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Emerging Data Analytics Techniques with 
Actuarial Applications 

Abstract 
Data analytics strongly rely on data and available computing tools. Recent years have seen an increase in 
data availability and volume. Advanced computational methods and machine-learning tools have been 
developed to handle this continuous flow of valuable information. The aim of this research is to survey 
emerging data analytics techniques and discuss their evolution and growing use in the actuarial profession. 
Data analytics’ applications in life and non-life insurance will also be provided. 

Executive Summary 
Data analytics involves a set of tools and techniques used to extract meaningful information from a dataset 
(SOA, 2012). It encompasses several disciplines such as actuarial science, statistics, computer science, 
mathematics, and marketing. Recent years have seen an increase in data availability and volume, leading to 
an explosion in the concept of “Big Data” (AAA, 2018).  

Actuaries rely heavily on data to perform analysis, make general inferences, inform decisions, and guide 
predictions. They have a long history in conducting data analysis in areas such as underwriting, claim 
management, pricing, risk analysis, and auditing (Shapiro and Jain, 2003; SOA, 2012). In the past, data analysis 
was mainly descriptive and actuaries predominantly used programs such as Excel (SOA, 2012, Appendix G) 
and C++ (Pauza and Bellomo, 2014). Although descriptive analytics is in use today, it now represents an initial 
step in a more complex and data-driven analysis. Recent studies predict substantial changes in the analytical 
tools used by actuaries and other professionals (Sondergeld and Purushotham, 2019; Guo, 2003; Wedel and 
Kannan, 2016). 

Advanced data analytics packages (such as SAS, SPSS, Matlab, R, and Python) allow the user to extract more 
information from a dataset, make a diagnostic analysis, and use non-standard models to make relevant 
predictions. This paper aims at surveying emerging data analytics techniques with potential actuarial 
applications.  

The remaining part of the paper is organized as follows: Section 1 acknowledges the contributions of this 
report’s Project Oversight Group (POG). Section 2 deals with the change in data source and volume. This 
section also reviews some of the data visualization techniques available to actuaries. In Section 3, we give a 
brief overview of several data analytic techniques. In Section 4, we review some applications of emerging 
data analytic technologies in Actuarial Sciences. We also briefly describe some open-source data analytic 
software that have grown in use among actuaries. Section 5 deals with three cases studies in which we use 
open-source technologies for actuarial computational work. A commentary of the findings is presented in 
Section 6.  
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Section 2: Introduction 
Data analytics involves a set of tools and techniques used to extract meaningful information from a dataset 
(SOA, 2012). As such, while data analytics relies on available analytics tools, it primarily relies on available 
data or information. The recent proliferation of a massive volume of data has forced data analysts and 
actuaries to consider ways data could be handled more efficiently, to make better decisions faster.  

In the following subsections of this introduction, we provide an example of a data analytic flowchart and 
briefly discuss the steps in a data analysis. This section also deals with the first stages of the analytical process, 
which are data sources, data exploration, and data visualization. 

2.1 DATA ANALYTICS FRAMEWORK 
The flowchart in Figure 2.1-1 gives some of the main components of the data analytic process. Data analysis 
generally starts with the dataset. Preliminary descriptive statistics, data visualization, and exploration are 
then done to assess the data quality and obtain insight into possible relationships between the different 
variables in the dataset.  

Selecting an appropriate model is an important step in the data analytics process. Several classes of machine-
learning techniques are available, including, but not limited to, supervised / unsupervised learning 
techniques and soft computing techniques. Soft computing techniques, which also include fuzzy logic (FL), 
refer to “… modes of computing in which precision is traded for tractability, robustness, and ease of 
implementation” (Zadeh, 1992). Membership to these classes of techniques is not exclusive: for example, 
techniques such as genetic algorithms (GAs) and neural networks (NNs) are described as soft computing 
techniques (Shapiro, 2003), but also belong to the supervised / unsupervised techniques. It’s also common 
to combine techniques from different classes, as done for example by Abiyev and Menekay (2007) who used 
FL and GA for portfolio selection; Shang and Jiang (2016), who applied FL and optimization to the asset 
allocation problem for retirees; or Shapiro and Koissi (2017), who discussed FL applications to risk assessment 
and decision-making. 

Readers interested in the applications of fuzzy logic (FL) to insurance can also refer to Shapiro (2003 and 
2004), who provides an extensive review of the applications of FL to areas such as underwriting, 
classification, ratemaking / pricing, and investment. 

Supervised and unsupervised learnings are the most familiar classes of machine-learning techniques to 
most actuaries and will be reviewed in Section 4 of the current paper.  

In data analytics framework, model selection and implementation may be followed by the assessment of 
the model utility. The final step of the data analytics process is usually prediction and decision-making. 
Figure 2.1-1 also indicates selected insurance areas for the data analytics technique mentioned in the 
chart.  

  



   7 

 

 Copyright © 2019 Society of Actuaries 

Figure 2.1-1 
DATA ANALYTICS FLOWCHART 
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2.2 DATA SOURCES 
This data analytical process starts with the data. In the recent decade, there has been a tremendous 
increase in data sources and availability1. As with other professionals, actuaries are faced with large 
amounts of available information almost instantaneously. The data volume and influx are not the only 
challenge for practitioners. A major difficulty is that the data, which sometimes must be studied in real 
time, comes from diverse sources, which lead to various data types and structures: 

Data from tracking customers’ transactions: In a survey, Rageso (2018) found that for medium and large-
sized European companies, online portal content and point of sales (with other transactional tracking tools) 
are main data sources. Another example of transaction tracking is found with credit card companies who 
may monitor their customers’ purchases in order to gather information to help detect fraudulent activity.  

Telematic data: Telematic (smart meter data) and GPS, which provide information on consumer driving 
habits and road usages, are also major sources of data for companies, particularly for motor insurance 
companies (Bellina, et al., 2018). Cellular telephone companies may study their subscribers’ calling patterns 
to offer tailored service (and fight possible competitors’ rates). 

Social media data: Social media and genetic sequencing are one of the fastest-growing new sources of data 
being used for analysis (EMC, 2015). For social media companies such as Twitter, Facebook, LinkedIn, and 
other clickstream, data itself is the primary product, and these companies’ values depend on the amount of 
data they can collect and host from their subscribers. These platforms also provide a source of information 
used by other companies to improve their level of service and create targeted advertisements. Some 
companies designed their own in-house search platform to attract more customers and improve their total 
sales (Rageso, 2018). In health care (and life insurance), massive volumes of patient data are generated 
continuously. Medical practitioners (and actuaries) need to analyze these patient-related data in order to 
improve patient care and satisfaction and manage population health, including the prevention of disease 
spread (AAA, 2018; Li, et al, 2013; Raghupathi and Raghupathi, 2014).  

The volume of data worldwide is growing at a rate of approximately 50% per year (Dhar, 2013). The Cloud 
offers storage solutions for the massive volume of data (Titus, 2017). Cloud storage and sharing allows 
companies to easily access, aggregate, analyze, and visualize all their data. This technology also gives the 
decision makers access to a variety of information and reports, helping them make better decisions in real 
time.  

Practitioners are developing their skills and ability to collect such types of data and extract relevant 
information (Sondergeld and Purushotham, 2019). 

Once the data is collected, its exploration and visualization are the first stages of the data analytics process, 
which will be briefly reviewed next. 

  

                                                
 
1 Open data source has even led to the notion of smart cities (Puiu, et al., 2016). “Smart cities are those that: adopt and promote innovative 
technology, processes and business models; use data with the intention of being more efficient and transparent; and increase citizen engagement 
to improve the prosperity and sustainability of cities” (Beswick, 2014 and 2015). 
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2.3 DATA EXPLORATION AND VISUALIZATION 
“The whole point of data visualization is to provide [us] with insight about a set of data, [… ]. We may be using 
the visualization to tell a story [ ], or we may be using the visualization to see if there are discernable patterns 
in our data” (Campbell, M.P., 2017). 

The main goal of data visualization is to communicate data-related information clearly and effectively 
through graphical means. As such, data visualization is an important tool in data analytics. In the past, the 
most common visualization techniques were two-dimensional graphs such as scatterplots, histograms, 
boxplots, or pie charts. 

With the high volume of data available, visualization tools have improved. In the SOA (2016) call for essays 
on visualization, Houng (2016) shows how an interactive display is obtained using a slider. The slider, which 
is an alternative to a three-dimensional plot, helps the user experiment with different “what if” scenarios. In 
the same SOA call for essays, Hegstrom (2016) showed how a distribution of results can be displayed in an 
effective way, by using a strip chart or a violin plot. Finally, Shang (2016) used word Cloud and Geolocation 
to visualize social network data. 

For data with many dimensions of interest, traditional visualizations may not provide an effective display. 
Mortality data is an example of a high number of dimensions of interest (age, time, gender, country, etc.). In 
this case, improved visualization techniques such as heat maps, trajectory plots, and advanced projection-
based methods can be used. 
 
Heat maps (or alternatively surface plot) are used to describe the level of (surface) variation in a quantity 
connecting two variables, x and y. Heat maps are commonly used to illustrate mortality improvement rates 
and give a good overview of the age- and time-dependence of improvements (Brouhns, et al., 2005). An 
example of a heat map is shown in the Case study 2. Trajectory plots are not commonly used in the actuarial 
field but are very popular in areas such as physics. The idea is to plot the development of a variable as a 
function of time in the form of a trajectory with the current value of the variable on the x-axis, and the rate 
of change on the y-axis.  
 
Other commonly used methods for data exploration include the advanced projection-based methods such 
as the Principal Component Analysis (Jolliffe, 1986) and Multi-dimensional Scaling (Cox and Cox, 2001), which 
can also be used for visualization of high-dimensional data into a 2D space (Ghodsi, 2006; James, et al., 2013). 
A self-organizing map (SOM) is a neural network-based visualization method also used for dimensionality 
reduction. Shreck, et al. (2010) provides an extension review of dimension-reduction visualization 
techniques.  
 
Following this introductory section, Section 3 deals with data analytics techniques. 
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Section 3: Data Analytics Techniques 
Machine learning encompasses a variety of techniques used to ultimately make predictions based on a 
dataset. Machine-learning techniques can be classified as supervised or unsupervised. 

Supervised learning is the most commonly used class of machine learning for applications and will be the 
most familiar class of machine-learning techniques to most actuaries. In these methods, a training dataset is 
used that has both an explanatory variable (or variables) and a response variable. The goal of the supervised 
learning technique is to predict the response variable from new input variables as accurately as possible. 
These techniques can be used for regression or classification. Some supervised learning algorithms that are 
used in practice are regression techniques (including general linearized models and generalized additive 
models), tree-based methods (including decision trees, bagging, random forests, and gradient boosting 
machines), and neural networks. 

Unsupervised learning refers to techniques used to find hidden structure or pattern within unlabeled data 
(EMC, 2015). A difference between supervised machine learning and traditional statistical modeling is that 
supervised machine learning prioritizes prediction rather than inference, which is the focus of statistical 
modeling. This means that the supervised machine learning algorithms lead to models that are better 
predictors but may be difficult to interpret. Shapiro (2000) is one of the first papers dealing with machine-
learning methods with actuarial science applications. 

3.1 SUPERVISED LEARNING  

3.1.1 REGRESSION AND GENERALIZED LINEAR MODELS (GLMS) 

Generalized Linear Models (GLMs) were introduced by Nelder and Wedderburn (1972) as a generalization of 
the linear, the logistic, and the Poisson regressions. GLMs are generally considered a standard approach to 
many insurance modeling applications: they are used extensively in the insurance industry for modeling 
insurance claims and pricing insurance products (Schirmacher, 2016; Tevet, 2016; de Jong and Heller, 2008). 
While these are traditional statistical techniques, they are a form of supervised learning in the sense that the 
models use both an explanatory variable(s) and a response variable. These techniques are presented in 
numerous texts, including McCullagh and Nelder (1989) and Denuit, et al. (2007). In this method, a multiple 
linear regression model is generalized via a link function to predict variables that have non-normal 
distributions.  This can be represented as 

                                                       𝑔𝑔(𝐸𝐸[𝑌𝑌]) = 𝑋𝑋𝑋𝑋                                                                           ( 3.1-1) 

where g is the link function, Y is the dependent variable, X is a matrix of predictors, and 𝑋𝑋 is a parameter 
vector. Extensions of the GLM include, but are not limited to, the Generalized Linear Mixed Model (GLMM), 
the Generalized Additive Model (GAM), and the Generalized Nonlinear Model (GNM) (Frees, 2010; Yao, 
2013). There are a variety of methods used with GLMs to address various issues encountered with their use 
(Goldbund, et al., 2016; Anderson, et al., 2007)2. 

  

                                                
 
2 It’s worth mentioning that the notion of regularization is getting attention in several insurance areas. The interested reader may refer to 
Friedman, et al. (2010) or Zhu (2005).  
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3.1.2 TREES 

Tree-based methods are used to partition the predictor variable into different regions. The process is 
iterative, so the initial split is then repeated, allowing the splitting to be displayed in a tree form. With simple 
trees, this can allow for easy visualization and interpretation. Individual trees, however, generally lack the 
prediction accuracy of other supervised methods. To address this, techniques such as bagging, random 
forests, and boosting are employed where multiple trees are generated and then combined to form a 
prediction. While this increases prediction accuracy, these methods are a little more involved and may 
decrease the ease of interpretation that exists for a single tree. Trees can handle nonlinear models and are 
useful when the number of predictors is so large that implementing them with GLMs would need a huge 
number of parameters.  

3.1.2.1 Decision Trees 

Trees can be used for both regression with quantitative data and classification with qualitative responses. 
For regression trees, the idea is to split the data into distinct, non-overlapping regions. For each observation 
in a region, we will make the same prediction, which will be the mean of the responses for the predictors in 
the region. It is not possible to consider every possible partition of the original dataset, so the regions are 
determined sequentially by splitting the data into two regions at each step with a splitting rule. The tree is 
then grown in subsequent splits. Each branch of the tree can have a different splitting rule at each 
subsequent split. The tree is grown via repeated splits until a minimum number of values is in each region. 
Fully grown decision trees often overfit the data and predictive performance is poor. The trees are then 
pruned by removing splits that are not as valuable for predictive performance. 
 
