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Notes:

Version 1.2: Corrects an error in the limits of the equation for the a parameter estimator under

the Bühlmann-Straub model, in Section 3.4, and a typo in equation (4.12).

Version 1.3: Corrects an error in the variance of the combined T statistic in Section 3.2. I am

grateful to Howard Mahler for this correction.
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Preface

This note has been written to support students preparing for the Advanced Short Term Actuarial

Mathematics (ASTAM) exam of the Society of Actuaries.

My objective in writing this note is to present both deterministic and some stochastic methods

and models for estimating outstanding claims liabilities, in a form suitable for both classroom

teaching and self-study. The mathematics is intended to balance rigour and accessibility; the

idea is that understanding the mathematics provides a more solid foundation for understanding,

applying, and adapting the models, compared with simply presenting formulas or algorithms.

I owe a very large debt to Mario Wüthrich and Michael Merz, whose excellent text ‘Stochastic

Claims Reserving Methods in Insurance’ (Wüthrich and Merz, 2008) was a key resource for

Chapters 3, 4 and 5. I highly recommend this text to any readers interested in developing their

understanding of advanced techniques in outstanding claims estimation. Other sources worth

exploring include Hindley (2017), England and Verrall (2002), and Mack (1993). The R package

‘ChainLadder’ (Gesmann et al., 2022) is also invaluable, and is used extensively in Chapters 4

and 5.

I am very grateful to Carlos Araiza Iturria for his diligent and insightful comments on early

drafts, and to Barry Koklefsky, Scott Lennox, Stuart Klugman and Chris Groendyke for many

helpful suggestions.
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Chapter 1

Introduction

Outstanding Claims Reserves (OCR) represent the provision made by an insurer for losses that

have been incurred (that is, an insured loss event has occurred), but which have not yet been

settled. Typical reasons for the delay between the loss event and the settlement of the claim

include:

Delays in reporting The time between the occurrence and reporting of a loss event varies

significantly by the line of business, and by the type of loss. In auto insurance, loss events

are typically reported relatively quickly, although the severity of the loss may not be known

for some time. In medical malpractice insurance there may be a long delay between the

occurrence and reporting of a loss event, as the injury or loss may not be apparent for

some time.

Claims processing delays Once a loss is reported, the insurer must ascertain the details of

the event, assess the extent to which the loss is covered under the insurance, wait for

estimates of the severity of the loss, and investigate potential recovery from other parties

(subrogation) or from the residual value of insured property acquired by the insurer after

a claim is settled (salvage). There will be delays involved in waiting for quotes to repair or

replace property, and, typically, longer delays involved in assessing losses associated with

physical injury, as it may take some time for the long-term cost implications of an injury

to be apparent. Individual claims may be settled in a single lump sum, but for complex

claims involving injury there may be a series of interim payments before the claim is finally

settled and closed. Salvage and subrogation can result in negative incremental payments

for individual claims.

Legal proceedings Legal disputes typically involve disagreements about the appropriate

7



8 CHAPTER 1. INTRODUCTION

amount of indemnification for a loss, or disagreements about the allocation of blame

between different parties. Legal proceedings are typically long and expensive, and sig-

nificantly extend the period between the loss event and claim payment.

Short-tail insurance refers to lines for which losses are typically reported promptly, with the

longest claim delays no more than around five year from the loss event. Property damage in

auto or home insurance, and health insurance, are all short-tailed lines. For example, around

40% of claims for auto insurance are settled within the same calendar year as the loss event

itself. Long-tail insurance refers to insurance where, for a significant proportion of claims, it

may take well over five years to settle all the claims arising in a single year. Claims involving

injury and liability tend to be long term, because it is more complex to determine and agree

on the amount of loss for personal injury, and because there are more likely to be lengthy legal

disputes regarding liability. Long-tail business may involve delays in reporting losses, delays

in paying claims, or both. Medical malpractice is a prime example of long-tail business, with

only around 1% of ultimate losses settled within the same calendar year as the loss (Enz and

Holzheu, 2004).

The outstanding claims reserve may be subdivided into claims that are reported but not

(fully) settled (RBNS), and claims that have been incurred but not (yet) reported, called

IBNR or pure IBNR.1 Most of the methods that we consider in this note provide estimates of

the total outstanding claims, with IBNR implicitly included.

Separate to the outstanding claims reserve is the Unearned Premium Reserve (UPR). This

represents the provision made for future potential claims. As premiums are paid in advance, at

each year end the earned premium is the part relating to the period of insurance from the

premium payment date to the year end, and the unearned premium is the part relating to

future cover. The UPR is (typically) the sum of the unearned premium. Usually, premiums paid

annually are assigned to each relevant calendar year pro rata. For example, consider a premium

of 1,200 paid for 1-year of insurance cover on 1 November 2022. The period of cover in 2022 is 2

months, and in 2023 is 10 months. So the earned premium in 2022 would be 2/12×1, 200 = 200,

and the unearned premium reserve at 31 Dec 2022 would be 10/12× 1, 200 = 1, 000. this would

be added to the earned premium in 2023.

1The term IBNR is now often used (though not in this note) to refer to all outstanding claims.
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OCR Categories

Case-based estimation Under case-based estimation, each loss is individually reviewed and

an estimate made of the likely settlement amount. The estimate of outstanding claims

would be updated from time to time, as the insurer obtains new information. This method

is typically used for very large claims, and for lines of business where coverage and losses

tend to be very idiosyncratic, such as marine insurance. It requires skilled expertise, and

is inefficient for lines of business with large volumes of reasonably heterogeneous claims.

IBNR losses must be estimated separately under this approach.

Expected loss ratio The expected loss ratio method assumes an average cost of claims arising

from accidents occurring in each year, based on the earned premiums during the year.

For example, if the insurer expects the portfolio to experience a loss ratio (including

allocated loss adjustment expenses) of, say, 85%, then the expected cost of claims incurred

in year Y would be 0.85× Earned Premiums in Year Y . The claims outstanding at each

subsequent year end, in respect of loss events that occurred in year Y , would be the

expected total cost of claims incurred in year Y , minus the sum of the payments made

by the year end in respect of those events. This method is clearly very simplistic, and

has the significant disadvantage that the outstanding claims reserve will be negative if

the initial estimated loss ratio is exceeded. The earned premiums are used here as an

exposure measure, and other measures could be used, suitable to the underlying risk.

Using premiums is particularly problematic when premiums have been set too low, as the

solvency risk is intensified by having both premiums and outstanding claims reserves set

below the true expected values of the relevant liabilities.

Aggregate run-off triangle methods The run-off triangle, which is described in more detail

below, is a summary of the aggregate claims payment information for all recent loss events,

organised by the year that the losses occurred, and by the period between the loss event and

the claim payment dates. Run-off triangle methods use past claims settlement patterns to

project future payments for open claims. The most common run-off triangle methodology

in practice is the chain ladder, which is a central focus of this note.

Credibility methods Credibility approaches to outstanding claims reserve evaluation use a

weighted average of two estimates for outstanding claims; one estimate is derived from the

run-off triangle, and the other may be an exogenous estimate, for example, based on the

expected loss ratio.

Frequency-severity methods Frequency-severity methods model the number and severity of
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outstanding claims separately, generally starting from the run-off triangle data. Depending

on the approach and data, IBNR reserves may need to be separately evaluated.

Parametric models The insurer may model incremental or cumulative settled claims using a

parametric approach. Often, this is based on a generalized linear model.

In this note we focus on data-driven aggregate claims estimation approaches which use the run-

off triangle data to project future payments. These methods are most appropriate when the

volume of claims is high, claims are reasonably homogeneous, and where settlement patterns

are reasonably stable. The starting point for many of these methods is the deterministic chain

ladder algorithm. It has many advantages, being intuitive and easy to apply, but it is limited

by the fact that without a probabilistic framework, there is no measure of how volatile the

outstanding claims may be, or how much uncertainty is associated with the estimated liability.

In Chapters 3 and 4 we present extensions of the chain ladder method that place it within a

stochastic framework, where the deterministic chain ladder estimate is interpreted as the mean

of a random variable representing the outstanding claims. The stochastic framework allows

us to examine and test the assumptions that are implicit in the deterministic approach, but

are explicit in the stochastic frame, and also to quantify the uncertainty in the estimates, and

potentially calculate other metrics of interest, such as risk measures or confidence intervals.



Chapter 2

Run-off triangles

There are three time variables relevant to the settlement patterns and amounts of insurance

claims.

The first is the accident year (AY) – that is, the calendar year in which the accident or

loss occurred. We group all losses incurred in the same year together, as a single cohort

of claims. In the mathematical formulas, we will generally indicate the accident year with

i (occasionally l).

The second is the development year (DY), which indicates the payment year, relative

to the AY. We will use j (occasionally k) for the DY, so that payments made in the same

calendar year as the loss occurred are assigned to j = 0; payments made in the following

calendar year are assigned to j = 1, and so on.

The third is the calendar year of individual payments. This is determined by adding the

AY and the DY together, so a payment made in DY j = 3, in settlement of a loss incurred

in AY i = 2 , say, is a payment made in year i+j = 5, measured from accident year 0.

Run-off triangle methods for estimating outstanding claims use past settlement patterns to

project future settlement patterns for accident years that are not closed (an AY is closed when

all claims are settled). The current and past data are presented as a triangle of claims payment

data, separated by accident year and development year. An example is presented in Table

2.1. The values in the top table are the incremental claim payments, that is, amounts paid in

each development year, for each accident year cohort. The values in the bottom table are the

cumulative payments, that is, the total payments made by the end of each development year,

separately for each accident year. The triangles summarize the payments made up to the end

11



12 CHAPTER 2. RUN-OFF TRIANGLES

of 2020 from the 2011 to 2020 accident year cohorts. In the mathematical formulas, we will

generally label the first AY in the triangle as i = 0, and measure all payments from that date.

The anti-diagonals1 of the run-off triangle relate to a single calendar year, so that the leading

anti-diagonal in the incremental run-off triangle in Table 2.1 represents the payments made in

2020, in respect of accidents occurring between 2011 and 2020.

In the illustrative triangles used in this note, we assume that AY 0 is closed – that is, that all

claims are fully settled by the end of the latest calendar year – and that AY 1 is the first open

accident year. This means that we have the same number of development and accident years. If

AY 0 is not closed, then we would need to project losses beyond the final available development

year, using a tail factor; see Hindley (2017) for details. The assumption that AY 1 is open is

not necessary, and does not (significantly) impact any of the formulas or results.

Other data can be analysed in the run-off triangle format. For example, we may consider a

triangle of the number of claims reported, to estimate the IBNR reserve (which is implicitly

incorporated in the settlement numbers in Table 2.1). Or we may use case estimates of reported

claims, so that changes from year to year represent newly reported claims, and revised estimates

of previously reported claims. In this paper we do not consider these variants. We will assume

all run-off triangles are based on claim payments, which may be negative through salvage or

subrogation. We also assume that all claim expenses that are to be included in the outstanding

claims reserve are included in the amounts reported in the run-off triangle.

2.1 Notation

Let i = 0, 1, .., I represent successive accident year cohorts. In Table 2.1, we set 2011 as

i = 0, which is assumed to be closed, and the latest accident year, 2020, represents the

tenth and latest cohort of accident years, and the ninth cohort of open accident years, so

I = 9. From here on, when we refer to AY i, we mean the calendar year associated with

the (i+1)th accident year.

Let j = 0, 1, .., J represent the development year. In Table 2.1, we have J = 9. If AY 1

is the first open accident year, then we have I = J ; if we have several closed years at the

top of the table then we have J < I.

Let Xi,j denote the incremental claim payments in respect of losses incurred in AY i, paid

during DY j. When i + j ≤ I, this figure is known. For i + j > I, this value is to be

1An anti-diagonal of a matrix is a set of elements for which the sum of row and column indices is the same,

that is, a lower left to upper right diagonal.
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Accident Development Year, j

Year i 0 1 2 3 4 5 6 7 8 9

2011 0 4360 2516 625 207 118 39 51 20 11 3

2012 1 3996 2578 449 134 49 31 31 20 4

2013 2 3840 1738 655 175 96 40 29 14

2014 3 5108 1757 680 216 114 69 16

2015 4 4585 1532 414 189 80 87

2016 5 5767 2164 410 193 86

2017 6 5550 2540 458 252

2018 7 6525 2828 562

2019 8 6620 2544

2020 9 7014

Incremental claim payments, Xi,j

Accident Development Year, j

Year i 0 1 2 3 4 5 6 7 8 9

2011 0 4360 6876 7501 7708 7826 7865 7916 7936 7947 7950

2012 1 3996 6574 7023 7157 7206 7237 7268 7288 7292

2013 2 3840 5578 6233 6408 6504 6544 6573 6587

2014 3 5108 6865 7545 7761 7875 7944 7960

2015 4 4585 6117 6531 6720 6800 6887

2016 5 5767 7931 8341 8534 8620

2017 6 5550 8090 8548 8800

2018 7 6525 9353 9915

2019 8 6620 9164

2020 9 7014

Cumulative claim payments, Ci,j

Table 2.1: Data for worked examples: incremental and cumulative claim payments up to the

end of 2020, arising from losses incurred between 2011 and 2020.
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estimated.

Let Ci,j denote the cumulative claims paid in respect of losses incurred in AY i, up to the

end of DY j. That is

Ci,j =

j∑
k=0

Xi,k

Again, these are known when i+j ≤ I.

