylvania’s COVID-19 restriction phases are coded as Red, Yellow, Green, and Open. We constructed an 
Openness Index for the PA15 area to reflect the local restriction trend. The Openness Index is a county-population 
weighted measure of openness with population obtained from the 2020 U.S. census.  

Table 6-1 presents a Poisson regression of tick-borne diseases on local temperature, precipitation, and openness. 
The Poisson regression is fitted with data from May 2019 to the end of July 2021. The offset is derived from the 
2020-census population for the PA25 area. The explanatory variables are lagged by a month to accommodate a 
potential lag between incidents and their recording. Results are similar at various degrees of lag.  

TABLE 6-1. TICK-BORNE DISEASES IN PA15 

 Constant Temperature (C) Precipitation (mm) Openness Index 
Estimate -13.6327 0.0457 0.0306 0.1904 
Standard Error (SE) 0.0645 0.0013 0.0045 0.0597 
Estimate/SE -211.23 35.04 6.79 3.19 

 
In this case, temperature, precipitation and COVID-19 restrictions appear to be statistically significant in connection 
with tick-borne disease incidence. As one would expect, policies that tend to limit human-tick interactions are 
associated with reduced tick-borne disease rates, all else being equal. 
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Of course, cases may not appear in the medical claims, due to modified behavior and unreported / untreated LD, 
would affect regression coefficients. However, this would result in increased complications downstream. 

This analysis also highlights an approach to incorporate socioeconomic factors in these models. If justified by data 
and theory, one can also substitute our climate trend proxies with a fuller model based on biology, ecology, and 
epidemiology. 

Section 7: Conclusions—from Lyme disease to broader context 
This report explores an example of determining climate-related drivers of LD and its related costs. However, 
although the burden of disease is well documented, the conclusions are not about Lyme per se. 

We note that vector-borne diseases are not insignificant and account for over 15% of all infectious diseases. Also, 
within borreliosis, there are non-LD emerging and re-emerging borreliae from related species (Cutler, Ruzic-Sabljic 
und Potkonjak 2017). In the end for LD itself, it is possible that an accepted vaccine will emerge; there was in fact a 
recombinant vaccine (LYMErix) which was pulled from the market due in part to reports of side effects; however, 
this may yet prove a viable vaccine, and significant mRNA research at the moment may also hold promise for 
preventing or mitigating LD.10 

The authors hence view the report as both an illustration of a concerning disease globally and a framework for 
considering other diseases of climate concern.  

7.1 BURDEN TO INSURED LOSSES 
Generally, there are questions posed from internal functions of insurers and from regulators to understand liabilities 
faced due to climate risk and increasing needs from the industry to understand trend risk and tail risk due to climate 
change and extreme weather. 

Today, it is fair to say that medical costs and insured health costs see but a blip from payment due to direct and 
indirect effects from LD. This is true both in the U.S. and internationally. In the U.S., LD also comprises the vast 
majority of medical claims due tick-borne illness, and the impact is to disability-adjusted life years is not significant 
compared with other debilitating illnesses.11 Other lines affected also presumably hence see minimal effects – 
disability claims, life insurance, and critical illness. Expanding to all vector-borne diseases, the effects are much 
higher when incorporating the heavy burdens of dengue and malaria in certain regions. However, in our key regions 
of study in this report – the U.S. and Germany and briefly Finland and Japan – tropical diseases are rather from 
travel and hence not related to the local climate. Hence today, vector-borne disease does not pose a significant 
burden to life & health business in the U.S. and other temperate climates. 

Medical reimbursement business also tends to be a short-term risk; hence one could push any changes due to 
climate outside an insured risk horizon. However, if we consider longer term business such as disability and critical 
illness in certain markets, the projections shown in 5.1.4 would be more relevant to insurers. Long-term effects of 
LD and other debilitating vector-borne disease can result in disability with potentially long recovery periods. One 
other note of caution to insurers is in the diseases covered for critical illness policies, and that the climate-driven 
uncertainties for climate-impacted disease be taken into account. First, LD can be a covered definition occasionally, 

 

 

10 https://www.newscientist.com/article/2297648-mrna-vaccine-against-tick-bites-could-help-prevent-lyme-disease/ 
11 https://pubmed.ncbi.nlm.nih.gov/31739768/ 
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and if not, its complications may well be; second, other vector-borne illness often appear on critical illness policies 
with lengthier definition lists; thirdly, the typical guarantee period of many critical illness markets cause climate to 
be a consideration when formulating benefit and product design. 

7.2 METHODOLOGICAL FRAMEWORK 
Perhaps of broader implication is that this report offers methodological approaches to quantify problems which may 
continue to emerge in coming decades. The papers provide an example of an approach to consider climate’s 
influence on health and infectious disease in particular, with Section 5.1’s advanced regression modelling, which 
illustrates how the spread of a disease can be modelled under the impact of spatially correlated unobserved 
covariates and a spatially correlated outcome such as the infectious disease occurrence itself. A spatial model allows 
investigation of the spillover effects of environmental factors and to explore interactions between different 
geographical units, e.g., thinking about medical costs and a flood in a neighboring country affecting other areas due 
to disrupted healthcare, infectious disease and polluted water to name a few. Section 4.2. then provides an 
illustration of medical expenditures and their complications against a reference cohort. Together, a framework is 
offered to consider both spreading of infectious disease through spatially correlated outcomes, its relation to 
climate variables, and ensuing medical costs.  