The splitting rule at each step on each branch is determined by finding the predictor variable and cutpoint 
so that a loss function of the residual sum of squares is minimized. One loss function is the residual sum of 
squares. To describe this in more detail, at each split we define two regions: 

                              𝑅𝑅1(𝑗𝑗, 𝑠𝑠) = �𝑋𝑋�𝑋𝑋𝑗𝑗 ≤ 𝑠𝑠� and 𝑅𝑅2(𝑗𝑗, 𝑠𝑠) = �𝑋𝑋�𝑋𝑋𝑗𝑗 > 𝑠𝑠�                                           (3.1-2) 

where 𝑋𝑋𝑗𝑗  indicates a predictor variable and s our cutpoint for that variable.  We find the values of j and s that 
minimize 

                                       ∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑅𝑅1�
2

𝑥𝑥𝑖𝑖∈𝑅𝑅1 + ∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑅𝑅2�
2

𝑥𝑥𝑖𝑖∈𝑅𝑅2                                                       (3.1-3) 

where 𝑦𝑦�𝑅𝑅1and 𝑦𝑦�𝑅𝑅2are the mean response for the predictors in regions 1 and 2, respectively. 

A more detailed algorithm for generating trees can be found in Appendix 1 of Mendes, et al. (2017).   

Trees are simple to explain and can be readily displayed graphically so are easy to interpret. However, there 
are a few problems with trees. Trees have very high variance in that dividing a dataset into two halves can 
lead to very different trees on each half. They are prone to overfitting and, subsequently, poor predictive 
performance. In addition, since the branches of a tree have different splitting rules, adjacent regions have 
different models. Although this is appropriate, it would not allow for interpolation between regions in the 
case of insufficient data in a region. The high variance of individual trees can be addressed with ensemble 
methods that will be discussed next. Libraries such as rpart and h20 in R can be used to implement trees. 
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3.1.2.2 Bagging 

The term Bagging comes from the extended term of Bootstrap aggregation and is a general procedure to 
reduce the variance of a statistical learning method. In this method applied to decision trees, many samples 
are randomly selected with replacement from the original dataset and a tree is constructed for each sample. 
These trees are grown deep and not pruned so have low bias but high variance. The predictions from each 
tree are then averaged. If the original predictions are uncorrelated and have a variance of 𝜎𝜎2, then the 
average of these predictions has a reduced variance of 𝜎𝜎2 𝑛𝑛⁄ . Bagging typically results in improved accuracy 
over a single tree. A downside, though, is that the model is less easy to interpret than a single tree. It may be 
difficult to determine which variables are most important in the prediction. 

Bagging may not lead to significant improvements in accuracy when the bagged trees are highly correlated, 
as averaging correlated quantities does not lead to as large a reduction in variance as averaging uncorrelated 
values. Bagged trees will be highly correlated in a situation where there is a very strong predictor in the 
dataset with several other moderate predictors. In this case, most or all of the generated trees will use the 
strong predictor in the top split, causing the resulting trees to be very similar. The Rborist package in R can 
be used to implement bagging. 

3.1.2.3 Random Forests 

Random Forests are a further improvement over bagging. This improvement addresses the problem of high 
correlation among bagged trees and is achieved by the addition of a step that decorrelates the trees in the 
ensemble. The trees are decorrelated by restricting the predictors that can be used at each split by only 
allowing a random sample of all the predictors to be used at each split.  
 
If m is the number of predictors to be selected randomly from p total predictors, then typically 𝑚𝑚 ≈ �𝑝𝑝 
predictors are selected. When this is done, on average, (𝑝𝑝 − 𝑚𝑚)/𝑝𝑝 of the splits will not have a specific 
predictor considered. In the case mentioned at the end of bagging, with one very strong predictor and several 
moderate predictors, the very strong predictor will be excluded from consideration on (𝑝𝑝 − 𝑚𝑚)/𝑝𝑝 of splits, 
allowing the more moderate predictors to be chosen, resulting in bagged trees that are no longer correlated. 
The bagging procedure will then reduce the variance better through the averaging process. 
 
Bagging is, of course, a random forest with 𝑚𝑚 = 𝑝𝑝. Choosing a small value of m will help in a situation with a 
large number of correlated predictors. The Rborist package in R can be used to implement random forests. 

3.1.2.4 Gradient Boosted Machines 

Boosting is a general approach that can be applied to many statistical learning methods but is quite useful 
for trees. It is also an ensemble method but, unlike bagging, it does not create the different trees from a 
bootstrap process of selecting random samples from the original dataset. Instead, each tree is grown 
sequentially from the previously generated tree. This is done by fitting a subsequent tree to the residuals of 
the previously grown tree rather than the response variable. This new tree is used to update the previous 
tree and the residuals. This allows the tree to grow slowly and, by fitting the residuals, the process focuses 
on regions where the model has not performed well.   
 
An excellent discussion of boosting and gradient boosting in the context of trees with application in claims 
prediction can be found in Diana, et al. (2019). The xgboost package in R can be used to implement boosting. 
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3.1.3 NEURAL NETWORKS 

Neural Networks (NN) are one of the most widely-known methods of machine learning. They are inspired by 
biological neural networks. The network is composed of a set of interconnected nodes, each of which 
performs a computation that is based on input from the dataset or other nodes and then passes the 
computation onto other nodes. There are three or more layers in a neural network: an input layer, one or 
more hidden layers, and an output layer. The input layer is the set of predictor variables and the output layer 
is the set of predicted responses. The layers between the input and output layers are called hidden because 
the information in these nodes cannot be observed in either the predictor data or in the response output. 
The computations that generate the model are done in the hidden layers. These layers can have a variable 
number of nodes. Figure 3.1-1 illustrates a simple NN. 

Neural network models can be classified according to various criteria, including their learning methods 
(supervised versus unsupervised), architectures (feedforward versus recurrent), output types (binary versus 
continuous), and node types (uniform versus hybrid) (Bakırcıoğlu and Koçak, 2000). For high-dimensional 
structures for example, complex training algorithms may give multiple layers of nonlinear operations leading 
to the notion of deep neural network (DNN). Autoencoders are basic blocks of DNN. The interested reader 
can consult references such as Haykin and Network (2004) or Timotheou (2010) for more details on these 
architectures.  

Figure 3.1-1 
SCHEMATIC OF SIMPLE NEURAL NETWORK (ADAPTED FROM FIGURE 1 IN SHAPIRO, 2003) 

 

As a supervised learning technique, NN can be used for both regression and classification. They work best 
for modeling complicated, nonlinear relationships when there is a large dataset to train on.  

The most common form of a neural network is feed-forward where the computations pass from input 
through the hidden layers to the output layer. A less commonly used alternative form of neural network is a 
recurrent neural network where loops exist between the hidden layers. When a neural network is used in 
the supervised learning context, backpropagation will be used to update the model to improve the accuracy. 
Mendes, et al. (2017) provides details of a backpropagation algorithm for calibrating a neural network. 

There is extensive literature on neural networks and many tools to assist in implementing neural networks. 
Neural networks can be difficult to train or interpret in some situations. Shapiro (2003) and Francis (2003a 
and 2003b) provide a good overview of neural networks and their application to insurance in general, and to 
property and casualty. Brockett, et al. (2003) used neural network to predict failure in the Marketplace. 
Schelldorfer and Wüthrich (2019) discuss the use of embedding layers in neural networks for dealing with 
categorical data. Neural networks may sometimes perform better than other supervised methods that are 
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simpler, faster, easier to train, and easier to interpret. Mendes, et al. (2017) found that a neural network was 
one of the methods with the smallest prediction error in their study of model performance with simulated 
claim data. Diana, et al. (2019) investigated a simple neural net in their study of claims prediction and found 
that it underperformed other methods. The Keras library in R can be used with neural networks. 

3.1.4 PREDICTIVE MODELING 

Predictive modeling or risk prediction (Duncan, 2011, p.13) refers to modeling techniques where the 
emphasis is on predicting the risk factor or the response variable. Shmueli (2010) discusses the difference 
between predictive and descriptive models. Techniques such as GLM and logistic regression are key examples 
in predictive modeling. Gandomi and Haider (2015) categorized predictive analysis at the frontier of 
regression techniques (such as multinomial logit models) and machine-learning techniques (such as neural 
networks). The use of predictive modeling tools amongst actuaries is expected to grow, although Sondergeld 
and Purushotham (2019) found that only 55% of the actuaries in their survey currently use this technique. 
There are many applications of predictive modeling to insurance, especially in property and casualty, 
including, but not limited to, fraud prediction, pricing, and reserves. Duncan (2011) used predictive modeling 
in health care adjustment. Frees, et al. (2012) studied how predictive modeling can be used for underwriting 
and ratemaking in multi-peril homeowner insurance. Ewald and Wang (2015) illustrated how predictive 
modeling can be used to compute long-term disability insurance pricing. Hartman, et al. (2018) used 
predictive modeling to analyze high-cost claimants from the Health Care Cost Institute database. Ai, et al. 
(2018) studied predictive modeling-based approaches to detect health care fraud. Boodhun and Jayabalan 
(2018) used predictive modeling to conduct a risk assessment for life insurance firms.  

3.2 UNSUPERVISED TECHNIQUES 

3.2.1 PRINCIPAL COMPONENT ANALYSIS  

Principal Component Analysis (Jolliffe, 1986) is a technique used to reduce the dimensions of a dataset while 
maintaining as much information related to variation as possible. When a large number of variables are 
used/considered for a model, there can be a high degree of correlation amongst them. This is known as 
multi-collinearity. The issue surrounding this correlation is that predictions are more sensitive to slight 
changes in data, which, in turn, makes prediction more difficult (i.e., error prone). 

To address this issue, Principal Component Analysis (PCA) focuses on identifying a subset of linear 
combinations of variables that can be used to segment the dataset without losing the value – or, as much of 
the value as possible – of the information provided by the complete dataset. PCA can be valuable in building 
and explaining regression models (Gao and Wüthrich, 2017; Maitra and Yan, 2008). It can also be meaningful 
for data visualizations (James, et al., 2013). 

3.2.2 CLUSTER ANALYSIS 

Cluster analysis is the process of grouping objects from a dataset into clusters with similar characteristics. In 
doing so, there should be notable differences between objects of different clusters. While similar to PCA in 
its aim to simplify a dataset into key variables or groupings, cluster analysis differs in that it seeks to find 
homogenous subgroups from amongst the observations (James, et al., 2013). Cluster analysis already has 
widespread use in marketing, as customers are grouped together for targeted outreach. There are two main 
types of clustering: partitional clustering and hierarchical clustering (Guo, 2003; Yao, 2008). In partitional 
methods, the goal is to segment observations into a pre-defined number of clusters. A popular method is the 
K-means method. This method is an iterative process whereby one wishes to minimize the within-cluster 
variation. The algorithm is well-defined (Guo, 2003): 
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1. Specify the number of clusters (classes) k. 
2. Choose k initial cluster seeds. 
3. Assign cases closest to seed j as belonging to cluster j, j=1, 2, …, k. 
4. Calculate the center (i.e., mean) of the cases in each cluster, and move the k cluster seeds to the 

center of their cluster. 
5. Reassign cases closest to the new seed j as belonging to cluster j. 
6. Take the center of the cases in each cluster as the new cluster seed. 
7. Repeat until there is no further change in clustering. 

 
Assignments are typically made according to the Euclidian distance, defined generically below for two points 
xi and yi: 

                                                        ( )2

1

n

i i
i

d x y
=

= −∑                                                        (3.2-1) 

Hierarchical methods differ from partitional methods in that the number of clusters is not pre-determined 
(Yao, 2008). Rather, the data is split recursively into smaller subsets through the use of a dendrogram, or 
tree-based representation of the data. This method begins by assuming that every point is in its own cluster. 
Then, it starts grouping pairs of clusters according to distance rules.   

There are established Python routines for cluster analysis that are available in scikit-learn: https://scikit-
learn.org/stable/modules/clustering.html. 

3.2.3 GENETIC ALGORITHMS 

Genetic algorithms (GAs) were introduced by Holland (1975). They are a type of optimization algorithm3, 
namely Evolutionary Computing (Thomas, 1996), which provide a near-optimum solution for a randomized 
global search (Goldberg, 1989; Shapiro, 2003). Goldberg (1989) and Vonk, et al. (1997) worked interested 
readers through simple examples of the implementation of a GA.  

Generically speaking, genetic algorithms breed various solutions to a problem in order to determine a “best” 
solution. A scoring function must be established in order to identify superior genomes (i.e., solutions) and 
some rules are required to guide the breeding process.  

Snell (2012) suggests several instances where GAs may be particularly useful: 
(1) when there is no direct algorithm for an exact solution, 
(2) when the solution space is large, and 
(3) when solutions can be scored against each other to easily determine which is “better.”   

 
A training tool for genetic algorithms is available at www.GitHub.com/DaveSnell. The site also contains an 
Excel file, “Provider Network GA 2014-10-01.xlsm” that employs a GA on a healthcare provider network as 
described in Snell (2012), where concerns about network cost must be balanced with network adequacy, 
service quality, etc. Other articles from Forecasting & Futurism discuss GA examples related to asset-liability 

                                                
 
3 Optimization is the process of maximizing (or minimizing) and objective function, subject to a set of constraints. There have been numerous 
applications of optimization in actuarial sciences, including but not limited to the following: 

•  Optimal Capital Allocation: Dhaene, Tsanakas, Valdez, and Vanduffel (2012) used a minimum distance problem to minimize the weighted 
sum of measure for the deviations of the business unit’s losses from their respective capitals. 
•  Facility Location: Brockett and Xia (1995) used the optimization technique to find the optimal location of a Variable Annuity Life Insurance 
Company. 

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
http://www.github.com/DaveSnell
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management in a life insurance context (Wadsley, 2011) and the prediction of breast tumor malignancy 
(Heaton, 2013).  

Shapiro (2003) provided a review of GAs and their application to insurance areas such as classification (Lee 
and Kim, 1999), underwriting (Nikolopoulos and Duvendack, 1994), asset allocation (Wendt, 1995; Jackson, 
1997), and insurance competitiveness (Tan, 1997). 

3.2.4 NEURAL NETWORKS 

As was mentioned previously, neural networks can be unsupervised in nature. In this case, there is no 
response variable given in the dataset, so the neural network serves to simply group data according to 
patterns. 

Hainaut (2018) employs an unsupervised neural network approach in the development of Self-Organizing 
Maps (SOMs) in order to cluster explanatory variables and detect dependence amongst covariates. 
Historically, such SOMs were used for purposes of fraud detection or failure detection, but Hainaut uses the 
technique to segment a database of roughly 65,000 motorcycle insurance policies by owner age and age of 
vehicle. This segmentation permits for the regressing of claims frequency on explanatory variables.   

3.3 OTHER DATA ANALYTICS TECHNIQUES  

3.3.1 MARKOV CHAIN MONTE CARLO (MCMC) SIMULATION 

Markov Chain Monte Carlo (MCMC) is a numerical method suitable for solving several problems, including 
cumbersome integrals of intractable form. The Markov Chain method consists of simulating independent 
and identically distributed random variables θ(1), . . , θ( p), which converge towards a stationary distribution 
that is π(θ| y). This property results from Monte Carlo integration (Robert and Casella, 1999, p. 75). 