Let DI represent the data in the cumulative run-off triangle, that is

DI = {Ci,j : i+j ≤ I}

The objective of run-off triangle methods is to use DI to estimate future Xi,j or Ci,j , for

j ≤ J and for i+ j > I.

Let Bk denote the subset of DI that only contains data from development years 0,1,· · · ,k,
so

Bk = {Ci,j : i+j ≤ I, j ≤ k}

Bk uses the first k+1 columns of DI , corresponding to development years from 0 to k ≤ J .

We use Bk in Chapters 3 and 4, where we often condition on the available information up

to DY k, to evaluate conditional moments of Ci,k+1

∣∣Ci,k.

2.2 The deterministic chain ladder approach

The outstanding claims reserve is the sum of the estimated incremental claim payments for

all future development years, over all open accident years. For the data in Table 2.1, if we

assume that claims are completely run off by the end of DY 9, then for AY 2012, we need to

project the payments in 2021, for AY 2013 we need to project payments in 2021 and 2022,

and so in, down to AY 2020, for which we have 9 years of development to project. If the

future payments are not discounted, or adjusted for inflation, then it is sufficient to estimate the

ultimate cumulative payments made in respect of each accident year. The estimated outstanding

claims for each accident year can then be found by subtracting the cumulative claims paid to date

from the estimated ultimate cumulative amount. If we are discounting, or inflation adjusting,

then we need to project the incremental payments made in each future development year, for

each accident year, to apply the right discounting or inflation adjustment.



2.2. THE DETERMINISTIC CHAIN LADDER APPROACH 15

The intuition behind the chain ladder approach is that we assume that the ratio of cumulative

claims in successive development years is reasonably stable, so we can use the known ratios of

cumulative payments in successive DYs, calculated from the cumulative claims run-off triangle,

to project the cumulative payments for subsequent accident years. The objective is to complete

the lower triangle in Table 2.1. Specifically, we assume that, on average, cumulative claims follow

a settlement pattern across development years based on development factors (also called link

factors) denoted fj , such that, deterministically,

Ci,j+1 = Ci,j fj i = 0, 1, ...I, j = 0, 1, ...J−1 (2.1)

We estimate the development factors using DI . The individual historical development factors

for each AY and DY are

fi,j =
Ci,j+1

Ci,j
i+j ≤ I−1

Values of fi,j for the data in Table 2.1 are given in Table 2.2.

AY DY, j

i 0 1 2 3 4 5 6 7 8 9

0 1.5771 1.0909 1.0276 1.0153 1.0050 1.0065 1.0025 1.0014 1.0004 –

1 1.6451 1.0683 1.0191 1.0068 1.0043 1.0043 1.0028 1.0005

2 1.4526 1.1174 1.0281 1.0150 1.0062 1.0044 1.0021

3 1.3440 1.0991 1.0286 1.0147 1.0088 1.0020

4 1.3341 1.0677 1.0289 1.0119 1.0128

5 1.3752 1.0517 1.0231 1.0101

6 1.4577 1.0566 1.0295

7 1.4334 1.0601

8 1.3843

9 –

Table 2.2: Individual development factors, fi,j , for the data in Table 2.1.

To estimate a single development factor for each development year, we could simply average

the individual accident year factors, but this ignores the variability in the cumulative claims by

accident year. A more efficient approach is to weight the development factors by the available
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Ci,j values, giving estimated development factors for each DY, j = 1, 2, ..., J − 1,

f̂j =

I−1−j∑
i=0

Ci,j × fi,j

I−1−j∑
i=0

Ci,j

=

I−1−j∑
i=0

Ci,j+1

I−1−j∑
i=0

Ci,j

.

Example 2.1. Calculate the development factors, f̂0, f̂1, ..., f̂8 from the data in Table 2.1.

Solution We start with f̂8, which is an estimate of the ratio of cumulative claims in DY 9 to

cumulative claims in DY 8. We only have one source for this ratio within the DI triangle, from

the AY i = 0 row of data, so

f̂8 =
7950

7947
= f0,8 = 1.00038

For f̂7, we are interested in the development from j = 7 to j = 8, for which we have data from

two cohorts, i = 0 and i = 1. The development factor is therefore

f̂7 =
7947 + 7292

7936 + 7288
=

7936× f0,7 + 7288× f1,7
7936 + 7288

= 1.00099

Similarly

f̂6 =
7936 + 7288 + 6587

7916 + 7268 + 6573
= 1.00248

f̂5 =
7916 + · · ·+ 7960

7865 + · · ·+ 7944
= 1.00429

...

f̂0 =
6876 + · · ·+ 9164

4360 + · · ·+ 6620
= 1.43574

□

Given a run-off triangle DI , the cumulative claims paid to date for each accident year are

represented by the anti-diagonal values, Ci,I−i for i = 0, · · · , I. Projected cumulative claims for
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AY i, DY j ≥ I − i+ 1 are constructed as follows:

Ĉi,I−i+1 = Ci,I−i f̂I−i

Ĉi,I−i+2 = Ĉi,I−i+1 f̂I−i+1 = Ci,I−i f̂I−i f̂I−i+1

...

Ĉi,J = Ĉi,J−1 f̂J−1 = Ci,I−i f̂I−i f̂I−i+1 · · · f̂J−1

The estimated future incremental claims for AY i and DY j ≥ I−i+1, are given by

X̂i,j = Ĉi,j − Ĉi,j−1 = Ci,I−i

(
f̂I−i · · · f̂j−2

)(
f̂j−1 − 1

)
(2.2)

Let R̂i denote the estimated claims outstanding in respect of losses arising in AY i. Assuming

that claims are fully run off by the end of DY J , and also assuming that payments are not

discounted, we have

R̂i = Ĉi,J − Ci,I−i = Ci,I−i

((
f̂I−i f̂I−i+1 · · · f̂J−1

)
− 1

)
(2.3)

Let λ̂j = f̂j f̂j+1 · · · f̂J−1 (2.4)

=⇒ R̂i = Ci,I−i

(
λ̂I−i − 1

)
(2.5)

The estimate at the end of year I of the aggregate outstanding claims from all open accident

years is therefore

R̂ =
I∑

i=0

R̂i

If the outstanding claims reserve uses discounting, then we need to work with the projected

incremental payments. We may assume that claims are paid, on average 1
2 -way through the

relevant calendar year, in which case, assuming a constant annual effective interest rate r, we

have

R̂i =

J∑
j=I−i+1

X̂i,j(1 + r)−(i+j−I−0.5) (2.6)
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AY DY, j

i 0 1 2 3 4 5 6 7 8 9 R̂i

0 4360 6876 7501 7708 7826 7865 7916 7936 7947 7950 0

1 3996 6574 7023 7157 7206 7237 7268 7288 7292 7295 3

2 3840 5578 6233 6408 6504 6544 6573 6587 6593 6596 9

3 5108 6865 7545 7761 7875 7944 7960 7980 7988 7991 31

4 4585 6117 6531 6720 6800 6887 6917 6934 6941 6943 56

5 5767 7931 8341 8534 8620 8683 8721 8742 8751 8754 134

6 5550 8090 8548 8800 8908 8973 9012 9034 9043 9047 247

7 6525 9353 9915 10177 10302 10377 10422 10448 10458 10462 547

8 6620 9164 9843 10103 10227 10302 10346 10372 10382 10386 1222

9 7014 10070 10817 11102 11238 11321 11370 11398 11409 11413 4399

AY DY, j Discounted

i 0 1 2 3 4 5 6 7 8 9 R̂i

0 4360 2516 625 207 118 39 51 20 11 3 0

1 3996 2578 449 134 49 31 31 20 4 3 3

2 3840 1738 655 175 96 40 29 14 6 2 9

3 5108 1757 680 216 114 69 16 20 8 3 29

4 4585 1532 414 189 80 87 30 17 7 3 53

5 5767 2164 410 193 86 63 37 22 9 3 126

6 5550 2540 458 252 108 65 39 22 9 3 229

7 6525 2828 562 262 125 76 45 26 10 4 508

8 6620 2544 679 260 124 75 44 26 10 4 1143

9 7014 3056 746 286 136 83 49 28 11 4 4179

Table 2.3: Projected cumulative claims (top) and projected incremental claims (bottom), with

estimated undiscounted outstanding claims reserves (top) and estimated discounted claims (bot-

tom), using an effective interest rate of 5% p.y., for the data from Table 2.1.
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Example 2.2. Calculate the OCR using the chain ladder method, for the data in Table 2.1.

Assume (i) no discounting, and (ii) payments are discounted at 5% per year effective.

Solution

(i) The estimated development factors and λs are

j 0 1 2 3 4 5 6 7 8

f̂j 1.43574 1.07411 1.02641 1.01226 1.00735 1.00429 1.00248 1.00099 1.00038

λ̂j 1.62722 1.13337 1.05516 1.02801 1.01556 1.00816 1.00385 1.00136 1.00038

The cumulative claims development matrix is the top table in Table 2.3. The upper left triangle

shows the past cumulative claims, the lower right shows the projected future claims. The

outstanding claims for each AY are found by subtracting the current value of cumulative claims

(just above the line in the matrix) from the projected ultimate cumulative claims at j = 9. The

total of the outstanding claims is estimated at
9∑

i=0
R̂i = 6648.

(ii) The undiscounted incremental claims are given in the lower table of Table 2.3. The payments

are discounted using equation (2.6). The total outstanding claims reserve is 6277. □

Exercise 2.1.

In Table 2.4 you are given cumulative run-off information for two different lines of business, a

short-tail line (top) and a long-tail line (bottom).

(a) Use the chain ladder method, without discounting, to estimate the outstanding claims

reserve in each case.

(b) Comment on the difference between the two lines, and between these settlement patterns

and the one underlying Table 2.1.

Solution

(a) The undiscounted chain ladder estimate of outstanding claims for the short-tail example

is 56,955.

The undiscounted chain ladder estimate of outstanding claims for the long tail example is

37,914.

(b) Table 2.5 shows the settlement patterns for all three run-off tables. We summarize the

settlement patterns using two different functions of the development factors; β̂j is the
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Accident Year Development year j

i 0 1 2 3 4

0 9502 25827 37275 44083 44490

1 8138 26292 37496 42114

2 9802 25563 37257

3 9498 25266

4 9072

Accident Year Development year j

i 0 1 2 3 4 5 6 7 8 9 10

0 65 276 797 1626 3093 4412 4890 5153 5335 5360 5365

1 46 405 1039 2194 3448 4746 5298 5563 5681 5706

2 73 388 1017 2588 4213 5088 5969 6210 6409

3 95 401 1030 2186 4042 5520 6287 6638

4 72 502 1146 2614 4402 5713 6397

5 97 472 1251 2273 3909 5420

6 93 1134 2578 4141 5739

7 77 585 1247 3213

8 75 1288 2143

9 84 568

10 109

Table 2.4: Short-tail and long-tail run-off triangles
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estimated proportion of ultimate claims paid by the end of DY j, and γ̂j is the estimated

proportion of ultimate claims paid during DY j, where

β̂j =
1

λ̂j

, j = 0, 1, · · · , J−1; β̂J = 1.0

γ̂j = β̂j − β̂j−1, j = 1, 2, · · · , J ; γ̂0 = β̂0.

Comparing the short tail run-off to the Table 2.1, we see that although the development

period is shorter for the short-tail data, the payments in the earliest development year are

lower, indicating that the payment or reporting delays are slightly longer for the short-tail

business than for the Table 2.1 business. Only 21% of claims are covered in the first year

under the short-tail development, compared with 61% under the Table 2.1 development.

The largest γ̂j occurs in DY 1 for the short tail, indicating that the modal time to payment

is around 1 year, and this is also the median. Less than 1% of claims are paid after the

third DY. For the Table 2.1 data, the median and modal time to payment is less than

1-year, and around 1.5% of claims are paid after DY 4.

The long-tail development pattern is very different. Only 1% of claims are paid within the

calendar year of the loss event. The median and modal payment times are in DY 4, and

nearly 40% of claims are paid after DY 4.

Development Year j

0 1 2 3 4 5 6 7 8 9 10

Short-Tail

β̂j 0.214 0.596 0.860 0.991 1.000

γ̂j 0.214 0.382 0.264 0.131 0.009

Table 2.1

β̂j 0.615 0.882 0.948 0.973 0.985 0.992 0.996 0.999 1.000 1.000

γ̂j 0.615 0.268 0.065 0.025 0.012 0.007 0.004 0.002 0.001 0.000

Long-Tail

β̂j 0.010 0.080 0.180 0.371 0.608 0.813 0.920 0.966 0.995 0.999 1.000

γ̂j 0.010 0.070 0.100 0.191 0.237 0.205 0.107 0.046 0.028 0.005 0.001

Table 2.5: Development patterns for the Table 2.1 and Table 2.4 run-off data.
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2.3 Inflation-adjusted chain ladder

As the outstanding claims data covers several years, we need to consider the impact of inflation

on historical and projected figures. If inflation rates are relatively steady, there may be no

need to make any adjustments, as the run-off triangle based methods described in this note will

implicitly allow for future inflation to continue at similar rates to past inflation. If inflation rates

have been very variable over the period covered by the run-off triangle, or if they are expected to

be significantly different in the future compared with the recent past, then we should adjust the

historical data to eliminate the impact of past inflation, and we should also adjust the projected

claim payments to make allowance for future inflation.