7.3 DANGER IN CHANGING GEOGRAPHICAL PATTERNS 
One danger of climate change in human health lies in infectious disease spreading in non-endemic areas. We can 
see increasing incidence of certain vector-borne diseases in the U.S., which may be facilitated by changing climate. 
Our model has shown that LD incidence is positively influenced by increasing average minimum spring and summer 
temperature while being negatively affected by increasing temperature ranges i.e., more extreme weather.  

Lack of awareness, for example from checking for presence of ticks after a hike to seeking prompt medical 
treatment, can have consequences, where an area of suggested further research would be to compare rate of major 
complications from vector-borne illnesses in long-endemic compared with emerging geographic regions. 

Somewhat apart from though not entirely unrelated to climate change are mobility patterns. With travel restrictions 
loosening, leisure travel is booming this summer and international mobility gives rise to introduction of both 
invasive species, novel diseases (recall the recent pandemic), and spread of travel diseases.12 Last month a region 
plagued by LD, Maine, also saw a resident fatality due to a novel tick-borne illness.13 An alarming scenario would be 
endemic tropic diseases such as dengue becoming endemic in the Mediterranean regions or malaria being re-
introduced.14 

Awareness and information from disease monitoring organizations, local health care providers as well as the 
insurance industry can help to mitigate this. 

  

 

 

12 https://nature.com/articles/nature06536 
13 https://www.msn.com/en-us/health/medical/maine-resident-dies-after-catching-rare-virus-spread-by-tick-bites/ 
14 https://www.euro.who.int/__data/assets/pdf_file/0003/307272/Facsheet-malaria-elimination.pdf 

https://soa.qualtrics.com/jfe/form/SV_8Bo8Co6tQJqPunQ
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Appendix A: Spatial and fixed effects models, statistical methods, and regional 
analysis 

A.1 DATA AND DEFINITIONS 
TABLE A1. CARTOGRAPHIC BOUNDARY FILES 

Regions Country Sources & Notes 
Counties The U.S. Cartographic boundary files with the resolution 1:5,000,000 for the year 2018 were taken from 

the U.S. Census Bureau (The U.S. Census Bureau 2021). The following legal/statistical area 
description (LSAD) codes were selected: 06, 15, and 25. The Alaska and Hawaii states were 
excluded. 
County FIPS codes were taken from the USDA NRCS (The U.S. Department of Agriculture Natural 
Resource Conservation Service). 

NUTS 1 regions Germany The NUTS250 dataset was taken from the Federal Agency for Cartography and Geodesy 
(Bundesamt für Kartographie und Geodäsie 2019). Geofactor was set to 4 to remove the 
territories of the North and Baltic Seas as well as Lake Constance. 

Hospital districts Finland The SHP2019 dataset from the R package mapsFinland (Haukka 2020) was used. 
Prefectures Japan Japan’s subnational administrative boundaries data were taken from the Humanitarian Data 

Exchange of OCHA's Regional Office for Asia and the Pacific (OCHA Regional Office for Asia and 
the Pacific 2019). Okinawa Prefecture was excluded from the plots in the report. 
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TABLE A2. DATA SOURCES 

Data Country Sources & Notes 
Symphony Database The U.S. The COVID-19 Research Database partners, https://covid19researchdatabase.org/ 
Lyme disease case 
counts 

The U.S. Publicly available surveillance data was taken from the CDC (Centers for Disease 
Control and Prevention (CDC) 2022). 

Lyme disease 
hospitalizations 

Germany A dataset containing the number of hospitalized patients by 3-digit ICD-10 codes, 
gender, and NUTS 1 regions for the years 2000–2018 (Statistische Ämter des Bundes 
und der Länder) and 2019 (Statistisches Bundesamt 2021) was used. 

Lyme disease case 
counts 

Finland A Lyme borreliosis dataset, containing the annual number of Lyme disease cases by 
hospital district for the period 1995–2022, was taken from the Finnish Institute for 
Health and Welfare (Terveyden ja hyvinvoinnin laitos 2022). 

Japanese spotted fever 
case counts 

Japan Data on notified Japanese spotted fever cases by prefecture over the period 1999–
2019 were taken from the National Institute of Infectious Diseases (The National 
Institute of Infectious Diseases 2020). 

Case counts of vector 
borne diseases 

The U.S. Summary of notifiable infectious diseases for the period 1993 – 2015 was taken from 
the CDC (Centers for Disease Control and Prevention (CDC) 2022). Data on nationally 
notifiable infectious diseases and conditions for the period 2016–2018 were taken 
from the CDC (Centers for Disease Control and Prevention (CDC)). 

Population The U.S. Annual resident population estimates by county for 2000–2009 (The U.S. Census 
Bureau 2021) and for 2010–2018 (The U.S. Census Bureau 2021) were taken from the 
U.S. Census Bureau. 

Population Germany Population numbers by gender (Statistische Bundesamt 2021) and age group 
(Statistische Bundesamt 2021) for NUTS 1 regions were taken from the Database of 
the Federal Statistical Office of Germany, GENESIS-Online. To be consistent with 
population data for other countries, population on December 31 of a given year was 
treated as population on January 1 of a subsequent year. 

Population Finland Population data (December 31) for hospital districts (2022) were taken from the 
Statistics Finland database 11ra – Key figures on population by region, 1990–2021 
(Statistics Finland). To be consistent with population data for other countries, 
population on December 31 of a given year was treated as population on January 1 of 
a subsequent year. 