Various methods exist to construct random draws that have π as a stationary distribution (Gelman, et al., 
1995, pp. 320–342). The major difference between these approaches concerns the way, at each step t, the 
draw x(t) is obtained from the previous draw x(t −1). The Metropolis (Metropolis, et al., 1953) and the Gibbs 
sampler (Geman and Geman, 1984) are amongst the most popular algorithms. We refer the interested 
reader to Chapter 11 of the book by Gelman, et al. (1995).  

MCMC simulations are often used to generate prediction intervals in several actuarial applications, including 
mortality predictions (Brouhns, et al., 2005; Koissi, et al., 2006) and portfolio valuation (Gan and Valdez, 
2017). Hoogerheide and van Dijk (2010) used the Gibbs sampler in a study on Bayesian forecasting of Value 
at Risk and Expected Shortfall. The R function mcmc {coda} can be used to generate a Markov Chain Monte 
Carlo object. 
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3.3.2 BAYESIAN ANALYSIS 

Assume a distribution f with unknown parameter θ. In classical approaches, the parameter θ is constant and 
can be estimated using classical optimization techniques. In Bayesian models, the parameter θ itself follows 
a probability distribution. The expectation is to approximate the unknown distributions using an available 
dataset y. Any prior knowledge about the parameter θ (without taking into account the dataset yet) is called 
the prior distribution, denoted π (θ) for example. Information about the data, in the form of the likelihood 
of the data y, denoted L (θ |y), is used to update the prior distribution as follows 
 

                                          L (θ |y)   π (θ)  =    π (θ| y)  m(y)                                                 (3.3-1)     

where m(y) is the marginal likelihood of the data. It can be shown that the posterior density π (θ| y) is 
proportional to the product of the likelihood and the prior distribution (Gelman, et al., 1995) 

                                                            π (θ| y)  α  L (θ |y)     π (θ)                                                  (3.3-2)     

Bayesian analysis has been applied in various areas including population and health studies (Congdon, 2003). 
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Section 4: Emerging Data Analytic Technologies 
In this section, we present a review of selected articles that focus on applications of emerging technologies 
within various sections of actuarial practice. The list of topics is not exhaustive and aims at helping the 
interested readers identify articles that may be of specific interest to their current work responsibilities or 
can serve as a springboard to new opportunities/interests. 

4.1 LIFE: MACHINE LEARNING TECHNOLOGIES FOR MORTALITY RATE FORECASTING  
 
Mortality modeling is important in actuarial science since it’s used in the management of longevity / mortality 
risk, and in actuarial pricing of mortality-linked securities and joint life products (LLMA, 2010; Silverman and 
Simpson, 2011). Traditionally, regression-based models and extrapolative fitting techniques were used to 
model mortality (Booth and Tickle, 2008). Advanced techniques such as predictive analytics and machine-
learning technologies are now growing in use in actuarial science, as shown in the following examples. 
 
In Deprez, et al. (2017), regression trees are used both to illustrate how mortality modeling can be improved 
by accounting for feature components of an individual and to estimate conditional probabilities related to 
the cause of mortality. Analysis is based on Swiss mortality from the Human Mortality Database. 

Kopinsky (2017) uses tree models to fit and predict maternity recovery rates and mortality rates. The data 
for this study has between 500,000 and 3,000,000 records and was extracted from a selected Group Long-
Term Disability Database (more detail available in the paper). 

Hainaut (2018) applies a neural network analyzer that detects nonlinearities in the lower-dimensional 
structure of the log-forces of mortality that are central to the Lee-Carter (LC) mortality model. The study 
found that the neural network approach has “an explanatory power that is comparable or even better [than] 
the LC model with age specific cohort effects.” 

Shang (2017) predicts the mortality rates by cancer type for a given population, using predictive models such 
as K-nearest neighbors, regression, classification, regression tree, random forest, and neural network. 

4.2 HEALTH CARE: MACHINE LEARNING TECHNOLOGIES FOR HEALTH CARE CLAIMS MODELING 
 
Traditionally, health actuaries use simple claims data to set up premium and reserves. Now, health actuaries 
are inundated by a massive amount of information: they have access to a large volume of clients’ personal 
information, claims information, and even medical information. The challenge is now to “read through” the 
data and extract useful information. Actuaries use more and more advanced visualization techniques and 
other machine-learning technologies, as illustrated in the examples that follow. 
 
Toyoda and Niki (2015) used a visualization system that allows interactive analyses of medical expenditure. 
Kareem, et al. (2017) used a mixture of supervised and unsupervised (cluster analysis) techniques to detect 
fraudulent health insurance claims by identifying correlation or association between attributes on claims 
documents. Ai, et al. (2018) provided a comprehensive list of studies used to investigate health care fraud 
via predictive methodologies and offered a comparative analysis of these studies. 

Diana, et al. (2019) used machine-learning methods such as GLM, regression tree, random forest, and 
Bayesian analysis, to model insurance claims. Wang, et al. (2018) surveyed data analytics capabilities in health 
care under the following categories: unstructured data analytical capability, decision support capability, 
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predictive capability, and traceability. Hartman, et al. (2018) compared the predictive accuracy of extreme 
gradient boosting to that of logistic regression using an analysis of high cost claimants from the Health Care 
Cost Institute database.   

Boodhun and Jayabalan (2018) used machine-learning algorithms, such as linear regression, neural network, 
and random tree to predict the risk level of applicants. The dataset was from Prudential Life Insurance and 
had nearly 60,000 applications with 128 attributes, which characterized the applicants for life. There are 
packages available in R and Python (XGBoost) that can assist with the implementation of the boosting 
technique. 

4.3 LIFE / NON-LIFE: MACHINE LEARNING TECHNOLOGIES FOR RESERVES 
 
Reserve calculation is a significant task for life/health and non-life actuaries. The use of a regression-based 
model in loss reserve has a long tradition in actuarial science (Barnett and Zehnwirth, 2000). Emerging 
analytical techniques allow the actuary to compute the variability in the liability and obtain an interval of 
values for the reserve. Some of these advanced analytical techniques are described in the following papers.  
 
Harej, et al. (2017) used synthetic data to compare the traditional chain-ladder reserving method to a 
method utilizing cascading artificial neural networks at the individual claim level. Where development 
patterns were stable across accident years, the two methods performed similarly for overall reserve 
estimation. With changes in claim structure, however, the cascading ANNs outperformed the traditional 
chain-ladder method, both for individual claim development and overall reserve estimation. 

Llaguno, et al. (2017) employed a clustering algorithm to sort individual members into clusters with similar 
cumulative loyalty program point redemption patterns. Once individuals are grouped, individual information 
is aggregated into a cluster-specific triangle. Traditional methods (e.g., chainladder) can be employed on 
each cluster’s triangle to determine an expected redemption pattern that can be used for reserve 
calculations. This technique allows for the utilization of data associated with individual claims, without the 
need to predict how member characteristics may change in the future. 

Adesina, et al. (2018) used a modified generalized linear model for valuation and reserving. Gabrielli, et al. 
(2018) discussed embedding a classical actuarial regression model into a neural network. The enhanced 
model is initialized with classical regression, then gradient descent methods are used to enhance the model. 
The authors noted that this approach could be applied to almost any parametric regression model. An 
example in general insurance claims reserving is provided. 

Spedicato, et al. (2018) is a comparison of GLMs with boosted trees in the context of predicting customer 
behavior to maximize underwriting margins. The example given is with personal motor liability data. They 
concluded that boosted tree models did have higher accuracy and discriminating power than the classical 
GLM models but questioned whether the gains were worth the extra computational time and effort to 
warrant widespread adoption of the techniques. 
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4.4 NON-LIFE: MACHINE LEARNING TECHNOLOGIES FOR CLAIM MODELING 
 
Claims are typically modeled using GLMs where the number of claims follows a Poisson distribution (Frees, 
2010). Enhanced and more efficient analytical techniques such as copula regression, kernel regression, or 
predictive analysis are now used, which is illustrated in the following papers. 
 
In Frees, et al. (2016), a copula regression approach was applied to data from the Wisconsin Local 
Government Property Insurance Fund to model possible data dependencies. Copulas are a function that link 
univariate marginals to their full multivariate distribution (Frees and Valdez, 1998). The interested reader 
should read Frees and Valdez (1998) for a detailed introduction to copula regression, with reference to 
various insurance areas including mortality, pricing a reinsurance contract, and claim modeling. 

Mendes, et al. (2017) applied many of the techniques discussed in Section 3 of this paper to a simulated car 
insurance database, specifically focused on frequency modeling. Kunce and Chatterjee (2017) showed how 
machine-learning technology (such as K-Nearest Neighbors (KNNs), K-means Clustering, and Kernel 
Regression) could be used to calculate rating factors (Increased Limits Factors and Territory Factors) for 
Commercial Auto Liability policies. Gross and Evans (2019) used predictive analysis to model loss. Aminzadeh 
and Deng (2019) used Bayesian predictive inference to estimate VaR. Zhang and Miljkovic (2019) used an 
Enhancing GLM Pricing Model with a Bayesian Analysis. 

Noll, et al. (2018) compared GLM to regression trees, boosted trees, and neural networks on French motor 
third-party liability insurance data. Ferrario, et al. (2018) used neural network regression models to model 
claims frequency data in insurance. Schelldorfer and Wüthrich (2019) discussed putting a GLM into a neural 
network structure and embedding layers for categorical feature classification. Wüthrich (2018) studied 
heterogeneity and individual claim reserves feature information using neural networks. 

Weidner, et al. (2016) incorporated telematic data into actuarial pricing decisions, which is a pricing 
innovation for German car insurance. Gao, et al. (2018) explored several methods of covariate selection for 
telematics car driving data. This paper extended the use of the heat maps introduced in Gao and Wüthrich’s 
2017 paper. Gao and Wüthrich (2018) discussed extracting feature data from a very large telematics dataset 
using a Convolutional Neural Network (ConvNet). The data is classified using a neural network. The article 
includes R code for implementation of ConvNets in Keras in R. 

4.5 LIFE / NON-LIFE: MACHINE LEARNING TECHNOLOGIES FOR INSURANCE FRAUD AND OTHER 
AREAS 

 
This section gives examples of the application of machine learning in fraud detection and other actuarial 
areas.   
 
Chalk and McMurtrie (2016) used machine learning to predict aviation incident cause.  

Xia (2018) and Xia, et al. (2019) used a machine-learning technology to study a misrepresentation type of 
insurance fraud. Medical Expenditure Panel Survey data was used. Subudhi and Panigrahi (2018) studied auto 
insurance fraud detection using a data balancing method known as Adaptive Synthetic Sampling Approach 
for Imbalanced Learning. 

Guo (2003) provided an example of clustering automobile drivers. This paper shared that a company 
employing this technique was able to identify the factor that led to lower claim frequency within a segment 
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of 18-20-year-old drivers by identifying a low-risk subgroup and analyzing that group to determine that they 
drove significantly older cars than average. 

Purushotham (2016) illustrated a cluster analysis using a K-means method on a sample population of variable 
annuity (VA) contracts with guaranteed living withdrawal benefits (GLWBs). The analysis was used to provide 
an independent check on the results of a predictive modeling process regarding the surrender behavior of 
the contract holders. 

Wüthrich (2016) used a K-means method on the heat maps of velocity and acceleration for a sample of 1,753 
individual drivers.   

Yao (2008) combined the portioning and hierarchical methods in a ratemaking context. Snell (2018) shared 
R code for creating a dendrogram, using an example involving publicly-available university data. 

4.6 SOME ACTUARIAL PACKAGES IN R AND PYTHON 
 
R and Python are open-source software with several packages for actuarial work. In a survey about the top 
actuarial technologies, Sondergeld and Purushotham (2019) found that “the predictive modeling tools R and 
Python are currently used by more actuaries than any other tools.” In the next section, we give a short 
overview of some of these actuarial packages. 

4.6.1 SOME ACTUARIAL PACKAGES IN R  

4.6.1.1 ChainLadder  

While certainly not a new technique in actuarial modeling, the ChainLadder package in R definitely qualifies 
as an emerging technology that has a low barrier to entry and the potential to return value in the form of 
efficiently examining multiple reserve approaches and providing access to the high-quality visualizations 
available with R. This development may be especially meaningful to valuation actuaries in health, as the 
chainladder method often forms the basis for reserve estimates for health insurers. 
 
Caratto, et al. (2018) provided a helpful overview of the ChainLadder package, with the inclusion of R code 
throughout. The paper also listed the following motivations, among others, for implementing a reserve 
method in R: 

• R provides a rich language for statistical modeling and data manipulations, allowing fast prototyping 
• R has a very active user base, which publishes many extensions 
• R features many interfaces to databases and other applications, such as MS Excel 
• R provides an established framework for End User Computing, including documentation, testing and 

workflows with version control systems 

Most actuaries today employing the chainladder technique for reserves use Excel spreadsheets for 
computation and visualizations. Fortunately, R can import CSV versions of data triangles directly to make the 
setting change relatively quick and painless. For small amounts of data, a copy and paste option is also 
available. 
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4.6.1.2 Actuar  

This package was introduced by Dutang, et al. (2008) as the R package for Actuarial Science. It focuses on 
actuarial functions and data analysis in the areas of loss-distribution modeling, risk theory, simulation, and 
credibility theory.   
 
For the loss distribution, actuar embedded some general probability functions such as moments, moment 
generating functions, etc. In risk theory, the actuar package provides a function “discretize,” which 
transforms a continuous distribution into a discrete one. This helps in recursive calculation of the distribution 
of an aggregate claim amount (Panjer, 1981). The package also has a function “simul” that helps simulate 
compound hierarchical models, and the function “cm” to implement credibility models. 

4.6.1.3 Life: Lifecontingencies, Forecast, Demography, LifeMetrics, StMoMo, ILC  

The lifecontingencies package (Spedicato, 2013) helps perform standard financial and actuarial mathematics 
calculation, such as the pricing and reserving of life-contingent contracts – insurance and annuities – in R. 
The package also allows users to make demographic computations, such as life and actuarial tables (including 
multiple decrements tables).  
 
The package demography (Hyndman, et al., 2011) is used to model population data, including mortality, 
fertility, and migration. The R-package forecast (Hyndman and Khandakar, 2008) helps in modeling and 
forecasting a univariate time series using state space models and ARIMA process. 

The three packages, lifecontingencies, demography, and forecast, are commonly used to model and forecast 
the mortality rate, then evaluate possible retirement cost for a group of individuals. 