We adjust the past data using an index of inflation, Qt, say. For t ≤ I, Qt is known; it will

be calculated by the insurer using internal or industry-wide information about claims inflation

between time t and time I. For example, if gk denotes the historic inflation rate from mid-year

k to mid-year k+1, then we can set Q0 = 1.0 (as this is an index, the starting value is arbitrary),

and Qk+1 = Qk(1 + gk). The inflation-adjusted incremental run-off triangle data, Xa
i,j , say,

where i+j ≤ I, would then be calculated from the original incremental data as

Xa
i,j = Xi,j

QI

Qi+j

This gives a triangle of inflation-adjusted incremental claims, now expressed in terms of year I

values. The inflation-adjusted cumulative claims in the run-off triangle are Ca
i,j =

j∑
k=0

Xa
i,k.

So for the inflation-adjusted chain ladder, we run the chain ladder algorithm using the inflation

adjusted cumulative claims run-off triangle, generating inflation-adjusted estimates for future

cumulative claims, Ĉa
i,j , where i+j ≥ I. These are the estimated cumulative claims for AY

i and DY j, expressed in year I values. To project to year i+ j values, we need to extract

the projected incremental claims, and then re-adjust for future inflation, using the projected,

extrapolated inflation index, Q̃t, for t > I, which is calculated using assumed future inflation

rates. That is, for i+j > I:

X̂a
i,j = Ĉa

i,j − Ĉa
i,j−1

X̂i,j = X̂a
i,j

Q̃i+j

QI

R̂i =
J∑

k=I−i+1

X̂i,j
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Exercise 2.2. In Table 2.6 you are given a cumulative run-off triangle and historic and assumed

future claim inflation rates, where the inflation rates given are assumed to run from mid-year t

to mid-year t+1.

(i) Calculate the claims inflation index, Qk using the inflation rates, for k = 0, 1, ..., 7. Set

Q0 = 100.0.

(ii) Calculate the inflation adjusted outstanding claims reserve.

Development Year

AY 0 1 2 3 4

0 168,830 442,760 1,062,807 1,311,257 1,333,517

1 177,540 436,618 873,088 1,013,083

2 203,860 499,301 1,027,061

3 215,988 405,472

4 191,753

Year Inflation Rate Year Inflation Rate

t (past) t (assumed)

0 2.5% 4 4.0%

1 3.0% 5 4.6%

2 3.5% 6 4.0%

3 3.5% 7 3.5%

Table 2.6: Data for inflation-adjusted chain ladder exercise.

Solution

(i)

t Qt t Qt

0 100.0 4 113.1

1 102.5 5 117.6

2 105.6 6 123.0

3 109.3 7 127.9

(ii) R̂ = 1, 926, 174.
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Chapter 3

Ĉi,J as an expected value

3.1 The chain ladder method

In this section we take a more probabilistic perspective on outstanding claims estimation, by

assuming that the estimated ultimate cumulative losses, Ĉi,J , are expected values of the random

variable Ci,J . Unconditionally, (that is, assuming that we have no claims data) the Ci,j are

random variables, and hence so are the f̂j , because they are functions of the Ci,j . Conditional

on DI , Ci,j are known for (i, j) where i = 0, 1, ..., I, and i+ j ≤ I, and fi,j are known for (i, j)

such that i = 0, 1, ..., I−1, and i+j ≤ I−1.

We reinterpret the deterministic chain ladder relationships as expected value relationships in

the following assumptions.

CL Assumption (1) There exist development factors fj such that

E[Ci,j+1|Di+j ] = E[Ci,j+1|Ci,j ] = Ci,j fj .

This is just re-stating the chain ladder approach in terms of expected values, where the

development factors are unknown underlying parameters.

CL Assumption (2) Ci,j and Cl,k are independent for i ̸= l, and for all j, k.

That is, we assume independence of losses for different accident years.

25
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Given these two assumptions, we can prove the following results.

Theorem 1.

(a) f̂j is an unbiased estimator of fj .

(b) E
[
f̂0 f̂1 · · · f̂j

]
= f0 f1 · · · fj for j = 0, 1, · · · , J−1.

(c) Ĉi,J

∣∣DI is an unbiased estimator of Ci,J

∣∣DI .

Proof

(a) We use iterated expectation for E[f̂j ], conditioning on Bj , which contains all the run-off

data up to DY j.

E
[
f̂j

]
= E

[
E
[
f̂j
∣∣Bj

] ]
E
[
f̂j |Bj

]
=

E
[
C0,j+1 + C1,j+1 + · · ·+ CI−j,j+1

∣∣C0,j , C1,j , · · · , CI−j,j

]
C0,j + C1,j + · · ·+ CI−j,j

.

=
fj (C0,j + C1,j + · · ·+ CI−j,j)

C0,j + C1,j + · · ·+ CI−j,j
(by assumption (1))

= fj

E
[
f̂j

]
= E

[
E
[
f̂j
∣∣Bj

] ]
= E[fj ] = fj as required.

(b) We will prove this by induction, again using iterated expectation. To start, from (a) we

have that E[f̂0] = f0. Assume that the result is true for the product of development factors

up to k, i.e. that

E
[
f̂0 f̂1 · · · f̂k

]
= f0 f1 · · · fk (3.1)

Now consider E
[
f̂0 f̂1 · · · f̂k+1

]
. We will condition on all the Ci,j values involved in

the calculation of f̂0, f̂1, · · · , f̂k, i.e. on Bk+1. Based on this conditioning, the

only unknown Ci,j values in f̂0 f̂1 · · · f̂k+1 are those in the numerator of f̂k+1, i.e.
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C0,k+2, C1,k+2 . . . CI−(k+2), k+2, so that

E
[
f̂0 f̂1 · · · f̂k

∣∣Bk+1

]
= f̂0 f̂1 · · · f̂k

and E
[
f̂0 f̂1 · · · f̂k+1

∣∣Bk+1

]
=
(
f̂0 f̂1 · · · f̂k

)
E
[
f̂k+1|Bk+1

]
(3.2)

=
(
f̂0 f̂1 · · · f̂k

)
fk+1 from (a) above (3.3)

Hence E
[
f̂0 f̂1 · · · f̂k+1

]
= E

[
E
[
f̂0 f̂1 · · · f̂k+1

∣∣Bk+1

] ]
= E

[(
f̂0 f̂1 · · · f̂k

)
fk+1

]
(from (3.3))

= f0 f1 · · · fk fk+1 by the inductive assumption in (3.1).

Note that we can use the set {C0,k, C1,k, · · · , CI−k−1,k+1} ⊆ Bk+1 in place of Bk+1 in the

conditioning in (3.2), as these are the only elements in Bk+1 that impact f̂k+1.

It is easy to show that the product of any sequence of f̂j has a similar property - in

particular,

E
[
f̂j f̂j+1 · · · f̂J−1

]
= E

[
λ̂j

]
= fj fj+1 · · · , fJ−1 = λj . (3.4)

(c) E
[
Ĉi,J |DI

]
= E

[
Ci,I−i λ̂I−i|DI

]
= Ci,I−iE

[
λ̂I−i|DI

]
= Ci,I−i λI−i = E [Ci,J |Ci,I−i]

□

Exercise 3.1. Show that f̂j and f̂l are uncorrelated for j ̸= l.

3.2 Testing the chain ladder assumptions

Correlated development factors

The chain ladder assumptions imply uncorrelated (but not independent) development factors.

If a test of the development factors shows that they are correlated, then the chain ladder as-

sumptions do not hold.
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Example 3.1.

(a) For the data in Table 2.1, calculate the correlations between vectors of development factors

for successive development years, separately, up to DY 5 and DY6. That is, find the

correlations between

(1)
(
f0,0, f1,0, f2,0, · · · , f6,0, f7,0

)T
and

(
f0,1, f1,1, f2,1, · · · , f6,1, f7,1

)T
(2)

(
f0,1, f1,1, f2,1, · · · , f6,1

)T
and

(
f0,2, f1,2, f2,2, · · · , f6,2

)T
...

(6)
(
f0,5, f1,5, f2,5

)T
and

(
f0,6, f1,6, f2,6

)T
Test each correlation for significance, using the test statistic, Tj , defined as

Tj = rj

√
nj − 2

1− r2j
(3.5)

where nj = I − 1− j is the sample size, and rj is the sample correlation coefficient. Under

the null hypothesis, that the correlation is not significantly different from 0, we have that,

approximately, Tj has a Student’s t distribution, with νj = nj−2 degrees of freedom.

(b) Repeat (a), but use Spearman’s rank correlation (that is, calculate the correlation between

the relative ranks of each value in each vector, rather than of the values themselves). Do

the rank correlations give the same message as the Pearson correlations? Which do you

think is more reliable here?

Solution

(a) The calculations are easily done in Excel. The results are given below. In the table, rj
represents the correlation of the pairs of development factors (fi,j , fi,j+1) for i = 0, · · · , I−
(j + 1). We only compare columns up to (fi,5, fi,6), as we need at least 3 data points to

test significance.

Development Year, j 0-1 1-2 2-3 3-4 4-5 5-6

Pearson Correlation rj 0.0523 0.3447 0.8929 0.1498 −0.7889 0.0974

Test statistic, Tj 0.1283 0.8211 3.9654 0.2625 −1.8154 0.0979

νj 6 5 4 3 2 1

p-value 0.902 0.449 0.017 0.810 0.211 0.938

One set of development factors, from j = 2 to j = 3, shows significant correlation, with a

p value of 1.7%.



3.2. TESTING THE CHAIN LADDER ASSUMPTIONS 29

(b)

Development Year 0-1 1-2 2-3 3-4 4-5 5-6

Spearman Correlation 0.1190 −0.0357 0.4286 0.0000 −0.4000 −0.5000

Test statistic, Tj 0.2937 −0.0799 0.9487 0.0000 −0.6172 −0.5774

νj 6 5 4 3 2 1

p-value 0.779 0.939 0.397 1.000 0.600 0.667

When we work with the ranks, rather than the values of the development factors, we find

no significant correlations between adjacent sets of development factors. The t-test for

the Pearson correlation is suitable when the underlying random variables have the same

variance. That is not part of the chain ladder assumptions, and indeed, is unlikely to be

true, as later development factors are based on more data (in Chapter 4 we will formalize

the assumption of non-constant variance). The Spearman test is more robust to outliers,

and eliminates the problem of non-constant variance, but is not directly testing for zero

correlation. That is, two random variables may have zero Spearman correlation, but non-

zero covariance, which is what we are testing for. In practice, zero Spearman correlation

of the development factors is a strong indication that the covariances are close to zero, so

the Spearman correlation test is considered more robust than the Pearson. It is also worth

noting, though, that with such small sample sizes, the power of these tests is small.

We can combine the test statistics into a single statistic, to give a (rather rough) overall assess-

ment of rank correlation. We will only use statistics with νj ≥ 3, i.e. j ≤ I − 6, because the

variance of the t distribution is infinite for νj ≤ 2, and we will need the statistic to have finite

variance. Under the null hypothesis, we have that for each j, E[Tj ] = 0 and Var[Tj ] =
νj

νj−2 , for

νj ≥ 3. We construct the combined statistic as a weighted average of the Tj ’s, using the inverse

variances as weights.

That is, let wj = (νj − 2)/νj =
(
Var [Tj ]

)−1
denote the weights, then T =

∑I−6
j=0 Tj wj∑I−6
j=0 wj

.

Under the null hypotheses of zero rank correlation, the Tj have zero covariance, so we have
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E[T ] = 0 and

Var[T ] =

I−6∑
j=0

Var [Tj ]w
2
j( I−6∑

j=0
wj

)2 =

I−6∑
j=0

wj( I−6∑
j=0

wj

)2 =
1

I−6∑
j=0

wj

=
1

I−6∑
j=0

(νj − 2)/νj

Assuming further that under the null hypothesis, approximately, T ∼ N
(
0,Var[T ]

)
, we can

determine a p-value for the significance of T , based on the null hypothesis of zero correlation.

In the example above, using Pearson correlations, the weighted average test statistic using T0 to

T3 is T = 1.26; the standard deviation under the null hypothesis is (approximately) 0.69, giving

a p value of 0.07, indicating no significant evidence of correlation at the 5% level.1

Calendar Year Effects

The other chain ladder assumption is that individual accident years are independent, with the

same underlying development factors fj . One reason why this assumption may be invalid is if

there is a calendar year effect in the data. This could arise, for example, as a result in changes

in claims underwriting processes, that could speed up settlements, or if inflation rates are very

different over the calendar years represented in DI . The calendar years are represented in the

run-off triangle by the anti-diagonals. Mack (1994) suggests a test based on classifying the

development factors in each development year as high or low, relative to the other values in the

same DY. A value of fi,j that is higher than the median value for DY j is labelled L (for large);

a value below the median is labelled S (small). Values on the median are disregarded. We then

consider the frequency of L and S development factors across each anti-diagonal. If there is

no calendar year effect, roughly half of the development factors in each calendar year should

be large, and half small, and the numbers should be binomially distributed, with probability

parameter 0.5. Let Sk denote the number of ‘S’ labels in calendar year k, and let Lk denote

the number of ‘L’ labels in calendar year k. We exclude calendar year 0 which has only one

value. We test the null hypothesis, that calendar years are independent, by considering the

distribution of the smaller of Sk and Lk each year. This is not binomially distributed under the

1Mack (1994) suggests an aggregate test of the rank correlations that assumes that the correlations,

rj ∼ N(0, (nj − 1)−1). This test is used in the R ChainLadder package.
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null hypothesis, but its mean and variance can be derived from the binomial distribution. The

test procedure is as follows.