Population Japan Data on the total population (item A1101) were taken from the Portal Site of Official 
Statistics of Japan, e-Stat (The Portal Site of Official Statistics of Japan 2021). 

Historical monthly 
weather data 

Global Historical monthly weather data for 1960–2018 (WorldClim), downscaled from CRU-
TS-4.03 (Harris, et al. 2014) using WorldClim 2.1 (Fick und Hijmans 2017), were used. 
WorldClim leverages data from sources such as the Global Historical Climatology 
Network (GHCN as reference on p21 of report) and others. The R package 
exactextractr (version 0.7.2) was used to create temperature and precipitation 
variables. 

HIstoric Land Dynamics 
Assessment+ (HILDA+) 

Global A dataset on land use/cover change over 1960–2019, HILDA+, was taken from 
PANGAEA® Data Publisher for Earth & Environmental Science (Winkler, et al. 2020). 
The R packages exactextractr (version 0.7.2) and landscapemetrics (version 1.5.4) 
were used to create land cover and edge density variables. 

Unemployment rate The U.S. A county-level dataset “Unemployment and median household income for the U.S., 
States, and counties, 2000-20” was taken from the USDA’s Economic Research Service 
(The U.S. Department of Agriculture Economic Research Service 2022). 

Land area 
 

The U.S. Land area data were taken from the U.S. Census Bureau database for USA Counties: 
2011 (The U.S. Census Bureau 2021). 

Google search 
frequencies 

Global Google Trends data for different search terms was taken from the section “Interest 
over time” (Google Ireland Limited). 
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TABLE A3. PREDICTOR VARIABLE DEFINITIONS FOR U.S. MODELS 

Variable Category Definition 
tmin_ave_winter Temperature The average of minimum temperature values in Jan, Feb, Mar of a given year (in °C). 
tmin_ave_spring Temperature The average of minimum temperature values in Apr, May, Jun of a given year (in °C). 
tmin_ave_summer Temperature The average of minimum temperature values in Jul, Aug, Sep of a given year (in °C). 
tmin_ave_winter_1 Temperature The average of minimum temperature values in Jan, Feb, Mar of a preceding year (in °C). 
tmin_ave_spring_1 Temperature The average of minimum temperature values in Apr, May, Jun of a preceding year (in °C). 
tmin_ave_summer_1 Temperature The average of minimum temperature values in Jul, Aug, Sep of a preceding year (in °C). 
tmin_ave_fall_1 Temperature The average of minimum temperature values in Oct, Nov, Dec of a preceding year (in °C). 
trange_winter Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in winter of a given year (in °C). 
trange_spring Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in spring of a given year (in °C). 
trange_summer Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in summer of a given year (in °C). 
trange_winter_1 Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in winter of a preceding year (in °C). 
trange_spring_1 Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in spring of a preceding year (in °C). 
trange_summer_1 Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in summer of a preceding year (in °C). 
trange_fall_1 Temperature The difference between the maximum of maximum monthly temperatures and the 

minimum of minimum monthly temperature in fall of a preceding year (in °C). 
prec_winter Precipitation The sum of monthly total precipitation in winter of a given year (in mm). 
prec_spring Precipitation The sum of monthly total precipitation in spring of a given year (in mm).  
prec_summer Precipitation The sum of monthly total precipitation in summer of a given year (in mm). 
prec_winter_1 Precipitation The sum of monthly total precipitation in winter of a preceding year (in mm). 
prec_spring_1 Precipitation The sum of monthly total precipitation in spring of a preceding year (in mm). 
prec_summer_1 Precipitation The sum of monthly total precipitation in summer of a preceding year (in mm). 
prec_fall_1 Precipitation The sum of monthly total precipitation in fall of a preceding year (in mm). 
frost Extreme 

weather 
The number of months in a given and in a preceding year with maximum temperature 
below 0°C and total precipitation below 10 mm. 

drought Extreme 
weather 

The number of months in a given and in a preceding year with maximum temperature 
above 30°C and total precipitation below 10 mm. 

cropland_pasture Land cover The percentage of the cropland or pasture/rangeland land cover class in a county. 
forest Land cover The percentage of the forest land cover class in a county. 
shrubland Land cover The percentage of the unmanaged grass/shrubland land cover class in a county. 
edge_density Land cover The length of all edges between the urban class and classes cropland, 

pasture/rangeland, forest, and unmanaged grass/shrubland, standardized to the total 
county area (in meters per hectare). 

unemp_rate Socioeconomic The percentage of the civilian labor force that is unemployed in a county in a given year. 
pop_density Socioeconomic Population (in thousands) per square kilometer of land area in a county in a given year. 

 
Among all variables, only the unemployment rate and population density contained missing values, and the R 
package imputeTS (version 3.2) was used to impute them. The unemployment rate was missing for 7 counties in 
Louisiana and the years 2005 and 2006 and was replaced using spline interpolation. For all counties but Oglala 
Lakota County, SD, the land area data were available for the years 2000 and 2010, and the remaining years were 
filled with a previous nonmissing value to compute population density. For Oglala Lakota County, SD, population 
numbers were not available for the years 2000-2009, and land area was not available for all years. To compute 
population density for this county, the county area was computed using cartographic boundary files and the Eckert 
IV projection, and missing population density for the years 2000–2009 was replaced by a county-specific mean.  
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A.2 MODELING APPROACH 
To estimate the effects of weather, land cover, and socio-economic variables on the Lyme disease incidence in the 
U.S., we considered nonspatial and spatial panel data models.  