The stochastic mortality modeling package (StMoMo) was introduced by Villegas, et al. (2018). This R-
package combines ease-of-use and efficiency. It relies on existing packages such as demography and forecast 
and allows the user to model and forecast mortality rates from any country, using a family of mortality 
models, including the stochastic Lee-Carter model (1992) and several of its variants (ilc package (Butt, et al. 
2014)). The LifeMetrics R function implements the original Cairns- Blake- Dowd (Cairns, et al., 2006) 

NOTE: R has an extensive library, which gets updated constantly with new functions and packages. 

4.6.2 SOME PACKAGES IN PYTHON WITH ACTUARIAL APPLICATIONS 

Python has a lot of optional packages (same as libraries in R) that can help the user conduct an efficient data 
analysis (Geron, 2017; Kuhn, 2008). The following packages are potentially useful for actuarial work: 
 
Pandas: This package is useful for working with actuarial data and any other data tables. It helps with the 
basic transformation of a table, such as importing, editing, grouping, pivoting, or merging. 
 
Numpy: This is an important package that most other scientific packages in Python utilize, although a 
beginner may not use it from the start. It speeds up vector and matrix calculations. 
 
SciPy: This is a mathematics package that helps with integration, optimization, interpolation, linear algebra, 
and statistics.  
 
Matplotlib: This is the standard plotting library for creating a wide range of plots.  
 
Bokeh: This library helps create interactive plots. 
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Seaborn: This is a library for statistics plotting. 
 
PyMC3: This library is for Bayesian analysis (alternatively one can use PyStan or PyTorch). 
 
Lifelines: This package helps for survival analysis. 
 
scikit-learn: This package includes a set of machine-learning algorithms such as neural networks. 
 
Pyliferisk: This is a python library for life actuarial calculations. 
 

NOTE: H2O is an open-source technology which is ideal for Big Data. It works with interfaces such as R, 
Python, Scala, Spark, and Hadoop. 
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Section 5: Case Studies 
This section deals with three cases studies where we use open-source technologies for actuarial 
computational work. Since the open sources R and Python are currently used by more actuaries than any 
other tools, the R-codes for each case study are provided. Where appropriate, the Python library 
corresponding to each case study is indicated, to give the reader the option to choose either software. 

5.1 CASE STUDY 1: CHAINLADDER IN R 
Chainladder reserving methods are commonly employed by non-life actuaries to determine IBNR reserves. 
The ChainLadder package in R can perform the appropriate reserve calculations with various approaches for 
the selection of completion factors (e.g., volume-weighted factors, average factors, etc.) and helpful 
visualizations. In addition, and of significant value to valuation actuaries, the package incorporates research 
by Thomas Mack that allows for a forecast of cumulative loss amounts by incurral period along with the 
associated standard errors. Other reserving approaches, such as a GLM model for loss reserving, are also 
included in the package. Incorporating these various approaches can help actuaries more fully understand 
the reserves as they grapple with differences in methodologies and outcomes.   

Goal: The aim of this case study is to show the basic functionality of the ChainLadder package in R. 

Software used (with package): R (ChainLadder) 

The Data: 

• Data: Illustrative data modified from example in Brown and Lennox (2015), Medical Care triangle from 
Frees (2010) 

• Source of data: Medical Care Triangle from: 
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data
.html 

• Data description: Medical Care Triangle contains 36 months of medical care payment data, with 
reporting lags, for coverage with no deductibles or coinsurance.   

 

Step 1: Import and Organize Data 

Using a modified example from Introduction to Ratemaking and Loss Reserving for Property and Casualty 
Insurance (SOA Exam STAM syllabus), we illustrate how easy it is to get started with loss reserves in R. 

Incremental Loss Payments by Development Year 
Accident 
Year (AY) 

Development Year 
0 1 2 3 

AY1 500 250 175 75 
AY2 600 325 225  
AY3 800 320   
AY4 1,100    

 
  

https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
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Having created the triangle above in Excel, it first must be loaded to R: 

ex1 <- read.csv(file="h:/ChainLadder.csv", header=FALSE) 
ex1 
 

    V1  V2  V3 V4 
1  500 250 175 75 
2  600 325 225 NA 
3  800 320  NA NA 
4 1100  NA  NA NA 

 
Then, the triangle must be transformed so that it shows the cumulative, not the incremental, payments: 

ex1 <- as.triangle(as.matrix(ex1)) 
ex1.cum <- incr2cum(ex1) 
ex1.cum 
 

      dev 
origin   V1   V2   V3   V4 
     1  500  750  925 1000 
     2  600  925 1150   NA 
     3  800 1120   NA   NA 
     4 1100   NA   NA   NA 
 

At this point, paid claims development can be plotted in R with: 

plot(ex1.cum) 
 

Figure 5.1-1 
PLOT OF CUMULATIVE PAID CLAIMS BY DEVELOPMENT YEAR IN R 
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Step 2: Calculate Age-to-Age Development Factors 

With the data in the proper format, R will calculate simple average or volume-weighted age-to-age 
development factors with the following code: 

f <- attr(ata(ex1.cum), "vwtd") #use "smpl" for arithmetic average 
f <- c(f, 1) #Ultimate factor is 1 
names(f)[4] <- "Ultimate" 
f 
 

   V1-V2    V2-V3    V3-V4 Ultimate  
1.471053 1.238806 1.081081 1.000000 

 
The first factor can be verified as follows: 
 

+ +
=

+ +

750 925 1120
1.471053

500 600 800
 

 
Step 3: Calculate Reserve Estimates 

For the purposes of calculating the reserve using volume-weighted factors, we will now use the simplifying 
assumption that there is no development beyond development year 3.   
 
We would then finalize the reserve calculation with the following: 
 
full_ex1 <- cbind(ex1.cum, Ult = rep(0,4)) 
for(k in 1:n){ 
  full_ex1[(n-k+1):n, k+1] <- full_ex1[(n-k+1):n,k]*f[k] 
} 
round(full_ex1) 

 
    V1   V2   V3   V4  Ult 
1  500  750  925 1000 1000 
2  600  925 1150 1243 1243 
3  800 1120 1387 1500 1500 
4 1100 1618 2005 2167 2167 

 
sum(full_ex1[,5]-getLatestCumulative(ex1.cum)) 
 

[1] 1540.32 
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Simple code can be added to get an exhibit showing the reserve attributable to each accident year: 

Pd_to_Dt <- getLatestCumulative(ex1.cum) 
 
linkratios <- c(attr(ata(ex1.cum), "vwtd"), tail = 1.000) 
round(linkratios, 3) 
LDF <- rev(cumprod(rev(linkratios))) 
names(LDF) <- colnames(ex1) 
round(LDF, 3) 
 
EstUlt <- Pd_to_Dt * rev(LDF) 
 
Reserve <- EstUlt - Pd_to_Dt 
 
exhibit <- data.frame(Pd_to_Dt, LDF = round(rev(LDF), 3), EstUlt, Reserve) 
exhibit <- rbind(exhibit, data.frame(Pd_to_Dt=sum(Pd_to_Dt), LDF=NA, EstUlt=sum(EstUlt), 
Reserve=sum(Reserve), row.names = "Total")) 
exhibit 

 
      Pd_to_Dt   LDF   EstUlt    Reserve 
1         1000 1.000 1000.000    0.00000 
2         1150 1.081 1243.243   93.24324 
3         1120 1.339 1499.960  379.95966 
4         1100 1.970 2167.117 1067.11747 
Total     4370    NA 5910.320 1540.32038 
 
 

This result is easily confirmable in Microsoft Excel: 

 

 

Age-to-age Paid Loss Development Factors
dev

1/0 2/1 3/2
1 1.5000 1.2333 1.0811
2 1.5417 1.2432
3 1.4000

Volume-
weighted 1.4711 1.2388 1.0811

origin

dev

0 1 2 3
Est. Ultimate 

Losses
Paid-to-

Date
Est. Loss 
Reserve

1 500 750 925 1,000 1,000 1,000 0
2 600 925 1,150 1,243 1,243 1,150 93
3 800 1,120 1,387 1,500 1,500 1,120 380
4 1,100 1,618 2,005 2,167 2,167 1,100 1,067

Totals 5,910 4,370 1,540

origin
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Now, let’s apply the same functionality to a slightly larger triangle of sample medical care payments (months 
24-36 of MedicalCare dataset from Regression Modeling with Actuarial and Financial Applications website). 
The picture below shows the incremental paid claims triangle: 

 

Application of the previous code, with appropriate adjustment for the larger triangle, yields the following 
illustrations and reserve estimates: 

Figure 5.1-2 
CUMULATIVE CLAIMS DEVELOPMENT PATTERNS FOR FIRST 10 MONTHS OF SELECTED MEDICALCARE 
DATASET 

 

  

89181 1240938 279553 57164 75344 12665 71741 9049 1298 12164 19616 -4604 -3184
131568 1301927 716180 150253 110031 78148 4610 19855 18448 14432 119 2748

76262 1130312 692736 174283 38891 41811 8834 18123 4268 -291 2119
159575 1313809 704116 68412 30185 64402 19229 -3021 3220 1994

76313 1505842 437084 50872 116723 18160 10975 12664 8805
104028 1667823 360676 153274 37529 34840 17479 9374

79688 1235573 776240 65303 18723 10779 10615
76395 1689354 442965 234171 36806 22351

110460 1492980 589184 93366 180095
196687 2011979 313416 166839
268365 1027925 897097

58510 1225307
96378
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Figure 5.1-3 
CUMULATIVE CLAIMS DEVELOPMENT PATTERNS FOR EACH MONTH IN SELECTED MEDICALCARE DATASET 

 

Reserve Estimate: 

      Pd_to_Dt    LDF   EstUlt     Reserve 
24     1860925  1.000  1860925       0.000 
25     2548319  0.998  2543966   -4352.668 
26     2187348  0.998  2182694   -4654.217 
27     2361921  1.001  2364723    2802.494 
28     2237438  1.004  2247205    9766.823 
29     2385023  1.008  2403201   18178.095 
30     2196921  1.013  2224548   27627.389 
31     2502042  1.022  2556978   54936.385 
32     2466085  1.038  2560535   94450.442 
33     2688921  1.073  2884026  195104.696 
34     2193387  1.135  2488510  295122.913 
35     1283817  1.549  1988971  705153.673 
36       96378 19.836  1911732 1815354.144 
Total 27008525     NA 30218015 3209490.170 
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One significant benefit of performing the calculation in the ChainLadder package in R is that you quickly gain 
access to the other methodologies and associated visualizations that are incorporated into the package. An 
example of this is the MackChainLadder option, which yields the following: 

Figure 5.1-4 
STANDARD MACK CHAINLADDER OUTPUT FOR CHAINLADDER PACKAGE IN R 
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Figure 5.1-5 
MACK CHAINLADDER ESTIMATES WITH STANDARD ERROR BY INCURRAL MONTH 

 

      Latest Dev.To.Date  Ultimate      IBNR  Mack.S.E CV(IBNR) 
24 1,860,925      1.0000 1,860,925         0         0      NaN 
25 2,548,319      1.0017 2,543,966    -4,353     4,006   -0.920 
26 2,187,348      1.0021 2,182,694    -4,654     7,533   -1.619 
27 2,361,921      0.9988 2,364,723     2,802    16,830    6.006 
28 2,237,438      0.9957 2,247,205     9,767    18,307    1.874 
29 2,385,023      0.9924 2,403,201    18,178    20,347    1.119 
30 2,196,921      0.9876 2,224,548    27,627    21,214    0.768 
31 2,502,042      0.9785 2,556,978    54,936    39,364    0.717 
32 2,466,085      0.9631 2,560,535    94,450    47,482    0.503 
33 2,688,921      0.9323 2,884,026   195,105    83,554    0.428 
34 2,193,387      0.8814 2,488,510   295,123   102,242    0.346 
35 1,283,817      0.6455 1,988,971   705,154   318,933    0.452 
36    96,378      0.0504 1,911,732 1,815,354 1,022,566    0.563 
 
                 Totals 
Latest:   27,008,525.00 
Dev:               0.89 
Ultimate: 30,218,015.17 
IBNR:      3,209,490.17 
Mack.S.E   1,097,323.54 
CV(IBNR):          0.34 

 

Figure 5.1-4 shows six graphs. The graph on the top left is a stacked bar chart showing the total claims 
payments to-date by incurral month (“Latest”), the IBNR estimates using Mack’s methodology (“Forecast”), 
and Mack’s standard error. The top right graph illustrates the projected cumulative claims payments at each 
development period by incurral month (with 1 representing the oldest incurral month). The remaining four 
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plots are all residual plots showing the standardized residuals against the fitted values, origin periods, 
calendar periods, and development periods. These residual plots are necessary to confirm that the 
assumptions for Mack’s methodology are satisfied. No patterns should be apparent in the residual plots for 
Mack’s approach to be considered appropriate. More detail on the assumptions in Mack’s methodology can 
be found in Mack (1993). 

Figure 5.1-5 is a companion to the stacked bar chart of Figure 5.1-4, showing the actual and projected 
cumulative claims paid by development period for each incurral month along with the associated standard 
errors from Mack’s methodology. 

Through Mack’s methodology, the standard errors associated with the IBNR estimates can be computed 
(assuming assumptions evaluated with the residual plots are satisfied). The accessibility and flexibility 
provided by this R package bring value to the process by providing additional insight into reserve variability 
that may otherwise be absent in an Excel-based approach.  

The full code for the Medical Care triangle with Mack’s method is displayed in Appendix 1 at the end of this 
report. 

5.2 CASE STUDY 2: CLAIMS FREQUENCY IN MOTOR INSURANCE 
The Goal: The aim of this case study is to model the number claims on a given policy. 

Software used: R 

Data Analytics Techniques (with R packages): GLM (glm), Regression trees (rpart) 

 

The Data: 

• Data: freMTPL2freq 
• Source of data: R package CASdatasets (Charpentier, 2015) 
• Data description: This dataset was used by Noll, et al. (2018) and represents a French motor third-

party liability (MTPL) insurance portfolio with corresponding claim counts for a given period. Note 
that, for this illustration, we did not include all the variables present in the original data. 

• Variables:  
Response variable: Number of claims on a given policy "ClaimNb"     
Independent variables (10):  

o Quantitative variables: total exposure "Exposure," vehicle’s age "VehAge," 
driver’s age "DrivAge," bonus-malus level "BonusMalus," density of inhabitants in 
the living place of the driver "Density," and the following: 

o Categorical variables: vehicle’s brand "VehBrand," diesel or regular fueled vehicle 
"VehGas," power of the vehicle "VehPower," area code "Area," and regions in 
France (prior to 2016) "Region."     
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Step 1: Descriptive Statistics:  

i- Summary statistics 
A simple summary statistic provides information on the variables in the dataset. The data has 12 columns, 
including a column for policy number (that we will disregard), and contains information on 678,013 policies. 
The R function “summary” gives the five-number summary (and the mean) for any of the 11 variables of 
interest in the dataset. The response variable (number of claims) ranges from 0 to a maximum of 16, with an 
average of 0.05325 (and a 3rd quartile equal to 0). This means that 75% or more of the policies have no claim 
(number of claims is zero).  

ii- Visualization 
Visualization is used to look for possible patterns in the data, or possible relation between variables. Common 
visualization tools such as a histogram, bar graph (for categorical variable), boxplot, and scatterplot are used 
as initial tools. Figure 5.2-1 displays selected graphs for the variables in the study. 