1. For k = 1, 2, ..., I−1, find Sk, Lk, nk = Sk + Lk, and mk = ⌊(nk − 1)/2⌋. Under the null

hypothesis of no calendar year effect, both Lk and Sk have a bin(nk, 0.5) distribution.

2. Let Zk = min(Sk, Lk) for k = 1, 2, ..., I − 1. Using the binomial distribution, it can be

shown that

E[Zk] =
nk

2
−
(
nk − 1

mk

)
nk

2nk
and

Var[Zk] =
nk(nk − 1)

4
−
(
nk − 1

mk

)
nk(nk − 1)

2nk
+ E[Zk]− E[Zk]

2

3. The test statistic is Z =
I−1∑
k=1

Zk. We assume that, approximately,

Z ∼ N(E[Z], Var[Z]) where E[Z] =
I−1∑
k=1

E[Zk] and Var[Z] =
I−1∑
k=1

Var[Zk]

(using the null hypothesis that calendar years are independent).

Then the p - value for the 2-sided test is

p = 2

(
1− Φ

(
|Z − E[Z]|√

Var[Z]

))
.

Example 3.2. Test the Table 2.1 data for calendar year effects.

Solution The L-S triangle for the Table 2.1 data is shown in Table 3.1.

We review each anti-diagonal, starting from the second, to assess the S-L distribution by cal-

endar year. A summary of the results is given in Table 3.2. The p−value for the test is

p = 2

(
1− Φ

(
|14− 12.6875|√

3.6621

))
= 0.4928, indicating that there is no significant evidence of

a calendar year effect in this data. □

We can also explore the chain ladder assumptions graphically. For example, we have assumed

that the development factors for each accident year follow a similar pattern. A graph of the
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Development Year j

AY i 0 1 2 3 4 5 6 7 8

0 L L S L S L * L *

1 L L S S S S L S

2 L L * L * L S

3 S L L L L S

4 S S L S L

5 S S S S

6 L S L

7 * S

8 S

Table 3.1: Large-Small categorisation of run-off triangle development factors for Table 2.1 data;

median results are indicated by * .

CY, k Sk Lk Zk nk mk E[Zk] Var[Zk]

1 0 2 0 2 0 0.5000 0.2500

2 1 2 1 3 1 0.7500 0.1875

3 2 2 2 4 1 1.2500 0.4375

4 3 1 1 4 1 1.2500 0.4375

5 3 3 3 6 2 2.0625 0.6211

6 2 3 2 5 2 1.5625 0.3711

7 3 4 3 7 3 2.4063 0.5537

8 6 2 2 8 3 2.9063 0.8037

Total 20 19 14 39 12.6875 3.6621

Table 3.2: Summary of calendar year effect test of Table 2.1 data.
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Figure 3.1: Cumulative development factors for data in Table 2.1. The marked line is the

estimated cumulative development factor curve. Longer lines are for earlier AYs, shorter lines

are for later AYs.

development factors will indicate whether there are any anomalies. For example, a jumbo claim

settled early, or reported late, can distort the development factors. Typically, jumbo claims

would be excluded from the chain ladder estimation, and managed through case estimates. In

practice, the development factors are less informative than the cumulative development factors,

that is, for each AY i, plot fi,0 × fi,1 × . . . × fi,j for j = 0, 1, · · · , I−i. In Figure 3.1 we show

the cumulative development factors for the data from Table 2.1. The longer curves correspond

to the earlier AY, where we have more development year data. The thicker line indicates the

cumulative development factors using the estimated f̂j values. There is some evidence of a

trend downwards in the cumulative developments, shown by the fact that the shorter curves

(later accident years) lie below the longer curves (earlier accident years). This did not show up

in the statistical tests, and would need to be investigated further.



34 CHAPTER 3. ĈI,J AS AN EXPECTED VALUE

3.3 The Bornhuetter-Ferguson (BF) method

One critique of the chain ladder method is that it can be very reliant on a small amount of data.

In the run-off triangle in Table 2.1, we only have one observation for AY 2020, but that accident

year is responsible for over 60% of the chain ladder estimate of outstanding claims. The BF

method reduces the influence of the limited data available from the latest accident years, by

using an estimate that can be viewed as a weighted average of the Chain Ladder estimate of

the ultimate cost, and of a (possibly exogenous) prior estimate of the ultimate cost. For earlier

accident years, where there are several years of development available, the weight is higher for

the chain ladder estimate. For later accident years, where there are only one or two years of

development data available, the weight is higher for the prior estimate.

Let µi represent the prior estimate of losses arising from AY i. This is often based on the

expected loss ratio for the policies covered in that year. Let C̃i,J denote the BF estimate of

ultimate cumulative claims incurred in AY i. As above, we assume the data in DI is available,

and we let Ĉi,J denote the estimated ultimate claims using the chain ladder method, so that

Ĉi,J = Ci,I−i λ̂I−i.

The underlying assumptions of the BF method are given by Wüthrich and Merz (2008) as

BF Assumption (1) Given parameters βj , j=0, 1, · · · , J , with βJ =1, and µi, i = 0, 1, · · · , I,
we have:

E
[
Ci,0

]
= β0 µi (3.6)

E
[
Ci,j+1

∣∣Ci,0, Ci,1, · · · , Ci,j

]
= Ci,j + (βj+1 − βj)µi (3.7)

BF Assumption (2) Ci,j and Cl,k are independent for i ̸= l, and for all j, k.

From these assumptions, iterating equation (3.7), from j = I−i to j = J−1, and given estimates

β̂j of the βj parameters, we have the Bornhuetter-Ferguson estimate of cumulative claims,

C̃i,J = Ci,I−i +
(
1− β̂I−i

)
µi (3.8)

Example 3.3. Show that under the BF assumptions E[Ci,j ] = βj µi.

Solution

Again, we can prove this by induction. For j = 0 the equation is directly stated in Assumption

(1) above. Assume the result is true for some j ≤ J−1, i.e., assume that E[Ci,j ] = βj µi. Now
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consider

E
[
Ci,j+1

∣∣Ci,j

]
= Ci,j + (βj+1 − βj)µi

E [Ci,j+1] = E
[
E
[
Ci,j+1

∣∣Ci,j

] ]
= E [Ci,j + (βj+1 − βj)µi]

= βjµi + (βj+1 − βj)µi (from the induction assumption)

= βj+1 µi, as required. □

To estimate the βj parameters, we note that

E[Ci,j+1]

E[Ci,j ]
=

βj+1

βj

This can be compared with the similar result for the Chain Ladder method, under which

E[Ci,j+1]

E[Ci,j ]
=

E[E[Ci,j+1|Cij ]]

E[E[Ci,j |Cij ]]
=

fj Ci,j

Ci,j
= fj

This indicates the connection between the βj of the BF method, and the fj of the CL method;

given that βJ = 1 (from assumption (1)), we have

βj =
1

fj fj+1 · · · fJ−1
=

1

λj

which leads to estimates of the βj parameters,

β̂j =
1

λ̂j

=
1

f̂j f̂j+1 · · · f̂J−1

.

Now, noting that the chain ladder estimate of the cumulative claims, given CI−i, is Ĉi,J =

Ci,I−i λ̂I−i we can rewrite the BF cumulative claims estimate as

C̃i,J = Ĉi,J
1

λ̂I−i

+
(
1− β̂I−i

)
µi

that is, C̃i,J = β̂I−i Ĉi,J +
(
1− β̂I−i

)
µi (3.9)

So we see that the BF estimate can be thought of as a credibility estimate of ultimate claims,

where the prior estimate for AY i is µi, and the data-based estimate is Ĉi,J . The credibility

factor associated with the data-based estimate is β̂I−i, which is lower for higher values of i, when

there is less data available to support the chain ladder estimate, and increases as i gets closer

to 0, when the chain ladder estimate, Ĉi,J , is based on many years of development, indicating

that it has more credibility than the loss ratio estimate.
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Example 3.4.

You are given the following premium information for the data in Table 2.1.

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Earned Premium 8825 8859 8850 8920 9120 9515 9010 11512 12240 14810

The expected loss ratio in each year is 0.85.

(a) Calculate the BF estimate of the outstanding claims reserve for the Table 2.1 data, assum-

ing (i) no discounting, and (ii) payments are discounted at 5% per year effective. Assume

payments are made 1/2-way through the calendar year.

(b) Compare the results with the chain ladder estimate, for the undiscounted reserves.

Solution

(a) (i) The prior estimates of claims costs for each AY are µi = 0.85 × (Earned Premium).

The estimated β parameters are found by inverting the λ̂j from Example 2.2. We

could use the Ĉi,J values from Example 2.2, to calculate the C̃i,J values directly,

using equation (3.9), but since we are going to need the incremental payments for

(ii), we will use equation (3.7) to determine the estimated cumulative claims for each

development year.

The results, with data values in the top left triangle, and projected cumulative claims

in the bottom right, are given in Table 3.3, along with the estimated β̂j .

The total estimated outstanding claims reserve, without discounting, is
9∑

i=0
R̃i = 7026.

(ii) Proceeding exactly as in Example 2.2, we find the discounted outstanding claims

reserve is 6637.

(b) A summary of the chain ladder and Bornhuetter-Ferguson results is given in Table 3.4.

Pi are the earned premiums in AY i; Ĉi,J and C̃i,J are, respectively, the chain ladder

and Bornhuetter-Ferguson estimated ultimate claims, and R̂i and R̃i are, respectively, the

chain ladder and Bornhuetter-Ferguson estimated outstanding claims, by accident year.

The final two columns show the estimated loss ratios by accident year for the chain ladder

and Bornhuetter-Ferguson methods, respectively.

We note that the difference between the chain ladder and BF estimates is slight for earlier

accident years, where the credibility factor for the chain ladder estimate is high, but

there is more divergence in the estimates for later accident years, where there is less data
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AY DY, j

i 0 1 2 3 4 5 6 7 8 9 R̃i

0 4360 6876 7501 7708 7826 7865 7916 7936 7947 7950 0

1 3996 6574 7023 7157 7206 7237 7268 7288 7292 7295 3

2 3840 5578 6233 6408 6504 6544 6573 6587 6594 6597 10

3 5108 6865 7545 7761 7875 7944 7960 7979 7986 7989 29

4 4585 6117 6531 6720 6800 6887 6920 6939 6947 6950 63

5 5767 7931 8341 8534 8620 8679 8713 8733 8741 8744 124

6 5550 8090 8548 8800 8891 8947 8979 8998 9006 9009 209

7 6525 9353 9915 10160 10277 10348 10389 10413 10423 10427 512

8 6620 9164 9844 10105 10229 10304 10348 10374 10384 10388 1224

9 7014 10385 11208 11523 11673 11764 11818 11849 11862 11866 4852

β̂j 0.6145 0.8823 0.9477 0.9727 0.9847 0.9919 0.9962 0.9986 0.9996 1.0

Table 3.3: Bornhuetter-Ferguson cumulative claims projections for data from Table 2.1

supporting the chain ladder estimate. Note also that the projected loss ratio from the BF

method will always lie between the projected loss ratio for the chain ladder method, and

the prior loss ratio, 0.85.

In this example, the expected proportion of ultimate loss settled by the end of DY 0 is

relatively high, at over 60%. Also the average projected loss ratio using the chain ladder

is 85.8%, close to the prior assumption of 85% in the BF estimates. It is therefore not

surprising that the two methods give similar results, although the projections for the final

accident year are somewhat larger for the BF method. The two methods will diverge more

significantly if the prior estimated loss ratio is very inaccurate, or when applied to longer

tailed business, especially where there is a long period of IBNR claims. □

Exercise 3.2. You are given premium and expected loss ratio information for the two run-off

triangles in Table 2.4.

(a) Calculate the outstanding claims reserve using the Bornhuetter-Ferguson method.

(b) Comment on the advantages and disadvantages of the Bornhuetter-Ferguson method, using

your results as illustrations.

Short-tail

AY, i 0 1 2 3 4

Premiums 52600 54000 55520 57500 59850

Exp Loss Ratio 0.84 0.82 0.80 0.80 0.80
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i Pi Ĉi,J C̃i,J R̂i R̃i Ĉi,J/Pi C̃i,J/Pi

0 8825 7950 7950 0 0 0.901 0.901

1 8859 7295 7295 3 3 0.823 0.823

2 8850 6596 6597 9 10 0.745 0.745

3 8920 7991 7989 31 29 0.896 0.896

4 9120 6943 6950 56 63 0.761 0.762

5 9515 8754 8744 134 124 0.920 0.919

6 9010 9047 9009 247 209 1.004 1.000

7 11512 10462 10427 547 512 0.909 0.906

8 12240 10386 10388 1222 1224 0.849 0.849

9 14810 11413 11866 4399 4852 0.771 0.801

Table 3.4: Summary of chain ladder and BF outstanding claims calculations and projected loss

ratios, for the Table 2.1 data.

Long-tail

AY, i 0 1 2 3 4 5 6 7 8 9 10

Premiums 5641 5980 6339 6719 7122 7549 9002 9482 9491 9531 10103

Exp loss ratio 0.95 0.95 0.95 0.95 0.95 0.95 0.90 0.90 0.90 0.90 0.90

Solution

(a) The BF estimate of outstanding claims for the short-tail example is 62,870. The BF

estimate of outstanding claims for the long-tail example is 34,570.