Nonspatial models 

Let 𝑁𝑁 denote the total number of counties, indexed by 𝑖𝑖, and 𝑇𝑇 denote the total number of years, indexed by 𝑡𝑡. A 
general nonspatial linear model for panel data can be formulated as follows (Greene 2008, 197): 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝛼𝛼𝑖𝑖 + 𝛿𝛿𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 , 

where 𝑦𝑦𝑖𝑖𝑖𝑖 denotes the Lyme disease incidence in a county 𝑖𝑖 and year 𝑡𝑡, and the terms 𝛼𝛼𝑖𝑖  and 𝛿𝛿𝑖𝑖 represent county 
and time effects, respectively. The vector 𝑋𝑋𝑖𝑖𝑖𝑖 contains observed values of 𝐾𝐾 county- and time-varying predictor 
variables, and 𝛽𝛽 is the vector of unknown parameters.  

County effects capture the determinants of the Lyme disease incidence that vary over counties but are constant 
over time (for example, geographic characteristics (Dumic und Severnini 2018, 4)). Time effects capture time-varying 
determinants that are constant across counties (for example, nation-wide demographic shifts or changes in the CDC 
case definition of Lyme disease). If county-varying variables captured by 𝛼𝛼𝑖𝑖  are unobserved but correlated with the 
included variables, then omitting them will lead to the biased and inconsistent OLS estimator of the unknown 
parameter vector 𝛽𝛽 (Greene 2008, 183). To address this problem, the fixed effects model includes 𝛼𝛼𝑖𝑖’s as county-
specific intercepts (Greene 2008, 183). Similar logic applies also to time effects. If no correlation between observed 
and unobserved variables exists, the fixed effects model still yields consistent estimators of 𝛽𝛽 (Greene 2008, 208).  

In nonspatial linear models, the partial derivative of the (conditional) expected value of the Lyme disease incidence 
in a county 𝑖𝑖 with respect to the 𝑘𝑘th predictor variable in a county 𝑖𝑖, referred to as a direct effect (LeSage und Pace 
2009, 34-37), is  

𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

= 𝛽𝛽𝑖𝑖 , 

which is the same for all counties. The partial derivative of the (conditional) expected value of the Lyme disease 
incidence in a county 𝑗𝑗 with respect to the 𝑘𝑘th predictor variable in a county 𝑖𝑖, referred to as an indirect or spillover 
effect (LeSage und Pace 2009, 34-37), is 

𝜕𝜕𝜕𝜕�𝑦𝑦𝑗𝑗𝑖𝑖�
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

= 0, 𝑗𝑗 ≠ 𝑖𝑖. 

Spatial models 

Nonspatial linear models rule out spillover effects of predictor variables by construction. That is, a change in 
precipitation or temperature in one county is assumed to have no effect on the Lyme disease incidence in any other 
county, including its neighbors. However, in the context of Lyme disease, it might be reasonable to assume that the 
migration of tick hosts across counties, for example, may enable the spillover effects of climatic factors. Improved 
microclimate in one county may increase tick density in that county, and more ticks might be able to migrate to 
neighboring counties via attaching to their hosts. Spatial models allow for such spillover effects and will be outlined 
next.  

Neighbors and Weight Matrix 

First, we state several definitions, provided in LeSage and Pace (2009, 8-9). A county 𝑗𝑗 is said to be a first-order 
neighbor, or just a neighbor, of a county 𝑖𝑖 if they share a common border. We require two counties to share more 
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than one point for the contiguity condition to be satisfied. A county is not a neighbor of itself. A county 𝑘𝑘 is said to 
be a second-order neighbor of a county 𝑖𝑖 if it is a neighbor of a neighbor of a county 𝑖𝑖. Since a county is a neighbor of 
its neighbors, it is also a second-order neighbor of itself. 

The first-order neighbor relations are captured by an 𝑁𝑁 × 𝑁𝑁 spatial weight matrix 𝑊𝑊, which is assumed to remain 
constant over time. If a county 𝑗𝑗 is a neighbor of a county 𝑖𝑖, the element 𝑊𝑊𝑖𝑖𝑗𝑗  is nonzero and represents the weight 
assigned to this neighbor (LeSage und Pace, 9). We define the weight of a neighbor of a county 𝑖𝑖 as the fraction of a 
county 𝑖𝑖's border shared with this neighbor. Since no county is a neighbor of itself, all diagonal elements of 𝑊𝑊 are 
zero. The second-order neighbor relations are captured by 𝑊𝑊2, and higher-order relations, by higher powers of 𝑊𝑊 
(LeSage und Pace, 14). 

For a year 𝑡𝑡, let 𝑦𝑦𝑖𝑖  denote a vector of the LD incidence values observed in 𝑁𝑁 counties. Since not all U.S. counties 
share 100% of their border with other U.S. counties, weights for a county 𝑖𝑖 may sum to less than 1. We normalize 
weights, so that row sums of the matrix W are equal to 1. Consider the product 𝑊𝑊𝑦𝑦𝑖𝑖  with the 𝑖𝑖th element  

� 𝑊𝑊𝑖𝑖𝑗𝑗𝑦𝑦𝑗𝑗𝑖𝑖 ,
𝑁𝑁

𝑗𝑗=1
 

which is called a spatial lag (LeSage und Pace 2009, 8). Since weights 𝑊𝑊𝑖𝑖𝑗𝑗  are nonzero only for the neighbors of a 
county 𝑖𝑖 and sum to 1, the spatial lag represents the weighted average of the LD incidence values observed in the 
neighbors of a county 𝑖𝑖. 