 

Figure 5.2-1 
VISUALIZATION OUTPUT 

 

(a) Driver Age 

 

 

                A        B       C        D      E      F 

 

 

(b) Area code 
 

(c) Bonus-Malus 

 

(d) Driver Age 

 

(e) Vehicle Age 
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The histogram (a) and boxplot (d) show that a significant proportion of the policyholders are between 30 and 
60 years old. The Figures 5.2-1(b) shows that the areas in the study share a nearly uniform number of policies, 
except Area C that has a higher number of policies and Area F a significantly lower number of policies. Figures 
5.2-1(c) and (e) suggest that older drivers are getting lower bonus malus. Additional two-dimensional 
visualization tools such as contour plots can be used (see Noll, et al., 2018).  

Step 2: Model and Variables Selections 

Assume that the number of claims, say Y, follows a Poisson distribution (Charpentier, 2015; Frees, 2010): 

Y ~ Poisson (E, λ ), where E is the exposure to risk and λ is a function of the independent variables, say X 
(matrix). 

Alternatively, the claims could be modeled by a marked Poisson process (Nordberg, 2019). Also, as noted in 
Frees (2010), for a dataset with such a large number of zeros, a zero-inflated model or a hurdle model will 
provide better fitting results than a standard Poisson-based model (Yip and Yau, 2005; Boucher, et al., 2007). 
Finally, it’s worth mentioning that, in practice, one way (pure premium or frequency and severity) is used.  

When the number of claims is assumed Poisson distributed, the corresponding maximum log-likelihood 
expression leads to: Y = function [exp(Xβ+ log(E))]. The solution to such an algorithm is captured by the GLM. 
The corresponding generic code for the glm in R is: 

glm(formula = Y ~ X, family = poisson( ), data, offset = log (Exposure))                   ( 5.2-1)     

Based on preliminary observation, some independent variables may not be relevant in predicting the 
response. Such variables could be omitted. We consider the following two models:  

• Model 1: All independent variables are included. 

• Model 2: We use Model 1, but we disregard the independent variable(s): vehicle brand 

• [Optional Model 3: We use Model 1, but disregard the independent variables vehicle brand and 

Area] 

 
Step 3: Estimate of Model Parameters – Generalized Linear Model  

The results for Model 1 are displayed in Outputs 1 and 2. The estimated model parameters are provided. The 
results suggest that the vehicle brand is not significant in predicting the number of claims, when all other 
variables are included in the model. When the variable “vehicle brand” is disregarded, the results (output 3) 
suggest that the obtained model still performs slightly worse than Model 1.   

The Output 2 summarizes the ANOVA output by showing the in-sample loss by covariate. 

 
Output 1: Results for GLM Model 1 
> frequ1<-formula(learn$ClaimNb~learn$VehPower+learn$VehAgeGrp+ 
+                   
learn$DrivAgeGrp+learn$BonusMalus+learn$Density+learn$VehBrand + 
+                   learn$VehGas+ learn$Area+learn$Region+ 
offset(log(learn$Exposure))) 
> glm1<-glm(frequ1, data = learn, family = poisson()) 
> summary(glm1) 
 
Call: 
glm(formula = frequ1, family = poisson(), data = learn) 
Deviance Residuals:  
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    Min       1Q   Median       3Q      Max   
-2.5137  -0.3789  -0.2904  -0.1636  13.4098   
 
Coefficients: 
                          Estimate Std. Error z value Pr(>|z|)     
(Intercept)              -2.661e+00  6.614e-02 -40.227  < 2e-16 *** 
learn$VehPower            8.755e-03  2.907e-03   3.012  0.00260 **  
learn$VehAgeGrp[1,11)    -1.149e+00  1.716e-02 -66.974  < 2e-16 *** 
learn$VehAgeGrp[11,Inf]  -1.364e+00  2.070e-02 -65.875  < 2e-16 *** 
learn$DrivAgeGrp[21,26)  -3.513e-01  4.741e-02  -7.410 1.27e-13 *** 
learn$DrivAgeGrp[26,31)  -4.682e-01  4.645e-02 -10.080  < 2e-16 *** 
………………. 
learn$RegionR74           2.224e-01  6.942e-02   3.204  0.00136 **  
learn$RegionR82           1.129e-01  2.568e-02   4.396 1.10e-05 *** 
learn$RegionR83          -2.448e-01  7.817e-02  -3.132  0.00174 **  
……. .   
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for poisson family taken to be 1) 
    Null deviance: 201428  on 610211  degrees of freedom 
Residual deviance: 191581  on 610163  degrees of freedom 
AIC: 253851 
Number of Fisher Scoring iterations: 6 
 

Output 2: ANOVA for GLM Model 1       

> anova(glm1) 
Analysis of Deviance Table 
Model: poisson, link: log 
Response: learn$ClaimNb 
Terms added sequentially (first to last) 
 
                 Df Deviance Resid. Df Resid. Dev 
NULL                            610211     201428 
learn$VehPower    1      3.8    610210     201424 
learn$VehAgeGrp   2   4724.9    610208     196699 
learn$DrivAgeGrp  6    971.4    610202     195728 
learn$BonusMalus  1   3765.5    610201     191962 
learn$Density     1     35.6    610200     191926 
learn$VehBrand   10     36.5    610190     191890 
learn$VehGas      1     36.7    610189     191853 
learn$Area        5    107.5    610184     191746 
learn$Region     21    164.9    610163     191581 
 

The Output 2 summarizes the ANOVA output by showing the in-sample loss by covariate. 
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Output 2: Results for GLM Model 2 

> frequ3<-formula(learn$ClaimNb~learn$VehPower+learn$VehAgeGrp+ 
+                   learn$DrivAgeGrp+learn$BonusMalus+learn$Density+ 
+                   learn$VehGas+ learn$Area+learn$Region+ 
offset(log(learn$Exposure))) 
> glm3<-glm(frequ3, data = learn, family = poisson()) 
> summary(glm3) 
 
Call: 
glm(formula = frequ3, family = poisson(), data = learn) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.4835  -0.3791  -0.2896  -0.1634  13.3872   
 
Coefficients: 
                           Estimate Std. Error z value Pr(>|z|)     
(Intercept)              -2.618e+00  6.469e-02 -40.472  < 2e-16 *** 
learn$VehPower            1.071e-02  2.759e-03   3.882 0.000104 *** 
learn$VehAgeGrp[1,11)    -1.173e+00  1.654e-02 -70.936  < 2e-16 *** 
……….. 
learn$RegionR82           8.911e-02  2.528e-02   3.524 0.000425 *** 
learn$RegionR83          -2.436e-01  7.817e-02  -3.117 0.001828 **  
learn$RegionR91          -2.063e-02  3.455e-02  -0.597 0.550567     
learn$RegionR93          -1.126e-02  2.654e-02  -0.424 0.671277     
learn$RegionR94           1.467e-01  7.126e-02   2.058 0.039563 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
(Dispersion parameter for poisson family taken to be 1) 
    Null deviance: 201428  on 610211  degrees of freedom 
Residual deviance: 191628  on 610173  degrees of freedom 
AIC: 253878 
Number of Fisher Scoring iterations: 6 

 

Step 4: Assess Model Utility  

There are several available tools to assess a model utility, including, but not limited to, the analysis of 
residuals, the use of the Akaike Information Criterion, or the cross-validation. The size of the data makes the 
residual analysis quite challenging. Cross-validation is used in Noll, et al. (2018). 

For cross validation, the original data is randomly split into two parts, with one part (learn) used to estimate 
the model parameters and the other part (test) used to assess the model’s validity or predictive ability. After 
generating the two random sub-samples, we check the utility of Model 1. We obtain a value for in-sample 
loss of 191580.9 and out-of-sample loss of 22834.7. The difference is acceptable, especially because the 
averages over the number of rows for both sub-samples are close (about 0.33118 for the in-sample and 
0.32667 for the out-of-sample).  

The AIC for all three models could suggest that Model 1 has a higher utility, but since these models are 
nested, this measure of fit alone is insufficient to draw a conclusion. Typical alternative performance 
measures for regression problems include, but are not limited to (Frees, 2010; Mendenhall and Sincich, 
2012), the Root Mean Square Error (RMSE), the Mean Square Error (MSE), the Total MSE, and the Bayesian 
Information Criterion (BIC). 

Step 5: Alternative Model – Regression Tree 

Assume that the number of claims follows a Poisson distribution Regression as previously defined. A 
regression tree can also be used to estimate the λ- term of the Poisson parameter. We use the code-line 
provided in Noll, et al. (2018), but modify the quite restrictive minimum number of policies in a standardized 
binary split from 10,000 to 7000. We obtain the 12-leaves tree displayed in Figure 5.1-2. The R-comment 
“summary(tree)” provides additional information (not shown here) about the output. The graph shows no 
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split decision made based on the variables Area or Region. This illustrates that these variables are not very 
significant. Changing the cost-complexity parameter (cp) will affect the size of the resulting tree (as observed 
in Kopinsky, 2017). Cross-validation can be used to select the most effective model (Noll, et al., 2018). 

Figure 5.2-2 
REGRESSION TREE 

 

5.3 CASE STUDY 3: MORTALITY (LIFE INSURANCE) 
The Goal: The aim of this case study is to model and forecast human mortality. 

• Data Analytics Techniques (with R packages): predictive mortality modeling (StMoMo, 
demography), Generalized Nonlinear Models (gnm), time series forecast (forecast) 

• Optional packages in Python: survival analysis (Lifelines), life actuarial calculations (Pyliferisk) 

Note: In this example, we focus on data visualization tools. The selected data does not favor analytic tools 
such as a regression tree or random forest. These data analytic techniques were used to predict mortality by 
cancer type in Shang (2017) and Kopinski (2017).  

The Data: 

• Data: USA mortality data 
• Source of data: www.mortality.org 
• Data description: This dataset contains the year-specific death rates of the USA population from 

1933 to 2016. It is grouped by year, gender, and 5-year age group, with an open age interval for 
ages 110+ . 
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Step 1: Descriptive Statistics (and Visualization)  

Several plots (Figure 5.3-1, Figure 5.3-2, and Figure 5.3-3) of the mortality rates for selected age groups 
supports the common knowledge that the human life expectancy has increased, and the general level of 
mortality rate has decreased over the years in all countries, although the rate of decrease may differ by age 
group and by country/region. 

Figure 5.3-1 
US LIFE EXPECTANCY AT BIRTH (BOTH SEXES) 

 

Figure 5.3-2 
US MORTALITY RATES (BOTH SEXES) FOR SELECTED AGES 
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Figure 5.3-3 
THREE-DIMENSIONAL REPRESENTATION OF US MORTALITY RATES (BOTH SEXES) FOR SELECTED AGES 

 

Step 2: Generalized Age-Period-Cohort Model – and Parameters estimates 

We model USA mortality rates using the Lee-Carter (Lee and Carter, 1992), and its variants the Cairns-Blake-
Dowd (CBD) model introduced by Cairns, et al. (2006), the Age-Period-Cohort (APC) model of Currie (2006), 
and the Renshaw and Haberman (2006) model.  These four models are Generalized Age-Period-Cohort 
(GAPC) stochastic mortality models, because they have the following component:  a random term, a 
systematic component, a link function, and some parameter constraints.   

These GAPC models were estimated using the package StMoMo, with the following general function 
             “StMoMo(link, staticAgeFun, periodAgeFun, cohortAgeFun, constFun)”. Villegas, et al. (2018) 
provides details of the value of the parameters in this function for each of the four GAPC models mentioned.  

The Lee-Carter (Lee and Carter, 1992) model assumes the following expression for the log-central death rates 

txm , at age x  (for Nxxx ,...,1= ) in year t  ( 1 ..., ,1, 111 −++= Ttttt ):  

                         txtxxtxm ,, )ln( ξκβα ++=                                                                                 (5.3-1)     

The constraints 0=∑ tt κ  and 1=∑ xx β  insure a unique solution for Equation 5.3-1. 

• The parameter xα  in Equation 5.3-1 describes the average level of mortality at each age x.   

• The time parameter tκ in Equation 5.3-1, also referred to as mortality index, represents the general 

speed of mortality improvement at time t.  

• The component xβ  captures the sensitivity of the log-mortality to changes in the index tκ  at each 

age x, and indicates whether mortality rates decline rapidly or slowly over time in response to 

change in the index tκ .   

• The tx,ξ  component represents the deviation of the model from the observed log-central death 

rates 
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Figure 5.3-4 
ESTIMATE OF LEE-CARTER PARAMETERS 

 

(a) Lee-Carter age parameter alpha, US data  

 

(b) Lee-Carter age parameter beta, US data 

 

(c) Lee-Carter time parameter kappa, US 

Step 3: Residual Analysis 

Residual analysis is performed to assess the goodness of the fit of the estimates. Residuals are expected to 
have a mean close to zero, have a homoscedastic variance, and normally distrusted residuals. Another tool 
for comparing models’ efficiency is the AIC. Several figures (Figure 5.3-3 to Figure 5.3-5) display the results 
of the analysis of the residuals. 

Figure 5.3-5 
RESIDUALS (DATA – ESTIMATE) PLOT, US DATA, USING EXCEL 
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Figure 5.3-6 
ANALYSIS OF RESIDUALS, US DATA, USING R 

 

Step 4: Prediction 
Predicting mortality with the LC model is reduced to forecasting the index tκ  using time series. In general, an 

ARIMA (0,1,0) with drift, ttt c ξκκ ++= −1ˆˆ , is found suitable, though other ARIMA forms may provide better 

fit to some data (Wong-Fupuy and Haberman, 2004). 
 
We obtain the following predictions when using the Generalized Age-Period-Cohort (GAPC) stochastic 
mortality form in the StMoMo library. 
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Figure 5.3-7 
FORECASTED MORTALITY INDEX 

 

Figure 5.3-8 
ESTIMATED AND ACTUAL LOG-MORTALITY RATES 
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Section 6: Conclusion 
There has been tremendous change in data source, volume, availability, and form. Based on our review, we found 
that advanced data visualization techniques are available, and their use is expanding among actuaries. We gave a brief 
overview of several data analytic techniques. We found that enhanced data analytic technologies are rising, and their 
use is spreading in all areas of actuarial science. Open-source data analytic software can help actuarial practitioners 
and researchers efficiently take advantage of these new opportunities. 