(b) The projected chain ladder loss rations for the short tail business are consistently lower

than the estimated loss ratios, so the BF method gives significantly higher reserves in this

case. The long-tail business is the other way around – the chain ladder projected loss

ratios average 98%, so the BF reserve is substantially lower than the chain ladder. This

indicates the importance of the expected loss ratio element of the BF calculation.

An advantage of the BF approach is that the importance of the most recent accident

years’ experience is reduced. The AY in the long tail data accounts for 27.5% of the total

reserve, but the estimation of the ultimate cumulative claims is based on data for only 1

year, representing only about 1% of the total. Under the BF approach, this figure is given

very little weight in the final calculation with a credibility factor of 1%.
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3.4 The Bühlmann-Straub credibility model

We have seen that the Bornhuetter-Ferguson method can be viewed as a credibility estimate,

where the chain ladder estimation of cumulative claims, Ĉi,J is the estimate based on the acci-

dent year i experience up to calendar year I, and µi is the prior or exogenous estimate of the

cumulative claims. The credibility factor is Zi = β̂I−i =
1

λ̂I−i

.

As λ̂j is an increasing function of j (assuming f̂k ≥ 1), the credibility factor gives more weight to

the data based estimate when there are more years of development data available, which makes

sense. However, the approach assumes that we have a reliable estimate of µi available, and does

not take into consideration the variance of the claims process, or the uncertainty associated with

the µi estimates.

These are implicitly allowed for if we use the Bühlmann-Straub credibility model. The

Bühlmann-Straub model constructs a linear approximation to a Bayesian estimate of the mean

of a random variable, whose mean and variance are treated as functions of an unknown random

parameter vector θi.

In applying the Bühlmann-Straub method to the outstanding claims reserve problem, we will

use an iterated credibility approach. This will ensure that our reserve estimate for each AY is

non-negative; we effectively use the Bühlmann-Straub estimate of ultimate cumulative claims

as the µi factor in the BF formula. That means that the estimated ultimate cumulative claims

will be

Ĉ
BS2

i,J = Ci,I−i + (1− β̂I−i)Ĉ
BS

i,J = β̂I−iĈi,J + (1− β̂I−i)Ĉ
BS

i,J

where Ĉ
BS

i,J is the Bühlmann-Straub credibility estimate of ultimate claims, described below, and

Ĉ
BS2

i,J is the iterated credibility estimate, using β̂I−i as the credibility factor. As above, Ĉi,J is

the chain ladder estimate. This estimate can be thought of as regular credibility estimate, with

credibility factor Z∗
i for AY i, where

Z∗
i = 1−

(
1− β̂I−i

)
(1− Zi) and Ĉ

BS2

i,J = Z∗
i Ĉi,J + (1− Z∗

i )µ

where µ is the prior mean value of ultimate cumulative claims in the Bühlmann-Straub credibility

estimate.

For developing Ĉ
BS

i,j , we use the parameter γj = βj − βj−1, j = 1, 2, · · · , J , with γ0 = β0.

The estimated parameters, γ̂j are evaluated from the β̂j estimates. Loosely, the γj parameters

represent the expected proportion of ultimate claims that are paid in DY j, while βj represents
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the expected proportion of ultimate claims paid by the end of DY j; fj represents the ratio of

expected cumulative claims in year j + 1 to year j, and λj represents the ratio of the expected

ultimate cumulative claims to the cumulative claims in year j, and each of these is estimated

using the chain ladder development factors. Note that

k∑
j=0

γj = βk and

J∑
j=0

γj = 1

We let γj play the role of the volume measure in the Bühlmann-Straub framework, leading to

the following assumptions.

Bühlmann-Straub Assumption (1) Given θi, the Xi,j are conditionally independent ran-

dom variables, for j = 0, 1, · · · , J .

Bühlmann-Straub Assumption (2) We assume that for i, j ∈ {0, 1, · · · , J},

E [Xi,j |θi] = γj µ(θi) and Var [Xi,j |θi] = γj v(θi)

Bühlmann-Straub Assumption (3) θi are assumed to be independent and identically dis-

tributed for i = 0, 1, · · · , I, and the pairs (Xi,j , θi) and (Xl,j , θl) are jointly independent

and identically distributed.

Let µ = E[µ(θi)]; note that this does not depend on i, as the θi are i.i.d. We also let v = E[v(θi)]

and a = Var[µ(θi)]. Then the Bühlmann-Straub estimate of E[Ci,J |DI ] is

Ĉ
BS

i,J = Zi Ĉi,J + (1− Zi)µ̂ where Zi =
β̂I−i

β̂I−i + v̂/â
and µ̂ =

I∑
i=0

Zi Ĉi,J

I∑
i=0

Zi

The estimated parameters µ̂, v̂, and â are the same for all i = 1, 2, · · · , J . The credibility factors,

Zi, are different for each accident year, because of the β̂I−i parameters.

The estimators for v and a, can be calculated using the empirical Bayes formulas (see, for
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example, Klugman et al. (2019)) as follows.

Let mi = β̂I−i; m =

I∑
i=0

mi; C =

I∑
i=0

Ci,I−i

m

For i = 0, 1, ..., I−1, s2i =
1

I − i

I−i∑
j=0

γ̂j

(
Xi,j

γ̂j
− Ĉi,J

)2

Then v̂ =
1

I

I−1∑
i=0

s2i and â =

I∑
i=0

mi

(
Ĉi,J − C

)2
− Iv̂

m− 1
m

I∑
i=0

m2
i

This method requires few assumptions, and provides an estimate for the µi in the BF equation

that is estimated from the data, and is therefore less subjective, and is also automatically

updated as new data arrives. Also, the credibility factors in the Ĉ
BS

i,J calculation reflect not only

the volume of data behind the Ĉi,J estimate, but also the volatility of the claims process within

each accident year (through v̂), and the uncertainty in the estimate of µ (through â). A major

disadvantage over the BF approach is that we have assumed a common µ for all accident years.

This assumption can be relaxed by working with per-premium claims data, rather than raw

claims, and multiplying the resulting estimate by the premiums. That means in the equations

above, Xi,j and Ci,j are replaced throughout with Xi,j/Pi and Ci,j/Pi, where Pi is the earned

premium in AY i.

Exercise 3.3.

Apply the Bühlmann-Straub model to the data in Table 2.1. Comment on the difference between

the chain ladder, BF, and BS estimates of outstanding claims for this data. Use (a) the raw

data and (b) the premium adjusted data.

Solution The estimated reserves, by accident years, are shown in the following table. We also

show the BF and CL estimates for comparison, as well as the BF and BS credibility factors. In

the column headers, BS2 is the Bühlmann-Straub estimate without premium adjustment, and

BS2PA is the estimate with premium adjustment. The credibility factors are the iterated (Z∗
i )

factors.
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R̂i R̃BF R̂BS2 R̂BS2PA ZBF
i ZBS2

i ZBS2PA
i µBF

i µBS−raw
i µBS−pa

i

1 3 3 3 3 0.9996 1.0000 0.9999 7530 8669 7613

2 9 10 9 9 0.9986 0.9999 0.9996 7523 8669 7606

3 31 29 31 30 0.9962 0.9997 0.9988 7582 8669 7666

4 56 63 57 58 0.9919 0.9994 0.9975 7752 8669 7838

5 134 124 134 131 0.9847 0.9988 0.9953 8088 8669 8177

6 247 209 246 236 0.9727 0.9979 0.9916 7659 8669 7743

7 547 512 540 538 0.9477 0.9958 0.9836 9785 8669 9893

8 1222 1224 1205 1235 0.8823 0.9900 0.9610 10404 8669 10519

9 4399 4852 4275 4640 0.6145 0.9547 0.8396 12589 8669 12728

Total 6648 7026 6499 6881

Note that the estimates are all fairly similar. The BF values are higher, as the weights for the

later AYs are quite low, pushing the estimated cumulative claims towards the (higher) subjective

µi values. The Bühlmann-Straub µi values for the raw data are all the same, based on the

common µ̂ value estimated from the run-off data. This is too low for the later accident years,

which are the most critical, so the Bühlmann-Straub method (without premium adjustment)

tends to underestimate the reserve, Using the premium adjusted method improves the estimate;

in this calculation, we assume a common mean loss ratio for each accident year, and do the

Bühlmann-Straub calculations on the triangle of claims divided by earned premiums. This gives

a common estimate of the mean loss ratio for each accident year. The values of µBS−pa
i recorded

in the table are the earned premiums in each year, multiplied by the estimated loss ratio for the

table as a whole.

3.5 The Poisson model

In the Poisson model, we assume that incremental values in the run-off triangle are independent

Poisson random variables. This model is more suited to a run-off triangle of claim frequency than

claim amounts, as the claim numbers are more likely to be approximately Poisson distributed,

and the incremental claim amounts may be negative, which is not possible under the Poisson

assumption. However, the model provides an interesting perspective on the chain ladder method

and the Bornhuetter-Ferguson methods, and also provides a possible starting point for measuring

uncertainty associated with outstanding claims estimates.

The Poisson assumptions are
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Poisson Assumption (1) Xi,j are independent random variables, for all i, j ∈ {0, 1, · · · , I}.

Poisson Assumption (2) There exist parameters µi, i = 0, 1, .., I, and γj , j = 0, 1, · · · , J
such that

Xi,j ∼ Poi (µiγj) , where µi, γj > 0, and
J∑

j=0

γj = 1

The µi parameters here have a similar interpretation as in the BF method, as the expected

ultimate claims cost (or frequency) for AY i. As before, the γj parameters indicate the proportion

of ultimate claims paid in DY j.

From these assumptions, the following results immediately follow:

Ci,j and Cl,k are independent for i ̸= l (3.10)

E [Ci,j ] = µi

j∑
k=0

γk (3.11)

E [Ci,J ] = µi (3.12)

E
[
Ci,j+1

∣∣Ci,0, Ci,1, · · · , Ci,j

]
= Ci,j + µi γj+1 (3.13)

E
[
Ci,J

∣∣Ci,0, Ci,1, · · · , Ci,j

]
= Ci,j + µi

J∑
k=j+1

γk (3.14)

Noting that βj =
j∑

k=0

γk, equations (3.13) and (3.14) can be written as

E
[
Ci,j+1

∣∣Ci,0, Ci,1, · · · , Ci,j

]
= Ci,j + (βj+1 − βj)µi

E
[
Ci,J

∣∣Ci,0, Ci,1, · · · , Ci,I−i

]
= Ci,I−i + (1− βI−i)µi

The Poisson model estimate of ultimate cumulative claims for AY i is therefore

ĈP
i,J = Ci,I−i + µ̂i

J∑
k=j+1

γ̂k = Ci,I−i + µ̂i

(
1− β̂I−i

)
(3.15)

where µ̂i and γ̂j are estimated parameter values. We note that the BF assumptions are met by

the Poisson model, and we see from equation (3.15) that the Poisson estimate of Ci,J can be

written in an identical form to the BF estimator. If µ̂i is treated in this model as a prior estimate

of outstanding claims, then the estimated ultimate claims will follow the BF method. However,
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if we estimate the µi and the γj parameters from the data, DI , using maximum likelihood

estimation, then we can express the Poisson estimate similarly to the chain ladder formula, as

follows.

Because theXi,j are assumed to be independent, the likelihood function is just the product of the

probability functions for each Xi,j for i+ j ≤ I, based on the appropriate Poisson distributions,

so we have

L =
∏

i+j≤I

e−µi γj (µi γj)
Xi,j

Xi,j !

=⇒ l = logL = −
∑

i+j≤I

µi γj +
∑

i+j≤I

Xi,j (logµi + log γj)−
∑

i+j≤I

logXi,j !

=⇒ ∂l

∂µi
= −

I−i∑
j=0

γj +
1

µi

I−i∑
j=0

Xi,j

set this equal to 0 =⇒ µ̂i

I−i∑
j=0

γ̂j =
I−i∑
j=0

Xi,j = Ci,I−i (3.16)

So we have

ĈP
i,J = Ci,I−i + µ̂i

J∑
j=I−i+1

γ̂j (from (3.15))

Ci,I−i = µ̂i

I−i∑
j=0

γ̂j (from (3.16))

=⇒ ĈP
i,J = µ̂i

I−i∑
j=0

γ̂j + µ̂i

J∑
j=I−i+1

γ̂k = µ̂i

J∑
j=0

γ̂j

=

µ̂i

I−i∑
j=0

γ̂j

 ×

I−i+1∑
j=0

γ̂j

I−i∑
j=0

γ̂j

×

I−i+2∑
j=0

γ̂j

I−i+1∑
j=0

γ̂j

· · · ×

J∑
j=0

γ̂j

J−1∑
j=0

γ̂j

= Ci,I−i × f̂I−i × f̂I−i+1 × · · · × f̂J−1

where f̂k =

k+1∑
j=0

γ̂j

k∑
j=0

γ̂j

.
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This demonstrates that the Poisson model estimator, with MLE parameters, can be written in

the same form as the chain ladder estimator. Furthermore, the MLE formulae for the parameters

generate development factor estimates that are identical to the chain ladder formulas, so the

outstanding claims reserve calculated using the Poisson MLE model is identical to the reserve

using the chain ladder model (see Wüthrich and Merz (2008) for a proof of this result).