Fixed Effects SARAR Model 

For the set of observations on 𝑁𝑁 counties in a year 𝑡𝑡, the fixed effects SARAR model is formulated as follows 
(Kelejian und Prucha 1998, 100, Anselin, Gallo und Jayet 2008, 640, Millo und Piras 2012, 10-11): 

𝑦𝑦𝑖𝑖 = 𝜌𝜌𝑊𝑊𝑦𝑦𝑖𝑖 + 𝛼𝛼𝑁𝑁 + 𝛿𝛿𝑖𝑖𝜄𝜄𝑁𝑁 + 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑢𝑢𝑖𝑖 , 

𝑢𝑢𝑖𝑖 = 𝜆𝜆𝑊𝑊𝑢𝑢𝑖𝑖 +  𝜀𝜀𝑖𝑖 . 

As before, 𝑦𝑦𝑖𝑖  denotes an 𝑁𝑁 × 1 vector of the LD incidence values, 𝑊𝑊𝑦𝑦𝑖𝑖 is a vector of spatial lags, 𝑋𝑋𝑖𝑖 is an 𝑁𝑁 × 𝐾𝐾 
matrix of predictor variables, and 𝛽𝛽 is a vector of unknown parameters. An 𝑁𝑁 × 1 vector 𝛼𝛼𝑁𝑁 contains county effects, 
whereas 𝜄𝜄𝑁𝑁 denotes the vector of ones and 𝛿𝛿𝑖𝑖 is a time effect, which is the same for each of 𝑁𝑁 counties. The error 
terms in 𝜀𝜀𝑖𝑖 are assumed to be independently and identically distributed with zero mean and constant variance. 

The spatial autoregressive parameter 𝜌𝜌 captures the strength of spatial dependence (LeSage und Pace 2009, 10), 
whereas the spatial autocorrelation parameter 𝜆𝜆 captures spatial autocorrelation in unobserved factors (Elhorst 
2014, 8-10) and, in combination with 𝜌𝜌, allows for more flexible error dependence. The parameters 𝜌𝜌 and 𝜆𝜆 are 
restricted to the interval (-1, 1) (Kelejian und Prucha 1998, 101). 

Expressing the target variable 𝑦𝑦𝑖𝑖𝑖𝑖 for a county 𝑖𝑖 in terms of county and time effects, predictor variables in 𝑋𝑋𝑖𝑖, and 
error terms in 𝜀𝜀𝑖𝑖 yields the following observations. For a given year, the LD incidence in a county 𝑖𝑖 depends not only 
on predictor values observed in a county 𝑖𝑖 but also on weighted averages of predictor values observed in its first- 
and higher-order neighbors. The impact of the first- and higher order neighbors is governed by the parameter 𝜌𝜌 and 
its higher powers, respectively, and decays geometrically since |𝜌𝜌| < 1 (LeSage und Pace 2009, 15). Furthermore, 
the LD incidence in a county 𝑖𝑖 is affected not only by unobserved factors captured in an error term associated with a 
county 𝑖𝑖 but also by weighted averages of error terms of its first- and higher-order neighbors. The impact of the 
first- and higher-order neighbors in the error part is governed by two parameters, 𝜌𝜌 and 𝜆𝜆. 

Direct and Indirect Effects 

In the SARAR model, the direct effect of the 𝑘𝑘th predictor in a county 𝑖𝑖 on the LD incidence in a county 𝑖𝑖 is given by 
(see also Elhorst (2014, 20)) 
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𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

=  𝛽𝛽𝑖𝑖(1 + 𝜌𝜌𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜌𝜌2𝑊𝑊𝑖𝑖𝑖𝑖
2 + ⋯ ). 

The direct effects depend on the parameter 𝛽𝛽𝑖𝑖, associated with the 𝑘𝑘th predictor, the spatial autoregressive 
parameter 𝜌𝜌, as well as the diagonal elements of powers of a spatial matrix 𝑊𝑊 (𝑊𝑊𝑖𝑖𝑖𝑖

2 denotes the 𝑖𝑖th diagonal 
element of 𝑊𝑊2). Hence, the direct effects differ across counties unless 𝜌𝜌 = 0. Higher-order effects represent 
feedback effects, which pass through neighboring counties back to the county of origin (LeSage und Pace 2009, 35-
36, Elhorst 2014, 23). 

The indirect effect of the 𝑘𝑘th predictor in a county 𝑖𝑖 on the LD incidence in a county 𝑗𝑗 is given by 

𝜕𝜕𝜕𝜕�𝑦𝑦𝑗𝑗𝑖𝑖�
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

=  𝛽𝛽𝑖𝑖�𝜌𝜌𝑊𝑊𝑗𝑗𝑖𝑖 + 𝜌𝜌2𝑊𝑊𝑗𝑗𝑖𝑖
2 + ⋯�, 𝑗𝑗 ≠ 𝑖𝑖. 

In the term 𝜌𝜌𝑊𝑊𝑗𝑗𝑖𝑖, the matrix element 𝑊𝑊𝑗𝑗𝑖𝑖  represents the fraction of a county 𝑗𝑗’s border that it shares with a county 
𝑖𝑖. If a county 𝑖𝑖 is a first-order neighbor of a county 𝑗𝑗, then higher fraction of a county 𝑗𝑗’s border shared with this 
neighbor implies higher indirect impact of changes in the neighbor's temperature, precipitation, and other 
predictors on a county 𝑗𝑗's incidence. Changes in predictor variables in higher-order neighbors also affect the 
incidence in a county 𝑗𝑗 but to a lesser extent. 