  



   44 

 

 Copyright © 2019 Society of Actuaries 

References 
AAA, American Academy of Actuaries, 2018, Big Data and the Role of the Actuary. URL: 
https://www.actuary.org/sites/default/files/files/publications/BigDataAndTheRoleOfTheActuary.pdf 

Abiyev, R. H., and M., Menekay,  2007, Fuzzy portfolio selection using genetic algorithm, Soft Computing, 11:1157–
1163 

Adesina, O., R. Dare. and O. Famurewa. 2018. Using R for Actuarial Analysis in Valuation and Reserving. Annals of 
Computer Science Series. 16,  1: 142-148 

Ai, J., R. Lieberthal, S. Smith and R. Wojciechowski. 2018. Examining Predictive Modeling-Based Approaches to 
Characterizing Health Care Fraud. Society of Actuaries. URL: https://www.soa.org/resources/research-
reports/2018/healthcare-fraud/ 

Aminzadeh M. S., and M., Deng, 2019, Bayesian Predictive Modeling for Exponential-Pareto Composite Distribution, 
CAS Vol. 12 (1). 

Anderson, D., S. Feldblum, C. Modlin, D. Schirmacher, E. Schirmacher, and N. Thandi. 2007. A Practitioner’s Guide to 
Generalized Linear Models: A foundation for theory, interpretation and application. Towers Watson. 

Bakırcıoğlu, H., and T., Koçak, 2000. Survey of random neural network applications, European Journal of Operational 
Research, 126(2):319–330 

Barnett, G., and B. Zehnwirth, 2000. Best estimates for reserves. Proceedings of the Casualty Actuarial Society 87, 
167: 245-321. 

Bellina, R.; A., Ly, F., Taillieu, 2018, A European Insurance leader works with Milliman to process raw telematics data 
and detect driving behavior, Milliman White Paper, May 2018. 

Beswick, S., 2014, Smart cities in Europe: Enabling innovation, Osborne Clarke, London, Tech. rep., 
http://www.cleanenergypipeline.com/Resources/CE/ResearchReports/Smart%20cities%20in%20Europe.pdf 

Beswick, S., 2015, Smart cities in Europe: The future of urban mobility, Dec 2015 
https://d2ogi3mlgkkriw.cloudfront.net/Documents/2016/4/1_4afb91f6-fa3a-454f-9880-61bdecee0f97.pdf  

Boodhun, N., and M. Jayabalan. 2018. Risk Prediction in Life Insurance Industry Using Supervised Learning 
Algorithms. Complex & Intelligent Systems 4:145-154 

Booth, H., and L., Tickle, 2008, Mortality Modelling and Forecasting: A Review of Methods, Australian Actuarial 
Society, 3, I/II, p. 3-43 

Boucher, J-P., M., Denuit, M., Guillen, 2007, Risk classification for claim counts: A comparative analysis of various 
zero-inflated mixed Poisson and hurdle models, North American Actuarial Journal, 11 (4):110-131. 

Brockett, P. L. and X. Xia. 1995. Operations Research in Insurance: A Review. Transactions of Society of Actuaries 47. 

Brockett, P. L.;, L. L., Golden,  J., Jang, and C., Yang, 2003, Using Neural Networks to Predict Failure in the 
Marketplace, (in Shapiro, A. F. and Jain, L. C., 2003), Eds. Shapiro and Jain, World Scientific. 

https://www.actuary.org/sites/default/files/files/publications/BigDataAndTheRoleOfTheActuary.pdf
https://www.soa.org/resources/research-reports/2018/healthcare-fraud/
https://www.soa.org/resources/research-reports/2018/healthcare-fraud/
http://www.cleanenergypipeline.com/Resources/CE/ResearchReports/Smart%20cities%20in%20Europe.pdf
https://d2ogi3mlgkkriw.cloudfront.net/Documents/2016/4/1_4afb91f6-fa3a-454f-9880-61bdecee0f97.pdf


   45 

 

 Copyright © 2019 Society of Actuaries 

Brouhns, N., Denuit, M., Van Keilegom, I., 2005. Bootstrapping the Poisson log- bilinear model for mortality 
forecasting. Scandinavian Actuarial Journal 3, 212–224. 

Brown, R L., and Gottlieb L. R., 2007.  Introduction to Ratemaking and Loss Reserving for Property & Casualty 
Insurance. 

Cairns, A. J. G., Blake, D., Dowd, K., 2006. A two-factor model for stochastic mortality with parameter uncertainty: 
theory and calibration. Journal of Risk and Insurance 73 (4), 687-718. 
 
Campbell, M. P., 2017, The What of Data Visualization, Compact, 59 (Oct. 2017), SOA. 

Carrato, A., F. Concina, M. Gesmann, D. Murphy, M. V. Wüthrich and W. Zhang. 2018. Claims Reserving in R: 
ChainLadder-0.2.9 Package Vignette. URL: https://cran.r-
project.org/web/packages/ChainLadder/vignettes/ChainLadder.pdf  

Chalk, A., and McMurtrie, C., 2016, A Practical Introduction to Machine Learning Concepts for Actuaries, Casualty 
Actuarial Society E-Forum, Spring 2016. 

Charpentier, A. ,2015, Computational Actuarial Science with R. CRC Press. 

Congdon, P., 2003, Applied Bayesian Modelling, Wiley Series in Probability and Statistics. 

Cox, T and M. Cox, 2001, Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd edition. 
 
Currie, I. D., 2006. Smoothing and forecasting mortality rates with P-splines. URL 
http://www.macs.hw.ac.uk/~iain/research/talks/Mortality.pdf 
 
Denuit, M., X., S., Marechal, S. Pitrebois and J. Walhin, 2007, Actuarial Modelling of Claim Counts. 1st ed. West 
Sussex, England: Wiley. 

Deprez, P., P. Shevchenko and M. V. Wüthrich, 2017,  Machine Learning Techniques for Mortality Modeling.  SSRN 
Electronic Journal.  arXiv:1705.03396v1. 

de Jong and Heller, 2008, Generalized Linear Models for Insurance data, International Series on Actuarial Science, 
Cambridge University Press, Cambridge, 2008. 

Dhaene, J., A., Tsanakas, Valdez, E.A., and S. Vanduffel (2012). “Optimal capital allocation principles”. Journal of Risk 
and Insurance, 79(1), 1-28. 

Dhar, V., 2013, Data Science and Prediction, ACM, Vol. 56:12 

Diana, A., J. Griffin, J. Oberi, and J. Yao. 2019. Machine-Learning Methods for Insurance Applications. Society of 
Actuaries. URL : https://www.soa.org/resources/research-reports/2019/machine-learning-methods/ 

Duncan, I. 2011. Healthcare risk adjustment and Predictive Modeling, Actex. 

Dutang, C., V. Goulet and M. Pigeon. 2008. actuar: An R Package for Actuarial Science, Journal of Statistical Software 
25, Issue 7: 1-37. 

EMC, 2015, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, EMC 
Education Services, Wiley. 

https://cran.r-project.org/web/packages/ChainLadder/vignettes/ChainLadder.pdf
https://cran.r-project.org/web/packages/ChainLadder/vignettes/ChainLadder.pdf
http://www.macs.hw.ac.uk/%7Eiain/research/talks/Mortality.pdf
https://www.soa.org/resources/research-reports/2019/machine-learning-methods/


   46 

 

 Copyright © 2019 Society of Actuaries 

Ewald, M. and Q. Wang. 2015. Predictive modeling: A modeler’s introspection, SOA, Committee on Finance 

Ferrario, A., A. Noll and M. V. Wüthrich. 2018. Insights from Inside Neural Networks, URL : 
https://ssrn.com/abstract=3226852.  

Francis, L. A., 2003a, An Introduction to Neural Networks in Insurance, (in Shapiro, A. F. and Jain, L. C., 2003), Eds. 
Shapiro and Jain, World Scientific. 

Francis, L. A., 2003b, Practical Application of Neural Networks in Property and Casualty Insurance, (in Shapiro, A. F. 
and Jain, L. C., 2003), Eds. Shapiro and Jain, World Scientific. 

Frees, J., 2010, Data for Regression Modeling with Actuarial and Financial Applications.  Medical Care Triangle Data.  
Data available at: 
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html. 

Frees, J., G. Lee and L. Yang, 2016, Multivariate Frequency-Severity Regression Models in Insurance.  Risks 2016, 4, 
4; doi:10.3390/risks4010004. 

Frees, J., G. Meyers and A. D. Cummings, 2012, Predictive Modeling of Multi-Peril Homeowners Insurance, CAS. 

Frees, E. W., Meyers, G., Derrig, R. A., 2016, Predictive Modeling Applications in Actuarial Science, Volume 2. Case 
Studies in Insurance, 2016, Edited by Edward W. Frees , Glenn Meyers , Richard A. Derrig,  Cambridge University 
Press  https://instruction.bus.wisc.edu/jfrees/jfreesbooks/PredictiveModelingVol1/index.htm 

Frees E. W., and Valdez, E. A., 1998, Understanding Relationships Using Copulas, North American Actuarial Journal, 
Vol2, Number 1 

Friedman, J., T. Hastie, and R. Tibshirani, 2010, Regularization paths for generalized linear models via coordinate 
descent. Journal of Statistical Software, 33(1):1. 

Gabrielli, A., R. Richman and M. V. Wüthrich. 2018. Neural Network Embedding of the Over-Dispersed Poisson 
Reserving Model. URL: https://ssrn.com/abstract=3288454.  

Gan, G., and Valdez, E. A., 2017, Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic 
datasets, Depend. Model., 5:354–374, De Gruyter. 

Gandomi, A., and Haider, M., 2015, Beyond the hype: Big data concepts, methods, and analytics. International 
Journal of Information Management, 35(2), 137 –144. 

Gao, G., S. Meng and M. V. Wüthrich, 2018, Claims Frequency Modeling Using Telematics Car Driving Data. URL : 
https://ssrn.com/abstract=3102371  

Gao, G. and M. V. Wüthrich, 2017, Feature Extraction from Telematics Car Driving Heatmaps. URL: 
https://ssrn.com/abstract=3070069. 

Gao, G. and M. V. Wüthrich, 2018, Convolutional Neural Network Classification of Telematics Car Driving Data. URL : 
https://ssrn.com/abstract=3269283.  

Gelman, A., Carlin, J., Stern, H., Rubin, D., 1995, Bayesian Data Analysis. Chapman & Hall, London. 

https://ssrn.com/abstract=3226852
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
https://instruction.bus.wisc.edu/jfrees/jfreesbooks/PredictiveModelingVol1/index.htm
https://ssrn.com/abstract=3288454
https://ssrn.com/abstract=3102371
https://ssrn.com/abstract=3070069
https://ssrn.com/abstract=3269283


   47 

 

 Copyright © 2019 Society of Actuaries 

 
Gelman, A., D., Rubin, 1992. Inference from iterative simulation. Statistical Science 7, 457–472. 
 
Geman, S., D., Geman, 1984. Stochastic relaxation, Gibbs distributions and Bayesian restoration of images. IEEE 
Transactions on Pattern Analysis Machine Intelligence 6, 721–741 
 
Geron, A., 2017, Hands-on Machine Learning with Scikit-Learn and TensorFlow. O’Reilly Media. 
 
Gesmann M., D. Murphy, Y. Zhang, A. Carrato, M. V. Wüthrich, F. Concina and E. Dal Moro. 2018. ChainLadder: 
Statistical Methods and Models for Claims Reserving in General Insurance. R package version 0.2.9. URL: 
https://CRAN.R-project.org/package=ChainLadder. 
 
Gesmann M, Y., Zhang, 2011, ChainLadder: Mack, Bootstrap, Munich and MultivariateChain-Ladder Methods. R 
package version 0.1.4-3.4, URL http://CRAN.R-project.org/package=ChainLadder.  
 
Ghodsi, A., 2006, Dimensionality Reduction A Short Tutorial, Department of Statistics and Actuarial Science 
University of Waterloo, Canada. 
 
Goldberg, D. E. 1989, Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley 

Goldbund, M., K. Anand, and D. Tevet, 2016. Generalized Linear Models for Insurance Rating, Casualty 
Actuarial Society Monograph Series Number 5. 
 
Gross C., and J., Evans, 2019, Minimum Bias, Generalized Linear Models, and Credibility in the Context of Predictive 
Modeling, CAS Vol. 12 (1) 

Guo, L., 2003, Applying Data Mining Techniques in Property/Casualty Insurance, CAS. 
 
Hainaut, D., 2018,  A neural network analyzer for mortality forecast.  ASTIN Bulletin.  URL: 
https://doi.org/10.1017/asb.2017.45.  

Harej, B., R. Gächter and S. Jamal. 2017.  Individual Claim Development with Machine Learning.  ASTIN. 

Hartman, B., R. Owen and Z. Gibbs. 2018. Predicting the High-Cost Members in the HCCI Database. Society of 
Actuaries. 

Hastie, T., R. Tibshirani and J. Friedman. 2009. The Elements of Statistical Learning, Data Mining, Inference, and 
Prediction. Springer Series in Statistics. New York: Springer. 

Haykin, S. and N., Network, 2004. Neural Networks: A comprehensive foundation. Neural Networks, 2.  

Heaton, J. 2013. Diagnosing Breast Tumor Malignancy with a Genetic Algorithm and RBF Network, Forecasting and 
Futurism, December 2013. 

Hegstrom, J., 2016, Effective Communication of Stochastic Model Results, Data Visualization 2016 Call for Essays, 
Society of Actuaries. 

Holland, J., 1975, Adaptation in Natural and Artificial Systems, University of Michigan Press 

https://cran.r-project.org/package=ChainLadder
http://cran.r-project.org/package=ChainLadder
https://doi.org/10.1017/asb.2017.45


   48 

 

 Copyright © 2019 Society of Actuaries 

Hoogerheide L., and H. K., van Dijk, 2010, Bayesian forecasting of Value at Risk and Expected Shortfall using adaptive 
importance sampling, International Journal of Forecasting 26 (2010) 231–247 

Houng, J. E. L., 2016, A Time-Dependent Interactive Visualization on IFRS 4 Phase II General Approach, Data 
Visualization 2016 Call for Essays, Society of Actuaries. 

Hyndman R. J., Y. Khandakar. 2008. “Automatic Time Series Forecasting: The forecast Package for R.” Journal of 
Statistical Software, 27(3), 1–22. URL: http://www.jstatsoft.org/v27/i03/ . 

Hyndman, R., H. Booth, L. Tickle and J. Maindonald. 2011. demography: Forecasting Mortality, Fertility, Migration 
and Population Data. R package version 1.09-1, URL: http://CRAN.R-project.org/package=demography . 

Jackson, A., 1997, Genetic algorithms for use in financial problems, AFIR 2: 481-503. 