The fact that the Poisson MLE estimate of outstanding claims is identical to the chain ladder es-

timate does not mean the two models are the same. The chain ladder method is non-parametric,

and without additional assumptions offers no information about the uncertainty associated with

the estimated outstanding claims. The Poisson model assumptions are much stronger than

the chain ladder assumptions, and in fact will be too restrictive in most cases involving claim

amounts. This does not affect the estimated outstanding claims, but it does mean that any

inference with respect to uncertainty derived using the Poisson model assumptions will be very

questionable for most run-off triangle data, where the data is unlikely to be consistent with the

Poisson assumptions. The main problem is that outstanding claims data, whether by frequency

or amount, is typically significantly overdispersed, compared with the Poisson distribution - that

is, the variance is greater than the mean. That leads us to a more suitable choice, the overdis-

persed Poisson (ODP) model, which has the same mean structure as the Poisson model, –

that is, E[Xi,j ] = µi γj , but with variance incorporating an overdispersion parameter, such that

Var[Xi,j ] = ϕµiγj . Because the estimated cumulative claims depend only on the mean values of

the Xi,j , not on the variances, the outstanding claims reserve calculated using the ODP model,

with maximum likelihood estimated parameters, is identical to the Poisson estimate, which is,

as we have noted, identical to the chain ladder estimate. However, allowing for overdispersion

in the random variables will allow us to estimate the standard errors of the estimates more

accurately, compared wth the Poisson distribution. We consider the ODP model in more detail

in Chapter 5.
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Chapter 4

Mack’s model

4.1 Introduction and assumptions

The methods presented in previous sections all focus on a single point estimate for outstanding

claims, with the chain ladder providing the most recognized approach. However, it is common in

reserving to add a margin for adverse experience or for uncertainty in the parameter estimates.

Mack (1993) proposed an extension of the chain ladder method that reproduces the chain ladder

estimate of outstanding claims, but adds an assumption about the variance of the cumulative

claims that allows users to estimate the uncertainty associated with the chain ladder estimates.

This can be used in setting prudent reserves and solvency margins, and also acts as a bench-

mark to assess whether the reserve assumptions continue to be appropriate. The Mack model

assumptions are

Mack Assumption (1) Ci,j and Cl,k are independent for i ̸= l, and for all j, k.

Mack Assumption (2) For a given accident year i, {Ci,j}j=0,1,2,··· is a Markov Chain.

Mack Assumption (3) There exist fj such that E
[
Ci,j+1

∣∣Ci,j

]
= fj Ci,j .

Mack Assumption (4) There exist σ2
j such that Var

[
Ci,j+1

∣∣Ci,j

]
= σ2

j Ci,j .

Assumptions (1) and (3) are exactly the chain ladder assumptions. Assumptions (2) and (4)

are added to allow us to explore prediction uncertainty, without having to make any stronger

assumptions about specific distributions for incremental or cumulative claims.

The independence of accident years assumption, together with the Markov assumption, allow us

to replace Ci,J |DI with Ci,J |Ci,I−i, as values in DI relating to other accident years are irrelevant

47
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(Assumption (1)), and values relating to earlier development years for AY i are superfluous

(Assumption (2)).

The estimator for fj in Mack’s model is identical to the chain ladder estimate:

f̂j =

I−1−j∑
i=0

Ci,j+1

I−1−j∑
i=0

Ci,j

=

I−1−j∑
i=0

Ci,j fi,j

I−1−j∑
i=0

Ci,j

j ∈ {0, 1, · · · , J−1}

In Section 3.1 we demonstrated that f̂j is an unbiased estimator of fj .

The estimator for σ2
j in Mack’s model is

σ̂2
j =

1

I − 1− j

I−1−j∑
i=0

Ci,j

(
fi,j − f̂j

)2
for j ≤ I − 2

We state without proof that σ̂2
j is an unbiased estimator of σ2

j . We see that f̂j is a weighted

mean of the sample development factors, and σ̂2
j is a weighted variance.

If J = I (which is often the case) then we do not have enough information to estimate σ2
J−1, as

we only have a single observation of fi,j . Mack (1994) suggests using

σ̂2
J−1 = min

(
σ̂2
J−2, σ̂

2
J−3, σ̂

4
J−2/σ̂

2
J−3

)
Note that every individual development factor fi,j , i+j ≤ I, is an unbiased estimator of fj , and

so any weighted average of the fi,j ’s, across accident years, is also an unbiased estimate of fj .

Exercise 4.1. Calculate σ̂j for the data in Table 2.1. Use Mack’s method for σ̂8.

Solution

DY 0 1 2 3 4 5 6 7 8

σ̂j 7.028 1.907 0.330 0.288 0.290 0.162 0.026 0.052 0.026

□

Theorem 2.

Under the Mack model assumptions, f̂j is the minimum variance estimator of fj from all linear

combinations of the individual development factors, fi,j , conditional on Bj .
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Proof

Let f̃j denote a general weighted average of fi,j , for i = 0, 1, · · · , I − 1− j, i.e.

f̃j =

I−1−j∑
i=0

wi fi,j where

I−1−j∑
i=0

wi = 1

Let σ2
i,j = Var

[
fi,j
∣∣Ci,j

]
. Because claims in different accident years are assumed to be indepen-

dent, we have

Var
[
f̃j

]
=

I−1−j∑
i=0

w2
i σ

2
i,j

We want to find the wi to minimize this variance, subject to the constraint that
I−1−j∑
i=0

wi = 1.

Letting λ denote the Lagrange multiplier, we minimize

L =

I−1−j∑
i=0

w2
i σ

2
i,j − λ

(
I−1−j∑
i=0

wi − 1

)
Differentiating with respect to wk, and setting equal to 0, will give the minimum variance

weights, denoted w∗
k, for k ∈ {0, 1, · · · , I−1−j}:

∂L

∂wk
= 2wkσ

2
k,j − λ =⇒ w∗

k =
λ

2σ2
k,j

Now we use the constraint to solve and substitute for λ:

1 =

I−1−j∑
i=0

w∗
i =

λ

2

I−1−j∑
i=0

1

σ2
i,j

=⇒ λ =
2

I−1−j∑
i=0

1/σ2
i,j

=⇒ w∗
k =

1/σ2
k,j

I−1−j∑
i=0

1/σ2
i,j

This is a fairly general result, that is, for any estimator which is a weighted average of inde-

pendent unbiased estimators, the minimum variance weights are inversely proportional to the

variance of the individual estimators. To apply it in the Mack model case, we condition on

C0,j , · · · , CI−1−j,j , and use Assumption (4):

σ2
i,j =Var [fi,j |Ci,j ] = Var

[
Ci,j+1/Ci,j

∣∣Ci,j

]
=

1

C2
i,j

Var
[
Ci,j+1

∣∣Ci,j

]
=

1

C2
i,j

(
σ2
j Ci,j

)
=

σ2
j

Ci,j

=⇒ w∗
k =

Ck,j/σ
2
j

I−1−j∑
i=0

Ci,j/σ2
j

=
Ck,j

I−1−j∑
i=0

Ci,j

as required.
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□

In Section 2.2 we stated, rather vaguely, that using a weighted average of the fi,j ’s with Ci,j

weights, to estimate fj , was more efficient than taking a straight unweighted average. This

theorem provides more rigorous support for that statement.

4.2 Uncertainty measures in Mack’s model

We consider the prediction uncertainty through themean square error of prediction (MSEP)

of of Ĉi,J given DI , where Ĉi,J is the chain ladder estimate of Ci,J , based on the run-off triangle

DI . The (conditional) MSEP is defined as

MSEP
(
Ĉi,J |DI

)
= E

[(
Ci,J − Ĉi,J

)2 ∣∣Ci,I−i

]
Now, Ĉi,J |DI is not a random variable, as Ĉi,J is a function of the Ci,j values contained in the

set DI . The MSEP equation can therefore be rearranged as

MSEP
(
Ĉi,J |DI

)
= E

[
C2
i,J

∣∣Ci,I−i

]
− 2Ĉi,J E

[
Ci,J

∣∣Ci,I−i

]
+ Ĉ2

i,J

= Var
[
Ci,J

∣∣Ci,I−i

]
+
(
Ĉi,J − E

[
Ci,J

∣∣Ci,I−i

])2
(4.1)

The first term on the right side of equation (4.1) is not related to the estimator. This is

the process variance; it is innate to the claims settlement process. The second term is the

estimation error, which arises from the discrepancy between the estimated and actual values of

the conditional expected ultimate claims. Both the process and estimation error are important

in the assessment of reserve uncertainty.

4.2.1 Process variance

The model assumptions specify the relationship between cumulative claims in successive devel-

opment years, so we derive an equation for Var[Ci,J

∣∣Ci,I−i] by iteratively developing formulas

for Var[Ci,j+1

∣∣Ci,j ], as follows.

Assume that we know Ci,j . Then from the model assumptions, for one-step ahead we have

Var
[
Ci,j+1

∣∣Ci,j

]
= σ2

j Ci,j (4.2)
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For two steps ahead, we condition first on Ci,j+1, and then on Ci,j :

Var
[
Ci,j+2

∣∣Ci,j

]
= E

[
Var

[
Ci,j+2

∣∣Ci,j+1

] ∣∣∣∣Ci,j

]
+Var

[
E
[
Ci,j+2

∣∣Ci,j+1

] ∣∣∣∣Ci,j

]
From the model assumptions, we know that

Var
[
Ci,j+2

∣∣Ci,j+1

]
= Ci,j+1 σ

2
j+1 and E

[
Ci,j+2

∣∣Ci,j+1

]
= Ci,j+1 fj+1

so

Var
[
Ci,j+2

∣∣Ci,j

]
= E

[
Ci,j+1 σ

2
j+1

∣∣Ci,j

]
+Var

[
Ci,j+1 fj+1

∣∣Ci,j

]
(4.3)

= σ2
j+1Ci,j fj + f2

j+1 σ
2
j Ci,j (4.4)

Now we move another step ahead, conditioning first on Ci,j+2 and then on Ci,j :

Var
[
Ci,j+3

∣∣Ci,j

]
= E

[
Var

[
Ci,j+3

∣∣Ci,j+2

] ∣∣∣∣Ci,j

]
+Var

[
E
[
Ci,j+3

∣∣Ci,j+2

] ∣∣∣∣Ci,j

]
= E

[
σ2
j+2Ci,j+2

∣∣Ci,j

]
+Var

[
fj+2Ci,j+2

∣∣Ci,j

]
= σ2

j+2E
[
Ci,j+2

∣∣Ci,j

]
+ f2

j+2Var [Ci,j+2|Ci,j ] (4.5)

= σ2
j+2Ci,j fj fj+1 + f2

j+2

(
σ2
j+1Ci,j fj + f2

j+1 σ
2
j Ci,j

)
(from (4.4)) (4.6)

= σ2
j+2 fj fj+1Ci,j + σ2

j+1f
2
j+2 fj Ci,j + σ2

j f
2
j+1 f

2
j+2Ci,j (4.7)

We see the iterative nature of the calculation in (4.5) and (4.6), where we slot the result of the

previous iteration into the formula.

Exercise 4.2. Show that

Var
[
Ci,j+4

∣∣Ci,j

]
=σ2

j+3 fj fj+1 fj+2Ci,j + σ2
j+2 fj fj+1 f

2
j+3Ci,j

+ σ2
j+1 fj f

2
j+2 f

2
j+3Ci,j + σ2

j f
2
j+1 f

2
j+2 f

2
j+3Ci,j

□

We can use the iteration to derive the following general equation for Var[Ci,j+K |Ci,j ], which we
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rearrange in order to make the calculation easier, as follows.

Var [Ci,j+K |Ci,j ] = σ2
j Ci,j f

2
j+1 · · · f2

j+K−1 +
K−1∑
k=1

σ2
j+k Ci,j (fj · · · fj+k−1)

(
f2
j+k+1 · · · f2

j+K−1

)
=

K−1∑
k=0

σ2
j+k

fj+k

(
Ci,j fj fj+1 · · · fj+K−1

) (
fj+k+1 fj+k+2 · · · fj+K−1

)
=

K−1∑
k=0

σ2
j+k

f2
j+k

(
Ci,j fj fj+1 · · · fj+K−1

)2(
Ci,j fj fj+1 · · · fj+k−1

)
The reason for this rearrangement is that

(
Ci,j fj fj+1, · · · fj+k−1

)
= E[Ci,j+k|Ci,j ], which means

that the process variance can be written as

Var [Ci,j+K |Ci,j ] = E
[
Ci,j+K

∣∣Ci,j

]2 K−1∑
k=0

σ2
j+k

f2
j+k E [Ci,j+k|Ci,j ]

.

In the context of the run off triangle, we are estimating the variance of Ci,J , given the latest

development year claims data, Ci,I−i, so we have

Var [Ci,J |Ci,I−i] = E
[
Ci,J

∣∣Ci,I−i

]2 J−1∑
j=I−i

σ2
j

f2
j E [Ci,j |Ci,I−i]

. (4.8)

To estimate the process variance, we approximate E[Ci,J |CI−i] with Ĉi,J , fj with f̂j , and σ2
j

with σ̂2
j , giving

Var [Ci,J |Ci,I−i] ≈ Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉi,j

. (4.9)

The process variance for the estimated outstanding claims from AY i is therefore estimated as

Var [Ci,J − Ci,I−i|Ci,I−i] = Var [Ci,J |Ci,I−i] ≈ Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉi,j

. (4.10)

The total process variance for the outstanding claims is just the sum of the variances for indi-

vidual AY’s, as the accident years are assumed to be independent.
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Exercise 4.3. Calculate the estimated process standard deviation for the outstanding claims

from each AY in Table 2.1.