Since the direct and indirect effects differ across counties, their summary measures are usually reported. The 
average direct effect represents the effect of a unit change in the 𝑘𝑘th predictor in a county on the incidence in that 
county (LeSage und Pace 2009, 36-37) and is equal to 

1
𝑁𝑁
�

𝜕𝜕𝜕𝜕(𝑦𝑦𝑖𝑖𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

.
𝑁𝑁

𝑖𝑖=1
 

The average indirect effect can be interpreted in two different ways (LeSage und Pace 2009, 36-37). The first 
approach considers the total impact on the incidence in one county of a unit change in the 𝑘𝑘th predictor in all other 
counties, which is computed as 

1
𝑁𝑁
� �

𝜕𝜕𝜕𝜕�𝑦𝑦𝑗𝑗𝑖𝑖�
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖≠𝑗𝑗

𝑁𝑁

𝑗𝑗=1
. 

The second approach considers the total impact on the incidence in all other counties of a unit change in the 𝑘𝑘th 
predictor in one county, which is computed as  

1
𝑁𝑁
� �

𝜕𝜕𝜕𝜕�𝑦𝑦𝑗𝑗𝑖𝑖�
𝜕𝜕𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖

𝑁𝑁

𝑗𝑗≠𝑖𝑖

𝑁𝑁

𝑖𝑖=1
. 

These two approaches produce the same numerical value. 

A.3 U.S. NATIONAL MODEL RESULTS 
Table A4 contains the estimates of the direct effects for the nonspatial fixed effects model and of the direct and 
indirect effects for the fixed effects SARAR model with county and time effects. The estimation of the nonspatial 
fixed effects model was performed using the R package fixest (version 0.10.4); the reported standard errors are 
clustered by county. The estimation of the fixed effects SARAR model was performed using the R package splm 
(version 1.5.3) and helper functions from spdep (version 1.2.2), whereas the spatialreg (version 1.2.1) and coda 
(version 0.19.4) packages were used to estimate the direct and indirect effects as well as the corresponding 
standard errors. 
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TABLE A4. NATIONAL RESULTS FOR THE NONSPATIAL AND SPATIAL FIXED EFFECTS MODELS 
 

FE – Direct effects SARAR – Direct effects SARAR – Indirect effects 

Variable 
Estimate 

(Std. Error) P-Value 
Estimate 

(Std. Error) P-Value 
Estimate 

(Std. Error) P-Value 
tmin_ave_spring  1.2042 (0.2136) < 0.0001***  0.2687 (0.1184)  0.0233*  1.1051 (0.4887)  0.0238* 
tmin_ave_summer  1.3913 (0.2180) < 0.0001***  0.3605 (0.1227)  0.0033**  1.4829 (0.5056)  0.0034** 
tmin_ave_winter -0.5676 (0.1105) < 0.0001*** -0.1369 (0.0668)  0.0419* -0.5630 (0.2744)  0.0419* 
tmin_ave_spring_1  0.7698 (0.1651) < 0.0001***  0.1205 (0.1158)  0.2880  0.4958 (0.4768)  0.2890 
tmin_ave_summer_1  0.6969 (0.2507)  0.0055**  0.2447 (0.1374)  0.0815.  1.0064 (0.5660)  0.0821. 
tmin_ave_winter_1 -0.3469 (0.0990)  0.0005*** -0.0711 (0.0626)  0.2570 -0.2923 (0.2577)  0.2575 
tmin_ave_fall_1  0.6758 (0.1215) < 0.0001***  0.1207 (0.1156)  0.3071  0.4966 (0.4759)  0.3075 
trange_spring -0.9523 (0.0960) < 0.0001*** -0.1870 (0.0469) < 0.0001*** -0.7692 (0.1928) < 0.0001*** 
trange_summer -0.0934 (0.0668)  0.1621 -0.0343 (0.0530)  0.5231 -0.1409 (0.2179)  0.5228 
trange_winter -0.5042 (0.0624) < 0.0001*** -0.1020 (0.0317)  0.0013** -0.4194 (0.1312)  0.0014** 
trange_spring_1 -0.8028 (0.1188) < 0.0001*** -0.1624 (0.0479)  0.0008*** -0.6680 (0.1979)  0.0009*** 
trange_summer_1 -0.3680 (0.0672) < 0.0001*** -0.0752 (0.0555)  0.1802 -0.3095 (0.2283)  0.1806 
trange_winter_1 -0.3375 (0.0590) < 0.0001*** -0.0649 (0.0327)  0.0448* -0.2670 (0.1349)  0.0453* 
trange_fall_1  0.0898 (0.0423)  0.0337*  0.0139 (0.0342)  0.6878  0.0573 (0.1405)  0.6879 
prec_spring -0.0152 (0.0016) < 0.0001*** -0.0029 (0.0009)  0.0011** -0.0118 (0.0036)  0.0012** 
prec_summer -0.0028 (0.0012)  0.0207* -0.0007 (0.0009)  0.3741 -0.0030 (0.0036)  0.3742 
prec_winter -0.0048 (0.0011) < 0.0001*** -0.0010 (0.0012)  0.4160 -0.0042 (0.0049)  0.4161 
prec_spring_1 -0.0097 (0.0013) < 0.0001*** -0.0019 (0.0009)  0.0432* -0.0077 (0.0038)  0.0437* 
prec_summer_1 -0.0121 (0.0012) < 0.0001*** -0.0027 (0.0009)  0.0030** -0.0109 (0.0037)  0.0032** 
prec_winter_1 -0.0056 (0.0012) < 0.0001*** -0.0014 (0.0011)  0.2046 -0.0058 (0.0046)  0.2052 
prec_fall_1 -0.0033 (0.0010)  0.0012** -0.0006 (0.0009)  0.5470 -0.0023 (0.0038)  0.5463 
drought -0.2393 (0.1419)  0.0918. -0.1288 (0.2166)  0.5409 -0.5300 (0.8895)  0.5407 
frost -1.4879 (0.4263)  0.0005*** -0.2495 (0.2110)  0.2386 -1.0261 (0.8672)  0.2388 
cropland_pasture  1.0541 (0.2015) < 0.0001***  0.5203 (0.1257) < 0.0001***  2.1402 (0.5198) < 0.0001*** 
forest  0.8664 (0.1834) < 0.0001***  0.4490 (0.1255)  0.0003***  1.8470 (0.5182)  0.0003*** 
shrubland  1.3058 (0.2106) < 0.0001***  0.6082 (0.1364) < 0.0001***  2.5016 (0.5652) < 0.0001*** 
edge_density  1.5157 (1.7333)  0.3819  1.0199 (0.9057)  0.2386  4.1949 (3.7324)  0.2396 
unemp_rate  0.1655 (0.0971)  0.0885.  0.0514 (0.0577)  0.3717  0.2115 (0.2374)  0.3721 
pop_density -12.1475 (4.6217)  0.0086** -5.3768 (3.2520)  0.1000 -22.1153 (13.3840)  0.1003 