James, G., D. Witten, T. Hastie and R. Tibshirani. 2013. An Introduction to Statistical Learning with Applications in R. 
New York, Springer. 

Jolliffe, I, 1986, Principal Component Analysis. Springer-Verlag, New York. 

Kankanhalli, A., J., Hahn, S. , Tan, G., Gao, 2016. Big data and analytics in healthcare: introduction to the special 
section. Inf. Syst. Front. 18, 233–235. 

Kareem, S., R. B. Ahmad and A. B. Sarlan. 2017. Framework for the Identification of Fraudulent Health Insurance 
Claims Using Association Rule Mining. 2017 IEEE Conference on Big Data and Analytics (ICBDA). 

Kopinsky, M., 2017, Predicting Group Long Term Disability Recovery and Mortality Rates Using Tree Models, SOA. 
https://www.soa.org/globalassets/assets/Files/Research/Projects/2017-gltd-recovery-mortality-tree.pdf 

Koissi, M.-C., A.F., Shapiro, G., Hognas, 2006. Evaluating and extending the Lee–Carter model for mortality 
forecasting: Bootstrap confidence interval. Insurance: Mathematics and Economics 38, 1–20 

Kunce, J., and S., Chatterjee, 2017, A Machine-Learning Approach to Parameter Estimation, Casualty Actuarial 
Society Monograph Series 6, CAS. 

Kuhn, M., 2008, Caret Package, Journal of Statistical Software, 28 (5): 1-26. 

Lee, R. D., and L. R., Carter, 1992. Modeling and forecasting U.S. mortality, Journal of the American Statistical 
Association 87 (419): 659–71 

Lee, B. and M., Kim, 1999, Applications of genetics algorithm to automobile insurance for selection of classification 
variables: the case of Korea, Paper presented at the 1999 Annual Meeting of the American Risk and Insurance 
Association. 

Li, L., Bagheri, S., Goote, H., Hasan, A., Hazard, G., 2013, Risk Adjustment of Patient Expenditures: A Big Data 
Analytics Approach, IEEE International Conference on Big Data, 12-14. 

Llaguno, L., M. Bardis, R. Chin, T. Gwilliam, J. Hagerstrand and E. Petzoldt. 2017. Reserving with Machine Learning: 
Applications for Loyalty Programs and Individual Insurance Claims. Casualty Actuarial Society. 

LLMA, 2010, Longevity Pricing Framework, A framework for pricing longevity exposures developed by the Life & 
Longevity Markets Association (LLMA), www.llma.org 

http://www.jstatsoft.org/v27/i03/
http://cran.r-project.org/package=demography
https://www.soa.org/globalassets/assets/Files/Research/Projects/2017-gltd-recovery-mortality-tree.pdf


   49 

 

 Copyright © 2019 Society of Actuaries 

Lumley T., 2008, survival: Survival Analysis, Including Penalised Likelihood. R package, version 2.34, URL 
http://CRAN.R-project.org/package=survival. 

Mack, T., 1993, Distribution-free calculation of the standard error of chain ladder reserve estimates. ASTIN Bulletin, 
23:213 – 225. 

Maitra, S. and J. Yan. 2008. Principle Component Analysis and Partial Least Squares: Two Dimension Reduction 
Techniques for Regression. Casualty Actuarial Society, 2008 Discussion Paper Program. 

McCulloch, C., 2006, Generalized Linear Mixed Models, Encyclopedia of Envirometrics. 

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. Monographs on Statistics and Applied 
Probability 37. Boca Raton, FL: Chapman & Hall/CRC. 

Mendes, J. A., S. de Valeriola, S. Mahy and X. Marechal. 2017. Machine learning applications to non-life pricing. 
Reacfin white paper. 

Mendenhall, Wi, and T., Sincich, 2012, A Second Course in Statistics:  Regression Analysis, 7th Ed.; Pearson Education.  

Metropolis, N., A.W., Rosenbluth, M.N., Rosenbluth, H., Teller, E., Teller, 1953, Equations of state calculations by fast 
computing machines. Journal of Chemical Physics 21 (6), 1087–1092 

Nelder, J., and R., Wedderburn, 1972, Journal of the Royal Statistical Society. Series A 135, 3, 370-384 

Ngai, E., Y. Hu, Y. Wong, Y. Chen, and X. Sun, 2011, “The application of data mining techniques in financial fraud 
detection: A classification framework and an academic review of literature,” Decision Support Systems, vol. 50, no. 
3, pp. 559–569, 2011. 

Norberg, R., 1999, Prediction of outstanding liabilities. Astin Bulletin 29(1), 5–27 

Noll A., R. Salzmann and M. V. Wüthrich. 2018. Case study: French Motor Third-Party Liability Claims. Swiss 
Association of Actuaries. URL : https://ssrn.com/abstract=3164764  

Nikolopoulos, C., and S., Duvendack, 1994, A hybrid machine learning system and its application to insurance 
underwriting, proceedings of the IEEE conference on Evolutionary Computation 2, 27-29 June, pp. 692-695. 

Panjer, H. H. 1981. Recursive Evaluation of a Family of Compound Distributions. Astin Bulletin, 12, 22–26. 

Pinheiro J, D., Bates, S., DebRoy, D., Sarkar, the R Development Core Team, 2007,. nlme: Linear and Nonlinear Mixed 
Effects Models. R package version 3.1-86, URL http://CRAN.R-project.org/package=nlme  

Puiu, D., Barnaghi, P., Tonjes, R., Kumper, D., et al., 2016, CityPulse: Large Scale Data Analytics Framework for Smart 
Cities, IEEE Access, Vol 4, 2016. 

Purushotham, M., 2016, Cluster Analysis. The Actuary Magazine, June/July 2016. 

Raguseo, E., 2018, Big data technologies: An empirical investigation on their adoption, benefits and risks for 
companies, International Journal of Information Management, 38 (2018) 187–195. 

https://ssrn.com/abstract=3164764
http://cran.r-project.org/package=nlme


   50 

 

 Copyright © 2019 Society of Actuaries 

Raghupathi, W. and V. Raghupathi, 2014, Big data analytics in healthcare: promise and potential, Health Information 
Science and Systems, 2:3 URL: http://www.hissjournal.com/content/2/1/3 . 

Renshaw, A., S., Haberman, 2006, A cohort-based extension to the Lee-Carter model for mortality reduction factors. 
Insurance: Mathematics and Economics 38 (3), 556{570. 
 
Robert, C.P., G., Casella, 1999. Monte Carlo Statistical Methods. Springer texts in statistics. 

Schelldorfer, J. and M. V. Wüthrich. 2019. Nesting Classical Actuarial Models into Neural Networks, Fachgruppe 
“Data Science”, Swiss Association of Actuaries SAV.  URL: https://ssrn.com/abstract=3320525  

Schirmacher, E., 2016, Pure Premium Modeling Using Generalized Linear Models, in Frees, et al. ,2016; Cambridge 
University Press. 

Shang, K., 2016, Visualization of Social Network Data, Data Visualization 2016 Call for Essays, Society of Actuaries. 

Shang, K., and L., Jiang, 2016, Multiple objective asset allocation for retirees using simulation, Society of Actuaries 
Pension Sections News. 

Shang, K., 2017, Individual Cancer Mortality Prediction, Insurance and Social Protection Area, C/222, Madrid, Spain, 
www.fundacionmapfre.org 

Shapiro, A. F. 2000. A Hitchhiker’s Guide to the Techniques of Adaptive Nonlinear Models. Insurance: Mathematics 
and Economics 26, nos. 2–3: 119–132. 

Shapiro, A. F., 2003, Insurance Applications of Neural Network, Fuzzy Logic, and Genetic Algorithms, (in Shapiro, A. 
F. and Jain, L. C., 2003), Eds. Shapiro and Jain, World Scientific. 

Shapiro, A.F., 2004. Fuzzy logic in insurance. Insurance Mathematics Economics 35, 399–424. 

Shapiro, A. F. and L.C., Jain, 2003, Intelligent and Other Computational Techniques in Insurance: Theory and 
Applications, Eds. Shapiro and Jain, World Scientific. 

Shapiro, A. F., and M.-C., Koissi, 2017, Fuzzy Logic modifications of the Analytic Hierarchy Process, Insurance: 
Mathematics and Economics, 75, 189 – 202. 

Shmueli, G., 2010, To explain or to predict? Statistical Science, 25(3),289-310. 

Silverman, S., and P., Simpson, 2011, Case study: Modelling Longevity Risk for Solvency II, Milliman Research Report, 
Oct. 2011. 

Snell, D., 2012, Genetic Algorithms – Useful, Fun, and Easy! Forecasting and Futurism, December 2012. 

Snell, D., 2018, Hierarchical Clustering: A Recommendation from a Nonhierarchical Manager, Predictive Analytics 
and Futurism, April 2018. 

SOA, 2012, Task Force, Actuaries in Advanced Business Analytics, URL: 
https://www.soa.org/globalassets/assets/Files/Soa/act-adv-bus-analytics-paper.pdf  

http://www.hissjournal.com/content/2/1/3
https://ssrn.com/abstract=3320525
https://www.soa.org/globalassets/assets/Files/Soa/act-adv-bus-analytics-paper.pdf


   51 

 

 Copyright © 2019 Society of Actuaries 

SOA, 2016, Data Visualization, Call for Essays, URL: https://www.soa.org/globalassets/assets/files/resources/essays-
monographs/2016-data-visualization-essays.pdf 

Sondergeld, E. T. and M. C. Purushotham, 2019, Top Actuarial Technologies of 2019, SOA. URL: 
https://www.soa.org/globalassets/assets/Files/resources/research-report/2019/actuarial-innovation-technology.pdf 

Spedicato, G., A., 2013, The lifecontingencies Package: Performing Financial and Actuarial Mathematics Calculations 
in R, Journal of Statistical Software 55, issue 10: 1-36. 

Spedicato, G., C. Dutang and L. Petrini, 2018, Machine Learning Methods to Perform Pricing Optimization. A 
Comparison with Standard GLMs. Variance 12, Issue 1:69-89. 

Stubben, C. and B. Milligan, 2007, Estimating and Analyzing Demographic Models Using the popbio Package in R, 
Journal of Statistical Software 22, Issue 11. 

Subudhi, S., and S., Panigrahi, 2018, Effect of Class Imbalanceness in Detecting Automobile Insurance Fraud, 2nd 
International Conference on Data Science and Business Analytics, 2018 IEEE 

Schreck, T., T., von Landesberger, and S., Bremm, 2010, Techniques for precision-based visual analysis of projected 
data, Information Visualization Vol. 9, 3, 181 – 193,  

Tan, R., 1997, Seeking the profitability-risk-competitiveness frontier using genetic algorithm, Journal of Actuarial 
Practice 5(1): 49-77 

Tevet, D., 2016, Applying Generalized Linear Models to Insurance Data, in Frees, et al. (2016),pp. 39 -59 

Thomas, 1996, Evolutionary algorithms in Theory and Practice: Evolutionary Strategies, Evolutionary Programming, 
Genetic Algorithms, Oxford University Press. 

Toyoda, S., and N., Niki, 2015, Visualization-based Medical Expenditure Analysis Support System,  

Titus, Y., 2017, Leveraging the public Cloud to Run Actuarial risk modeling software, Compact, 59 (Oct. 2017), SOA. 

Timotheou, S., 2010, The random neural network: a survey. The Computer Journal, 53(3):251–267 

Villegas, A., P. Millossovich and V. Kaishev, 2018, StMoMo: An R Package for Stochastic Mortality Modeling, Journal 
of Statistical Software 84, Issue 3. 

Vonk, E, L. C. Jain, and R. P Johnson, 1997, Automatic Generation of Neural Network Architecture using Evolutionary, 
Computation, Word Scientific. 

Wedel, M., and P. K., Kannan, 2016, Marketing Analytics for Data-Rich Environments, Journal of Marketing, AMA/ 
MSI Special Issue, November 2016, http://dx.doi.org/10.1509/jm.15.0413  

Wadsley, B., 2011, Are Genetic Algorithms Even Applicable to Actuaries? Forecasting and Futurism. 

Wang Y., L., Kung, T. A., Byrd, 2018, Big data analytics: Understanding its capabilities and potential bene fits for 
healthcare organizations, Technological Forecasting & Social Change 126, 3 –13 

Weidner, W., F. W. G., Transchel, R., Weidner, 2016, Telematic driving profile classification in car insurance pricing, 
Annals of Actuarial Science, Vol 11, part 2, pp. 213-236. Institute and Faculty of Actuaries. 

https://www.soa.org/globalassets/assets/files/resources/essays-monographs/2016-data-visualization-essays.pdf
https://www.soa.org/globalassets/assets/files/resources/essays-monographs/2016-data-visualization-essays.pdf
https://www.soa.org/globalassets/assets/Files/resources/research-report/2019/actuarial-innovation-technology.pdf
http://dx.doi.org/10.1509/jm.15.0413


   52 

 

 Copyright © 2019 Society of Actuaries 

Wendt, R. Q., 1995, Build your own GA efficient frontier, Risks and Rewards, 1:4-5 

Wong-Fupuy C., and S., Haberman, 2004, “Projecting Mortality Trends: Recent Developments in the United Kingdom 
and the United States,” North American Actuarial Journal, Vol. 8 (2) 56-83. 

Wuertz D., 2007, Rmetrics: Financial Engineering and Computational Finance. R package version 260.72, URL 
http://CRAN.R-project.org/package=Rmetrics. 

Wüthrich, M., and C. Buser, 2019, Data Analytics for Non-Life Insurance Pricing. URL: 
https://ssrn.com/abstract=2870308 

Wüthrich, M., 2016, Covariate Selection from Telematics Car Driving Data.  URL: http://ssrn.com/abstract=2887357 
or http://dx.doi.org/10.2139/ssrn.2887357. 

Wüthrich, M., 2017, “Covariate selection from telematics car driving data”, European Actuarial Journal 7(1):89–108 

Wüthrich, M., 2018, Neural Networks Applied to Chain-Ladder Reserving, https://ssrn.com/abstract=2966126  

Yan J., 2007, “Enjoy the Joy of Copulas: With a Package copula.” Journal of Statistical Software, 21(4), 1–21. URL 
http://www.jstatsoft.org/v21/i04/. 

Yao, J. 2008. Clustering in Ratemaking: Applications in Territories Clustering. Casualty Actuarial Society, 2008 
Discussion Paper Program. 

Yao, J. 2016. Clustering in General Insurance Pricing, in Frees, et al. (2016), pp. 159-179. 

Yip, K. C. H., and K. W., Yau, 2005, On modeling claim frequency data in general insurance with extra zeros, 
Insurance Mathematics and Economics 36(2) 153-163. 