Solution

AY 1 2 3 4 5 6 7 8 9√
Process Variance 2.23 4.69 5.67 14.53 31.70 42.36 56.72 200.72 699.44

Note that in this case, most of the uncertainty in the outstanding claims estimate is generated

by the latest accident year. □

4.2.2 Estimation error, individual AY

The estimation error is measured in the second term in the MSEP,
(
Ĉi,J − E [Ci,J |DI ]

)2
. This

term is more complicated to work with, as most of what we know about E [Ci,J |DI ] is already

contained in Ĉi,j . Several methods have been proposed to to estimate this term, all involving

either additional assumptions, or some substantial approximation. In this note, we follow the

original approach from Mack (1993), which analyzes the impact of successive discrepancies be-

tween estimated and underlying development factors, and estimates that impact by successively

conditioning on all the information available up to the latest relevant development year.

Theorem 3.

(
Ĉi,J − E [Ci,J |DI ]

)2
≈ Ĉ2

i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Sj

where Sj =

I−j−1∑
i=0

Ci,j . (4.11)

See the Appendix for a proof of this result.

The function Sj is the sum of the column j cumulative claims from the run-off triangle, excluding

the most recent value. It is the denominator in the calculation of f̂j .

Exercise 4.4. Calculate the square root of the estimation error for each AY for the data in

Table 2.1.

Solution
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AY 1 2 3 4 5 6 7 8 9√
Estimation error 2.13 3.36 4.31 7.53 16.31 20.84 28.28 81.93 274.66

□

4.2.3 MSEP for aggregate outstanding claims

MSEP by accident year

We can combine the process variance and the estimation error into a single term for the condi-

tional MSEP for accident year i,

MSEP
(
Ĉi,J |DI

)
= MSEP (R̂i|DI) ≈ Ĉ2

i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉi,j︸ ︷︷ ︸

Process variance

+ Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Sj︸ ︷︷ ︸

Estimation error

≈ Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j

 1

Ĉi,j

+
1

Sj

 (4.12)

MSEP aggregated over accident years

Because the individual accident years are independent, we can add the process variance terms

from the individual AYs for the aggregate process variance:

Var [R|DI ] = Var
[
C1,J + C2,J + . . .+ CI,J

∣∣DI

]
≈

I∑
i=1

Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Ĉi,j

(from equation (4.10))

However, we cannot add the MSEPs for the individual accident years together for an aggregate

MSEP, because the estimated Ĉi,J values are not independent – they are all functions of over-

lapping subsets of {f̂0, f̂1, · · · , f̂J−1}. We therefore have some covariance terms to consider, as
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follows.

MSEP
(
R̂
∣∣DI

)
=Var

[
R
∣∣DI

]
+
(
R̂− E

[
R
∣∣DI

])2
(
R̂− E

[
R
∣∣DI

])2
=
(
Ĉ1,J + Ĉ2,J + . . .+ ĈI,J − E

[
C1,J + C2,J + . . .+ CI,J

∣∣DI

])2
=

I∑
i=1

(
Ĉi,J − E

[
Ci,J

∣∣DI

])2
+ 2

I−1∑
i=1

I∑
l=i+1

(
Ĉi,J − E

[
Ci,J

∣∣DI

]) (
Ĉl,J − E

[
Cl,J

∣∣DI

])
The terms in the first sum on the right side are the individual accident year estimation errors,

which we estimate using equation (4.11). The second term is a covariance term, which Mack

approximates using the same approach as the estimation errors, giving the approximation for

any i, l such that 1 ≤ i < l ≤ I

(
Ĉi,J − E

[
Ci,J

∣∣DI

]) (
Ĉl,J − E

[
Cl,J

∣∣DI

])
≈ Ĉi,J Ĉl,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Sj

Putting all the pieces together, we have an approximation for the aggregate MSEP for the

outstanding claims, given DI :

MSEP
(
R̂
∣∣DI

)
=

I∑
i=1

(
Var[Ci,J

∣∣DI ] +
(
Ĉi,J − E

[
Ci,J

∣∣DI

])2)
+ 2

I−1∑
i=1

I∑
l=i+1

(
Ĉi,J − E

[
Ci,J

∣∣DI

]) (
Ĉl,J − E

[
Cl,J

∣∣DI

])

≈
I∑

i=1

Ĉ2
i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j

 1

Ĉi,j

+
1

Sj

+ 2

I−1∑
i=1

Ĉi,J

 J−1∑
j=I−i

σ̂2
j

f̂2
j Sj

 (
I∑

l=i+1

Ĉl,J

)

The square root of the MSEP is the standard error of the estimated outstanding claims reserve.

Example 4.1.

(a) Estimate the standard error of R̂
∣∣DI , for the data in Table 2.1.

(b) Identify the contribution to the standard deviation of the estimation error.

(c) Comment on the impact of the covariance term.
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Solution

(a) We have calculated the individual AY process variance and estimation error in previous

exercises. The total of the process variance terms for the individual accident years is

535, 794. The total of the individual AY estimation errors is 83, 739.

Let ξj = σ̂2
j /(f̂

2
j Sj). Then the contribution to the covariance terms for i = 1 to i = 8 is

i = 1, I−i = 8 :

2 Ĉ1,9 ξ8

(
Ĉ2,9 + Ĉ3,9 + . . .+ Ĉ9,9

)
= 89.27

i = 2, I−i = 7 :

2 Ĉ2,9 (ξ7 + ξ8)
(
Ĉ3,9 + Ĉ4,9 + . . .+ Ĉ9,9

)
= 222.97

i = 3, I−i = 6 :

2 Ĉ3,9 (ξ6 + ξ7 + ξ8)
(
Ĉ4,9 + Ĉ4,9 + . . .+ Ĉ9,9

)
= 265.93

...

i = 8, I−i = 1 :

2 Ĉ8,9 (ξ1 + ξ2 + . . .+ ξ8)
(
Ĉ9,9

)
= 14, 751.01

The total of the covariance terms is 25, 083.82.

Summing the three parts of the MSEP gives an aggregate estimated MSEP of 644, 617, so

the standard error is 802.9.

(b) The estimated aggregate process standard deviation is
√

535, 794 = 732.0. The difference

between the aggregate MSEP and the aggregate SD is the contribution from estimation

error, which in this case is 70.9.

(c) If we had ignored the covariance term, we would have estimated the aggregate standard

error as
√
535, 794 + 83, 739 = 787.1, so the covariance term increased the standard error

by 15.8 which is around 2.0% of the total.

□

Exercise 4.5.

Calculate the estimated process variance and standard error for the outstanding claims reserves

from the run-off triangles in Table 2.5. Comment on the differences between the short tail and

long tail results.
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4.3 Mack’s Model in R

The ChainLadder package in R (Gesmann et al., 2022) can be used to fit Mack’s model to

run-off data. First use the triangle command to create an object recognized as a triangle from

the vectors of cumulative claims paid. A summary of the Mack model results described in this

chapter, for a run-off triangle called ROT is obtained using the command

MackChainLadder(ROT,est.sigma="Mack")

Using the data from Table 2.1 generates the output shown in Table 4.1. Details of the output

are as follows.

� The first column is the AY, but note that the earliest AY is labelled 1 in the R output,

where we have used AY0 for the first accident year.

� The second column shows the cumulative claims from the run-off data, up to the latest

CY, for each AY.

� The third column gives β̂I−i, which is the estimated proportion of total claims paid to

date for AY i.

� The fourth column gives Ĉi,J , the estimated total claims paid by the end of DY J in

respect of AY i.

� The fifth column gives the outstanding claims for AY i, which is calculated by subtracting

the second column from the fourth column. Note the use of ‘IBNR’ for the full outstanding

claims reserve. In this note we have reserved IBNR for unreported claims, but it is also

used by many practitioners for the full outstanding claims estimate.

� The sixth column shows the AY standard errors. This is is the square root of the MSEP

value for each AY, using equation (4.12).

� The seventh column shows the coefficient of variation for each AY, calculated as the ratio

of the column 4 and column 5 values.

� The ‘Latest’ value under the totals header is the total cumulative claims to date for the

given accident years, which is the sum of the column 2 values.

� The ‘Ultimate’ value is estimated total cumulative claims from the given accident years.

It is the sum of the column 4 value.
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MackChainLadder(Triangle = ROT, est.sigma = "Mack")

Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1 7,950 1.000 7,950 0.00 0.00 NaN

2 7,292 1.000 7,295 2.75 3.08 1.120

3 6,587 0.999 6,596 8.98 5.78 0.643

4 7,960 0.996 7,991 30.63 7.12 0.232

5 6,887 0.992 6,943 56.18 16.36 0.291

6 8,620 0.985 8,754 134.15 35.65 0.266

7 8,800 0.973 9,047 246.53 47.20 0.191

8 9,915 0.948 10,462 546.96 63.37 0.116

9 9,164 0.882 10,386 1,222.18 216.79 0.177

10 7,014 0.615 11,413 4,399.33 751.44 0.171

Totals

Latest: 80,189.00

Dev: 0.92

Ultimate: 86,836.69

IBNR: 6,647.69

Mack.S.E 802.88

CV(IBNR): 0.12

Table 4.1: R output using MackChainLadder(ROT,est.sigma=‘‘Mack’’) ROT is the Table 2.1

data triangle.

� The ‘Dev’ value is the ratio of the ’Latest’ total to the ’Ultimate’ total, representing the

estimated proportion of losses already paid.

� the ‘IBNR’ value is the total estimated outstanding claims. this is the difference between

the ’Ultimate’ and ’Latest’ totals, and is also the sum of the column 5 values.

� The ‘Mack S.E.’ is the estimated aggregate standard error of the outstanding claims esti-

mate, including the covariance term.

� The ‘CV(IBNR)’ value is the ratio of the estimated outstanding claims to the estimated

standard error of the outstanding claims.

The ChainLadder package will also generate diagnostic plots from fitting data to Mack’s model.

Figure 4.1 was produced using the command:

plot(MackChainLadder(ROT,est.sigma="Mack"))
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� The top left plot of Figure 4.1 shows the cumulative paid and forecast outstanding claims

by AY (where AY 0 is labelled as Origin Period 1), with box and whiskers plots for the

outstanding claims. We see that the last two accident years are responsible for almost all

of the outstanding claims liability MSEP.

� The top right plot shows the actual and projected cumulative claims paid by development

period. In this plot we are looking for changes in the shape of the settlement pattern. As

mentioned earlier, there is some evidence of an AY effect, in that the earlier accident years

are largely in the lower part of the graph, and the later accident years in the upper part.

The next four plots are all standardized residuals. R calculates the standardized residuals taking

into consideration the uncertainty in the parameter estimates.

The fitted cumulative claim values used to calculate the residuals are Ĉi,j+1 = Ci,j × f̂j for

i ∈ {0, 1, ..., I − 1}, j = 0, ..., I − i− 1 (that is, for the cumulative claims in DI).

The residuals are ei,j = Ci,j+1 − Ĉi,j+1 (we are implicitly conditioning on Ci,j).

The variance of ei,j is σ2
j × Ci,j ×

(
1 − Ci,j/Sj

)
. The first two terms represent the variance of

Ci,j+1|Ci,j , but the residual variance is smaller, as Ci,j is used in Ĉi,j+1, through the f̂j term.1

The standardized residuals plotted by R are calculated as

ri,j =
Ci,j − Ĉi,j√

σ2
j−1Ci,j−1

(
1− Ci,j−1/Sj−1

) =

(
fi,j−1 − f̂j−1

)
C0.5
i,j−1

σj−1

√
1− Ci,j−1/Sj

If the data are consistent with the model the standardized residuals should be independent and

approximately N(0,1) distributed.

� The middle left plot shows the residuals against the Ĉi,j values, along with a fitted trend

line that indicates higher residuals for smaller values of Ĉi,j .

� The middle right plot shows the residuals by AY. The trend is similar to the middle left

plot, because the higher Ĉi,j are associated with the later accident years.

� The bottom right plot shows residuals by calendar year. Note that for this plot, we have

more data on the right side, representing the most recent calendar years. Again, we see a

slight decreasing trend.

1The Ci,j/Sj term is the leverage associated with the Ci,j value in the Mack model regression.
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� The bottom left plot shows residuals by development year. There is no indication from

this plot that settlement patterns have significantly changed over the period of these data.

The decreasing trends of residuals by fitted values, AY and CY suggests that some further

investigation of the data might be reasonable.

Exercise 4.6. Figure 4.2 shows the R diagnostic graphs resulting from fitting Mack’s model to

the long-tail data from Table 2.5. Comment on the major differences between the results for

this data, compared with the results for the Table 2.1 data, shown in Figure 4.1.
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Figure 4.1: Results and diagnostic graphs for the Mack model, applied to the Table 2.1 data.
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Figure 4.2: Results and diagnostic graphs for the long-tailed data in Table 2.5 data, Mack’s

model.



Chapter 5

The overdispersed Poisson model

The Mack model is non-parametric, in the sense that we do not assume any distributional models

for incremental or cumulative claims. In Chapter 3 we mentioned that both the Poisson and

the overdispersed Poisson (ODP) models, with maximum likelihood estimated parameters, are

parametric models which give identical values for estimated outstanding claims as the chain

ladder method. Given a parametric model that is an adequate fit to the data, we can use the

distributional information to estimate standard errors of the outstanding claims projections.