P-value codes: "***" < 0.001, "**" < 0.01, "*" < 0.05, "." < 0.1. 
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Table A5 contains the estimates of the spatial autoregressive parameter 𝜌𝜌, capturing the strength of spatial 
dependence (LeSage und Pace 2009, 10), as well as of the spatial autocorrelation parameter 𝜆𝜆, capturing spatial 
autocorrelation in unobserved factors (Elhorst 2014, 8-10). The estimate of 𝜌𝜌 of 0.86 indicates strong positive spatial 
dependence in the LD incidence. 

TABLE A5. ESTIMATES OF 𝜌𝜌 AND 𝜆𝜆 FOR THE FIXED EFFECTS SARAR MODEL 

Parameter Estimate  
(Std. Error) 

P-Value 

rho  0.8568 (0.0034) < 0.0001*** 
lambda -0.3661 (0.0089) < 0.0001*** 

A.4 U.S. REGIONAL MODEL RESULTS 
The U.S. regions are defined according to the map in Figure A1. 

FIGURE A1. THE MAP OF THE U.S. REGIONS 
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Table A6 provides the mean values of predictors across the five U.S. regions and over the period 2000–2018. 

TABLE A6. MEAN VALUES OF PREDICTORS ACROSS THE U.S. REGIONS 

Variable Midwest Northeast Southeast Southwest West Total 
tmin_ave_spring 9.21 8.00 13.92 14.82 3.96 10.80 
tmin_ave_summer 15.00 14.44 18.90 19.75 9.62 16.24 
tmin_ave_winter -7.14 -6.56 1.76 2.40 -5.40 -2.68 
tmin_ave_spring_1 9.20 7.98 13.88 14.79 3.84 10.76 
tmin_ave_summer_1 14.92 14.33 18.80 19.69 9.56 16.16 
tmin_ave_winter_1 -7.06 -6.58 1.73 2.45 -5.34 -2.65 
tmin_ave_fall_1 -1.17 0.52 5.46 5.71 -2.64 1.90 
trange_spring 24.07 22.62 20.92 22.85 24.45 22.78 
trange_summer 18.40 16.37 15.23 18.10 22.81 17.64 
trange_winter 20.21 16.92 19.07 21.30 18.09 19.45 
trange_spring_1 23.69 22.59 20.63 22.49 24.39 22.49 
trange_summer_1 18.67 16.55 15.54 18.21 22.78 17.86 
trange_winter_1 20.17 16.88 18.77 21.02 17.99 19.28 
trange_fall_1 25.28 21.37 22.19 25.27 24.05 23.77 
prec_spring 301.76 321.63 344.81 216.70 128.79 287.39 
prec_summer 266.10 315.17 363.84 214.53 77.36 274.98 
prec_winter 128.76 231.45 295.50 130.61 177.40 199.83 
prec_spring_1 304.54 314.06 339.78 222.51 128.78 286.73 
prec_summer_1 260.85 312.54 354.98 208.29 78.75 269.36 
prec_winter_1 127.59 232.00 294.02 131.05 179.52 199.27 
prec_fall_1 164.09 291.25 286.65 152.95 187.19 217.37 
drought 0.01 0.00 0.01 0.43 1.02 0.18 
frost 0.26 0.00 0.00 0.00 0.10 0.10 
cropland_pasture 69.28 11.07 15.48 59.58 49.19 42.76 
forest 23.87 73.42 74.54 19.10 32.47 45.52 
Shrubland 1.38 0.54 1.48 13.59 7.32 3.54 
edge_density 0.58 0.84 0.74 0.27 0.20 0.58 
unemp_rate 5.44 5.81 6.92 5.60 6.24 6.09 
pop_density 0.05 0.52 0.09 0.03 0.07 0.10 
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Table A7 contains the estimates of the direct effects for the nonspatial fixed effects model with county and time 
effects for the Midwest, Northeast, and Southeast. The West and Southwest regions were not considered due to 
low LD case counts in most of the counties in those regions. The frost and drought variables were excluded from the 
analysis, since over the considered time period there was no month with frost in the Northeast and Southeast 
regions and no month with drought in the Northeast region. The estimation of the nonspatial fixed effects model 
was performed using the R package fixest (version 0.10.4); the reported standard errors are clustered by county. 