Xia, M, L., Hua and G., Vadnais, 2019, Embedded Predictive Analysis of Misrepresentation Risk in GLM Ratemaking 
Models, CAS Vol. 12(1) 

Xia, M., 2018, Bayesian Adjustment for Insurance Misrepresentation in Heavy-Tailed Loss Regression, Risks 2018: 6, 
83 

Zadeh, L. A., 1992, Foreword of the Proceedings of the Second International Conference on Fuzzy Logic and Neural 
Networks, Lizuka, Japan. 

Zhang J., and T., Miljkovic, 2019, Ratemaking for a New Territory: Enhancing GLM Pricing Model with a Bayesian 
Analysis, Casualty Actuarial Society E-Forum, Spring 2018-Volume 2. 

Zhang, X., 2014, Nonlinear dimensionality reduction of data by deep distributed random samplings. In 2014 
Proceedings of the Sixth Asian Conference on Machine Learning. 

Zhu, X., 2005, Semi-Supervised Learning Literature Survey, Technical Report, University of Madison, WI. 

  

http://cran.r-project.org/package=Rmetrics
https://ssrn.com/abstract=2870308
http://ssrn.com/abstract=2887357
http://dx.doi.org/10.2139/ssrn.2887357
https://ssrn.com/abstract=2966126


   53 

 

 Copyright © 2019 Society of Actuaries 

Appendices 

A. Appendix A: R-Code for Case Study 1 
#Full code for Medical Care triangle with Mack’s method: 

###################################################################### 
# Getting the dataset “MediCare.csv”  
################################################################## 
# Using the following link  
#https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html 
# Download the dataset “MediCare.csv” and save the csv file in your working directory 
################################################################## 
library(tidyverse) 
library(ChainLadder)     #Note: These packages need to be installed in R before the library command 
 
###################################################################### 
# Load the dataset from MS Excel and format for triangle 
###################################################################### 
cs1 <- read.csv(file="h:……//MedicalCare.csv", header=TRUE) 
#Note: replace h:…… with the actual location of the file “MediCare.csv” in your computer 
cs1_tbl <- aggregate(Payments ~ Month + Delay, data=cs1, sum) %>% spread(key = "Delay", value = "Payments") 
cs1_tbl2 <- cs1_tbl[24:nrow(cs1_tbl),] 
rownames(cs1_tbl2) <- cs1_tbl2[,1] 
cs1_tbl2 <- cs1_tbl2[,-1] 
 
###################################################################### 
# Convert incremental triangle to a cumulative payment triangle with incr2cum 
###################################################################### 
cs1_tri <- as.triangle(as.matrix(cs1_tbl2),origin="origin", dev="dev", value="value")  
cs1_tri_cum <- incr2cum(cs1_tri) 
###################################################################### 
# Create Figure 5.1-2 
###################################################################### 
plot(cs1_tri_cum, lattice=FALSE, ylab="Cumulative Payments") # Switch to lattice=TRUE for Figure 5.1-3 
###################################################################### 
# Calculate age-to-age development factors; use "smpl" in place of "vwtd" for factors based on arithmetic avg 
###################################################################### 
g <- attr(ata(cs1_tri_cum), "vwtd") 
g <- c(g, 1) 
full_cs1 <- cbind(cs1_tri_cum, Ult = rep(0,13)) 
###################################################################### 
# Calculate cumulative payments by development month 
###################################################################### 
n <- nrow(full_cs1) 
for(k in 1:n){ 
  full_cs1[(n-k+1):n, k+1] <- full_cs1[(n-k+1):n,k]*g[k]} 
 
###################################################################### 

https://instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/BookWebDec2010/data.html
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# Calculate total reserve as ultimate paid claims - claims paid to-date 
###################################################################### 
sum(full_cs1[,14]-getLatestCumulative(cs1_tri_cum)) 
 
###################################################################### 
# Generate reserve summary by incurral month 
###################################################################### 
Pd_to_Dt <- getLatestCumulative(cs1_tri_cum) 
 
linkratios <- c(attr(ata(cs1_tri_cum), "vwtd"), tail = 1.000) 
round(linkratios, 3) 
LDF <- rev(cumprod(rev(linkratios))) 
names(LDF) <- colnames(cs1_tbl2) 
round(LDF, 3) 
 
EstUlt <- Pd_to_Dt * rev(LDF) 
 
Reserve <- EstUlt - Pd_to_Dt 
 
exhibit <- data.frame(Pd_to_Dt, LDF = round(rev(LDF), 3), EstUlt, Reserve) 
exhibit <- rbind(exhibit, data.frame(Pd_to_Dt=sum(Pd_to_Dt), LDF=NA, EstUlt=sum(EstUlt), Reserve=sum(Reserve), 
row.names = "Total")) 
exhibit 
 
###################################################################### 
# Apply Mack ChainLadder method to MedicalCare dataset and generate Figure 5.1-4 
###################################################################### 
mack1 <- MackChainLadder(cs1_tri_cum, est.sigma="Mack") 
plot(mack1, lattice=FALSE) #Switch to lattice=TRUE for Figure 5.1-5 
mack1 

B. Appendix B: R-Code for Case Study 2 
Case study 2: Full code 
#CASE STUDIES 2 Claims Frequency in Motor Insurance 
#Data and technique used in Noll, et al. (2018)  
#Actuarial Data Science - An initiative of the Swiss Association of Actuaries 
#https://www.actuarialdatascience.org/ADS-Tutorials/ 
################################################# 
# The data is in the package “CASdatasets” with several other datasets 
# The reader can install the package CASdatasets (option 1) 
# or download the zip-file "CASdatasets_1.0-9.zip" outside R, and select the data needed (option 2) 
##################################### 
 
rm(list = ls())  #to clear memory from previously stored info 
 
##################################### 
#Loading the dataset  
#run option 1 OR option 2 
######### 
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#Option1 
install.packages("CASdatasets",repos="http://dutangc.free.fr/pub/RRepos/", type="source") 
library(CASdatasets) 
data(freMTPL2freq) 
 
######## 
#Option2 
#Open your internet browser at the following page  
#http://dutangc.free.fr/pub/RRepos/web/CASdatasets-index.html 
#Go under "Downloads" and choose the appropriate option, for example "Windows binaries: r-release: 
CASdatasets_1.0-9.zip" 
#Unzip the downloaded file "CASdatasets_1.0-9.zip"  
#in the folder "data" there are several datasets. 
#select "freMTPL2freq.rda", copy and paste the file in your R working directory 
load("freMTPL2freq.rda") 
 
############## 
#Once the data is ready in R (using option 1 or option 2) 
attach(freMTPL2freq)  #to link column name to content 
 
#Descriptive Statistics 
################ 
summary(freMTPL2freq) 
summary(ClaimNb) 
hist(ClaimNb) 
#use hist(name of variable) to get selected histogram 
hist(Density) 
#scatterplot3d, non interactive 
#scatter3d, interactive 
#rgl, interactive 
########################################### 
#MODELING 
################################ 
#Setting for GLM  
#Split Vehicle age and driver age into categories 
freMTPL2freq["VehAgeGrp"]<-cut(freMTPL2freq$VehAge, c(0,1,11,Inf), 
                               include.lowest = TRUE, right = FALSE) 
 
freMTPL2freq["DrivAgeGrp"]<-cut(freMTPL2freq$DrivAge,  
                                c(18,21,26,31,41,51,71, 100), 
                               include.lowest = TRUE, right = FALSE) 
##### 
#Setting for Model Utility: Choosing learning and test sample 
#code line from Noll, et al. (2018) 
################ 
set.seed(100)  #random number generator 
#sample selection 
ll<-sample (c (1: nrow ( freMTPL2freq )), round (0.9* nrow ( freMTPL2freq )), replace = FALSE ) 
learn <- freMTPL2freq [ll ,] 
test <- freMTPL2freq [-ll ,] 
############## 
#MODEL 1: GLM-Poisson regression 
frequ1<-formula(learn$ClaimNb~learn$VehPower+learn$VehAgeGrp+ 
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                  learn$DrivAgeGrp+learn$BonusMalus+learn$Density+learn$VehBrand + 
                  learn$VehGas+ learn$Area+learn$Region+ offset(log(learn$Exposure))) 
glm1<-glm(frequ1, data = learn, family = poisson()) 
summary(glm1) 
############## 
#MODEL 2: GLM-Poisson regression 
# We disregard Area and Vehbrand 
frequ2<-formula(learn$ClaimNb~learn$VehPower+learn$VehAgeGrp+ 
                  learn$DrivAgeGrp+learn$BonusMalus+learn$Density+ 
                  learn$VehGas+ learn$Region+ offset(log(learn$Exposure))) 
glm2<-glm(frequ2, data = learn, family = poisson()) 
summary(glm2) 
############## 
#MODEL 3: GLM-Poisson regression 
#Disregard Vehbrand 
frequ3<-formula(learn$ClaimNb~learn$VehPower+learn$VehAgeGrp+ 
                  learn$DrivAgeGrp+learn$BonusMalus+learn$Density+ 
                  learn$VehGas+ learn$Area+learn$Region+ offset(log(learn$Exposure))) 
glm3<-glm(frequ3, data = learn, family = poisson()) 
summary(glm3) 
 
############################ 
#ASSESSING MODEL UTILITY 
################# 
#Cross-validation 
#Code adapted from Noll, et al. (2018) 
learn$fit <-fitted(glm1) 
test$fit <-predict(glm1, newdata = test, type = "response") 
inSampleLoss<- 2*(sum(learn$fit)- sum (learn$ClaimNb) 
                   + sum(log((learn$ClaimNb/learn$fit)^( learn$ClaimNb)))) 
inSampleLoss 
 
OutOfSampleLoss <-2*(sum(test$fit)- sum (test$ClaimNb) 
                     + sum(log((test$ClaimNb/test$fit)^( test$ClaimNb)))) 
OutOfSampleLoss 
 
######################### 
#MODEL: TREE estimates 
#Code line adapted from Noll, et al. (2018) 
library(rpart) 
library(rpart.plot) 
tree<-rpart(cbind(Exposure, ClaimNb)~VehPower+ 
               VehAgeGrp+ DrivAgeGrp + BonusMalus +  
               Density + VehBrand +VehGas, 
             data = learn, method = "poisson", 
            control = rpart.control(rval=1,  
                                    minbucket = 7000,  
                                    cp=0.0005)) 
rpart.plot(tree) 
summary(tree) 
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C. Appendix C: R-Code for Case Study 3 
Code for Case Study 3 

# Modeling Lee-Carter mortality in R; 
rm(list = ls()) 
#Packages needed 
library(forecast) 
library(demography) 
library(gnm)  #Generalized Nonlinear Models 
library(StMoMo)  #StMoMo requires  gnm package 
library(fanplot)  
library(ggplot2) 
 
#Lee-Carter constraints 
constLC <- function(ax, bx, kt, b0x, gc, wxt, ages) 
  { 
  c1 <- mean(kt[1, ], na.rm = TRUE) 
  c2 <- sum(bx[, 1], na.rm = TRUE) 
  list(ax<- ax+c1*bx[,1],  
       bx[,1]<- bx[,1]/c2,  
       kt[1,]<- c2*(kt[1,]-c1)) 
  } 
 
#Getting the data from Human Mortality Database "hmd" 
#library(demography) 
#add your username and password 
USdata <- hmd.mx(country="USA",username = "koissiml@uwec.edu", password = "….") 
 
#Part2: Use package StMoMo  
#Method of Maximum Likelihood estimator MLE 
#Define model 
LC <- StMoMo(link = "log", staticAgeFun = TRUE, 
             periodAgeFun = "NP", constFun = constLC) 
LC <- lc() 
 
Ext <- USdata$pop$male 
Dxt <- USdata$rate$male * Ext 
ages <- USdata$age   
years <- USdata$year 
 
#Ages for fitting 
ages.fit <- 0:110 
years.fit <- 1933:2010  #for example 
 
#Fitting 
#LC  
LCfit <- fit(LC, Dxt=Dxt, Ext=Ext, ages=ages, years=years, 
             ages.fit=ages.fit, years.fit=years.fit) 
 
plot(LCfit) 
 
#Matrix of fitted death rates 
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prod1<-as.data.frame(LCfit$bx %*% LCfit$kt) 
LCfitax<-as.data.frame(LCfit$ax) 
LCfitaxmatrix<-as.data.frame(replicate(78,LCfitax)) 
LCfitdeathrates<-LCfitaxmatrix+prod1 
 
#Comparing data and fitted rates 
#year 1940 
#dataset     
USdrates1940<-as.data.frame(USdeathratestot[1:111,8]) 
#fitted rates 
LCfitdeathrates1940<-as.data.frame(LCfitdeathrates[1:111,8]) 
 
#ages 
ages1940<- 0:110 
dim(ages1940) 
 
length(USdrates1940) 
length(LCfitdeathrates1940) 
length(ages1940) 
 
plot(USdeathratestot[1:111,8], type = "l", col="blue") 
plot(LCfitdeathrates[1:111,10],type = "o", lty=3,col="red") 
 
############################# 
#CBD 
CBD<-cbd(link = "log") 
 
CBDfit <- fit(CBD, Dxt=Dxt, Ext=Ext, ages=ages, years=years, 
              ages.fit=ages.fit, years.fit=years.fit) 
 
plot(CBDfit) 
 
#APC 
APC<-apc() 
APCfit<-fit(APC, Dxt=Dxt, Ext=Ext, ages=ages, years=years, 
            ages.fit=ages.fit, years.fit=years.fit) 
 
#M7 
M7<-m7(link = "log") 
M7fit<-fit(M7, Dxt=Dxt, Ext=Ext, ages=ages, years=years, 
            ages.fit=ages.fit, years.fit=years.fit) 
 
#Comparing models using AIC and BIC 
AIC(LCfit) 
BIC(LCfit) 
 
AIC(CBDfit) 
BIC(CBDfit) 
 
#Analysis of residuals 
LCres <- residuals(LCfit) 
#par(mfrow=c(1,1)) 
plot(LCres, type = "colourmap", main="LC residuals") 
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plot(LCres) 
 
#Forecasting 
#from 2011 to 2016 h=6 
#LC 
LCfor<-forecast(LCfit,h=50) 
plot(LCfor$fitted) 
 
#Forecast 
LCsim <- simulate(LCfit, nsim=1000,h=50) 
plot(LCfit$years, LCfit$kt[1,],type="l", xlim=c(1933,2060),ylim=c(-100,50))  
matlines(LCsim$kt.s$years, LCsim$kt.s$sim[1,1:50,1:50], type="l") 
 
#Fitted death rates 
mxt <- LCfit$Dxt/LCfit$Ext 
plot1<-plot(LCfit$years, mxt["65",],type = "l") 
plot2<-plot(LCfit$years, mxt["75",],type = "l") 
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