TABLE A7. REGIONAL RESULTS FOR THE NONSPATIAL FIXED EFFECTS MODEL (DIRECT EFFECTS) 

 Midwest Northeast Southeast 

Variable 
Estimate 

(Std. Error) P-Value 
Estimate 

(Std. Error) P-Value 
Estimate 

(Std. Error) P-Value 
tmin_ave_spring  0.0610 (0.3219)  0.8496  14.9951 (5.1957)  0.0043**  0.8421 (0.3303)  0.0109* 
tmin_ave_summer -0.5752 (0.3205)  0.0729.  14.9388 (4.6326)  0.0014**  1.3418 (0.3943)  0.0007*** 
tmin_ave_winter  0.0891 (0.1505)  0.5540  14.5726 (3.0128) < 0.0001*** -1.0437 (0.1656) < 0.0001*** 
tmin_ave_spring_1 -2.3573 (0.3836) < 0.0001***  0.3631 (3.9012)  0.9259 -0.4012 (0.2052)  0.0509. 
tmin_ave_summer_1  1.2458 (0.3947)  0.0016**  1.4487 (4.9039)  0.7679  1.5847 (0.4677)  0.0007*** 
tmin_ave_winter_1 -1.1328 (0.1838) < 0.0001***  5.3902 (2.1789)  0.0141* -0.4606 (0.1369)  0.0008*** 
tmin_ave_fall_1  0.5054 (0.2710)  0.0625.  4.4942 (2.6169)  0.0872. -0.1571 (0.2245)  0.4842 
trange_spring -0.8952 (0.1543) < 0.0001***  4.1703 (2.0885)  0.0470*  0.0151 (0.0989)  0.8783 
trange_summer  0.2104 (0.1382)  0.1284 -11.4489 (3.1832)  0.0004*** -0.1086 (0.0849)  0.2012 
trange_winter -0.3411 (0.0957)  0.0004***  2.0400 (1.1508)  0.0775.  0.1345 (0.0847)  0.1126 
trange_spring_1 -1.8920 (0.2555) < 0.0001***  4.3483 (2.6128)  0.0974. -0.2569 (0.1104)  0.0202* 
trange_summer_1  0.6824 (0.1543) < 0.0001*** -12.7598 (2.8003) < 0.0001*** -0.1920 (0.0942)  0.0418* 
trange_winter_1  0.0630 (0.0986)  0.5229 -0.6166 (1.2050)  0.6094  0.3012 (0.0763) < 0.0001*** 
trange_fall_1  0.2730 (0.1048)  0.0093**  3.5584 (1.7691)  0.0454*  0.4278 (0.0757) < 0.0001*** 
prec_spring -0.0259 (0.0041) < 0.0001*** -0.0294 (0.0233)  0.2079 -0.0050 (0.0008) < 0.0001*** 
prec_summer  0.0129 (0.0027) < 0.0001***  0.0079 (0.0158)  0.6175 -0.0042 (0.0008) < 0.0001*** 
prec_winter -0.0357 (0.0061) < 0.0001*** -0.0701 (0.0220)  0.0016**  0.0006 (0.0008)  0.4561 
prec_spring_1 -0.0280 (0.0042) < 0.0001*** -0.0081 (0.0269)  0.7645 -0.0045 (0.0008) < 0.0001*** 
prec_summer_1 -0.0129 (0.0021) < 0.0001***  0.0151 (0.0226)  0.5052 -0.0068 (0.0013) < 0.0001*** 
prec_winter_1 -0.0058 (0.0037)  0.1205 -0.0848 (0.0238)  0.0004*** -0.0053 (0.0010) < 0.0001*** 
prec_fall_1  0.0178 (0.0026) < 0.0001***  0.1003 (0.0303)  0.0011** -0.0009 (0.0005)  0.0461* 
cropland_pasture  1.5337 (0.5237)  0.0035**  19.3746 (5.1684)  0.0002***  0.1444 (0.2199)  0.5115 
forest  1.8180 (0.5904)  0.0021**  15.8981 (5.0272)  0.0018**  0.0146 (0.2187)  0.9467 
shrubland  1.9969 (0.5428)  0.0002***  27.2087 (8.2872)  0.0012**  0.2976 (0.2682)  0.2674 
edge_density -9.8673 (3.4868)  0.0047**  19.4478 (43.6980)  0.6567  0.9437 (1.8648)  0.6129 
unemp_rate  1.1223 (0.2638) < 0.0001*** -6.0665 (2.1194)  0.0046** -0.0184 (0.0728)  0.8005 
pop_density  19.9734 (11.9534)  0.0950. -62.5422 (21.0543)  0.0033**  1.2505 (4.0664)  0.7585 

P-value codes: "***" < 0.001, "**" < 0.01, "*" < 0.05, "." < 0.1. 
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