Typically, the Poisson model has too small a variance compared with the data, even for claim

number triangles, but the overdispersed Poisson is a more viable model that provides us with

an alternative to Mack’s formulas for estimating standard errors.

The ODP assumptions are

ODP Assumption (1) Xi,j are independent random variables for all i, j.

ODP Assumption (2) There exist parameters µi, i = 0, 1, .., I; γj , j = 0, 1, · · · , J , and ϕ such

that Xi,j ∼ODP, with E[Xi,j ] = µi γj and Var[Xi,j ] = ϕµiγj .

The µi and γj parameters here play the same role as in the Poisson model assumptions in

Chapter 3. However, it is more convenient to formulate the ODP as a generalized linear model

(GLM), with a log-link function, which means that we model the mean as a linear function of

the log of the random variable, rather than a multiplicative function of the random variable

itself. For the GLM formulation then, we assume there exist parameters:

c > 0; ϕ > 0; αi, i = 0, 1, · · · , I, with α0 = 0; βj , j = 0, 1, · · · , J ; with β0 = 0, such that

E [Xi,j ] = ec+αi+βj ; Var [Xi,j ] = ϕ ec+αi+βj .
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Mack Model OPD

AY i OCR Standard error CV OCR Standard error CV

1 3 3.08 1.12 3 12.34 4.11

2 9 5.78 1.04 9 19.99 2.22

3 31 7.12 0.33 31 36.08 1.16

4 56 16.36 0.32 56 46.33 0.83

5 134 35.65 0.27 134 72.03 0.54

6 247 47.20 0.24 247 96.42 0.39

7 4547 63.40 0.14 547 144.45 0.26

8 1222 216.79 0.22 1222 218.70 0.18

9 4399 751.44 0.22 4399 490.34 0.11

Totals 6648 802.88 0.12 6648 637.44 0.10

Table 5.1: Mack’s model and ODP model compared, for Table 2.1 data. Output from R Chain-

Ladder package (Gesmann et al., 2022)

.

The α0 and β0 parameters are set to 0 to avoid over-parametrisation.

The technical details of GLM estimation and model fitting are beyond the scope of this note,

but we can utilize the ChainLadder package in R (Gesmann et al., 2022) to see the results and

diagnostics from fitting the ODP model with maximum likelihood parameter estimates, using

the glmReserve function.

In Table 5.1 we present the results for estimated outstanding claims (OCR), standard errors by

AY, and coefficient of variation (standard error/estimated outstanding claims) using the OPD

and Mack model.

As expected, the OCR estimates are identical. The expected value under the ODP model is

the same as the expected value under a regular Poisson model, and we noted in Chapter 3 that

this perfectly replicated the chain ladder model, given that we have used MLE parameters. The

Mack model standard errors are higher overall, but much lower for the early accident years.

One advantage of the parametric approach is that the assumptions and model are well defined,

and can be tested. The model fitting process generates estimates for c, αi and βj , along with

standard errors of the estimates. The results for the adjusted Table 2.1 data are given in Table

5.2. The table makes it clearer that this is a highly parametrized model. We also note that, there

is a significant AY effect, particularly for the most recent years. The algorithm also generates

the estimated dispersion parameter, ϕ̂ = 28.8, and the null and residual deviance. In our case,

the null deviance is 138,709 on 54 degrees of freedom, and the residual deviance is 1,017 on 36
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Parameter Estimate SE t-value p-value significant?

c 8.4941 0.06235 136.243 <2e -16 ***

α̂1 -0.0860 0.08705 -0.988 0.330

α̂2 -0.1867 0.08946 -2.087 0.044 *

α̂3 0.0051 0.08516 0.060 0.953

α̂4 -0.1354 0.08843 -1.531 0.134

α̂5 0.0964 0.08357 1.153 0.257

α̂6 0.1292 0.08321 1.553 0.129

α̂7 0.2746 0.08106 3.387 0.002 **

α̂8 0.2673 0.08272 3.231 0.003 **

α̂9 0.3616 0.08942 4.044 3e -4 ***

β̂1 -0.8307 0.04526 -18.354 <2e -16 ***

β̂2 -2.2405 0.08641 -25.928 <2e -16 ***

β̂3 -3.2008 0.14791 -21.641 <2e -16 ***

β̂4 -3.9421 0.23229 -16.971 <2e -16 ***

β̂5 -4.4422 0.33072 -13.432 1e -15 ***

β̂6 -4.9723 0.47763 -10.41 2e -12 ***

β̂7 -5.5157 0.73160 -7.539 6e -9 ***

β̂8 -6.4371 1.38683 -4.642 5e -5 ***

β̂9 -7.3954 3.09995 -2.386 0.022 *

Table 5.2: Parameter estimates for ODP fit of Table 2.1 incremental data. Significance codes:

< 0.001, *** ; (0.001, 0.01] , **; (0.01, 0.05], *; (0.5, 0.1], ◦.

degrees of freedom, which means that the model has accounted for over 99% of the deviance.

In Figure 5.1 the QQ plot of the residuals indicates that they are somewhat more disperse than

they would be if the model completely explained the systematic variance, especially in the right

tail. The lower plot shows the residuals against the fitted claim values – but note that the fitted

values are incremental, not cumulative, so this plot cannot be directly compared with the fitted

value - residual plot on the previous section, which fitted cumulative, not incremental values.

The plot does not indicate any systematic correlation or non-normality in the residuals.
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Figure 5.1: QQ plot of residuals vs N(0,1) quantiles, Table 2.1 data, ODP model.

0 1000 2000 3000 4000 5000 6000 7000

−1
0

1
2

Fitted Values

S
t. 

R
es

id
ua

ls

Figure 5.2: Plot of residuals vs fitted values (incremental), Table 2.1 data, ODP model.



Chapter 6

Frequency-severity models

In the previous section, we have used the run-off triangle of aggregate claims to project the

ultimate cumulative claims. It is sometimes useful to separate the analysis of outstanding claim

counts, from the outstanding claim severity. The separate analyses can reveal trends or outliers

that are not apparent from the aggregate table; it may be useful to track the relationship between

the settlement delay, and the ultimate cost of a claim. It may also be more straightforward to

accommodate changes in claims processing, or in the nature of the underlying risks, using this

approach.

The principle of the frequency-severity approach is straightforward, though the severity estima-

tion is often rather ad hoc. While the chain ladder approach is generally quite suited to claim

number data, it does not work well when applied to average costs per claim. These numbers are

not cumulative, and the chain ladder works best when estimating a cumulative process, with,

typically, decreasing increments after some initial period.

We illustrate the methods described in this section with the example short-tailed run-off triangle

of cumulative claims shown in Table 6.1. In Table 6.2 we show the run-off triangles for the

cumulative reported claim numbers, and settled claim numbers underlying the data in Table

6.1. A claim is deemed to be reported as soon as the insurer is informed of a loss event; it is

not settled until the claim is fully paid and closed.

6.1 Claim frequency

The projection of claim numbers usually follows the chain ladder method. If we work with

reported claims, then the tail may be quite short, even for some long-tailed business, if the
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DY

AY 0 1 2 3 4

0 168,830 442,760 1,062,807 1,311,257 1,333,517

1 177,540 436,618 873,088 1,013,083

2 203,860 499,301 1,027,061

3 215,988 405,472

4 191,753

Table 6.1: Example cumulative claims run-off triangle for frequency-severity section.

DY, Reported claims DY, Settled claims

AY 0 1 2 3 4 0 1 2 3 4

0 315 44 0 0 0 95 150 90 23 1

1 325 30 0 0 97 148 84 25

2 341 30 1 99 163 76

3 330 32 97 137

4 315 83

Table 6.2: Incremental numbers of claims reported and settled by AY and DY, for aggregate

loss data from Table 6.1.
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delays are mostly in the processing, rather than the reporting stage. If we work with settled

claims, that is, we use the chain ladder to project the number of claims that are fully paid and

closed in each development year, then we will have a long tail, and we may have very little data

in the early years if the settlement process is prolonged, even if claims are reported promptly.

Projecting both triangles from Table 6.2, using the chain ladder method, gives the estimates in

Table 6.3.

AY DY, Reported claims DY, Settled claims

i 0 1 2 3 4 AY 0 1 2 3 4

0 315 359 359 359 359 0 95 245 335 358 359

1 325 355 355 355 355 1 97 245 329 354 355

2 341 371 372 372 372 2 99 262 338 362 363

3 330 362 362 362 362 3 97 234 312 334 335

4 315 348 348 348 348 4 83 211 281 301 302

Table 6.3: Cumulative projected numbers of claims reported and settled by AY and DY. Table

6.2 data.

We see that applying the chain ladder to the settled claims data gives projections that are

inconsistent with the reported claims projections. For example, for AY 4, the projected number

of settled claims by DY 4 is less than the number of reported claims in DY 0, even though we

are assuming that all claims are settled by the end of DY 4.

A better approach to projecting the settled claims numbers is to use the settled claim incremental

triangle to estimate the proportion of claims settled in each DY, and apply these proportions

to the projected total cumulative numbers from the reported claim chain ladder values. The

estimated proportion of claims settled in year j is γ̂j ; we can calculate the γ̂j from the settled

claims triangle, as

γ̂s0 = β̂s
0; γ̂sj = β̂s

j − β̂s
j−1 j = 1, 2, 3, ..., J

Let Ĉr
i,J denote the cumulative ultimate reported claims for AY i, and let X̃s

i,j denote the

estimated incremental settled claims for i+ j > I. Then we can estimate Xs
i,j by combining the

γsj with the Ĉr
i,J , as

X̃s
i,j = γ̂sj Ĉ

r
i,j

The resulting cumulative settled claims triangle is given in Table 6.4.
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AY DY, Settled claims

i 0 1 2 3 4

0 95 245 335 358 359

1 97 245 329 354 355

2 99 262 338 363 364

3 97 234 346 371 372

4 83 243 324 347 348

Table 6.4: Cumulative projected numbers of claims settled, using reported ultimate claims

numbers, and γ̂j from the settled claim run-off triangle; Table 6.2 data.

6.2 Claim severity

The simplest approach to estimating claim severity is to calculate cumulative average severity

for each accident year by dividing the cumulative claims by the projected cumulative claims

settled. In Table 6.5 we show the cumulative averages, corresponding to the claim frequency

tables above, using the Table 6.1 data above.

This does not provide much information. The average severity triangle does not generate well-

behaved development factors, and there is no reason to suppose that the chain ladder assump-

tions apply. However, the use of the chain ladder as a heuristic is still quite common. The

resulting projected average severity by accident year, and estimated OCR, are given in Table

6.6.

Average cost per settled claim

AY 0 1 2 3 4

0 1777.2 1807.2 3172.6 3662.7 3714.5

1 1830.3 1782.1 2653.8 2861.8

2 2059.2 1905.7 3038.6

3 2226.7 1732.8

4 2310.3

Table 6.5: Average severity per cumulative claim settled, using Table 6.1 claims data and Table

6.2 claim number data.

A more appropriate approach is to use the average severity by development year of settlement,

because in many lines of business, longer delays signal higher expected severity. Long delays

are associated with more complex claim underwriting and processing, caused, for example, by
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AY Average Projected

Severity Claim numbers Freq × Severity R̂i

0 3714.5 359 1,333,517 0

1 2902.3 355 1,030,313 17,231

2 3450.9 372 1,283,742 256,681

3 3174.7 362 1,150,314 744,841

4 3875.9 348 1,348,801 1,157,049

Total 2,175,801

Table 6.6: Estimated OCR; frequency-severity approach; chain ladder projected average severity;

Table 6.1 and 6.5 data.

uncertain medical outcomes in cases of severe injury, or by protracted legal proceedings, each of

which signals a higher expected claim severity.

We can explore the claim severity by settlement year using the incremental settled claim numbers

from the claim frequency analysis. In Table 6.7 the ratio of the incremental payments in DY

j to the number of claims settled in DY j. the incremental claim amounts are determined by

subtracting successive cumulative claim values in Table 6.1, and the number of claims settled in

each year is obtained by subtracting successive settled claim numbers from Table 6.3.

Ave incremental cost per settled claim

AY 0 1 2 3 4

0 1,777 1,826 6,889 10,802 22,260

1 1,830 1,751 5,196 5,600

2 2,059 1,813 6,944

3 2,227 1,383

4 2,310

Average 2,041 1,693 6,343 8,201 22,260

Table 6.7: Average severity per incremental claim settled; Table 6.1 and 6.3 data.

Table 6.7 shows much more clearly the impact of settlement delay on the average claims, com-

pared with Table 6.5. We can now combine the average severity for each DY with the projected

settled claim counts by DY, from the claim frequency analysis, to estimate the outstanding

claims reserve. Some intermediate calculations are given in Table 6.8. We see that, although

this method has captured the increasing claim size by development year of settlement, it relies
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DY Average Outstanding

Severity Claim numbers R̂i

0 2,041 0 0

1 1,693 128 216,584

2 6,343 148 938,798

3 8,201 67 549,466

4 22,260 4 89,040

Total 1,793,888

Table 6.8: Average severity and incremental frequency of settled claims by DY. Table 6.2 and

6.5 data.

quite heavily on the single entry for claim numbers in AY 4, and the single entry for claim size

in DY 4.

In Table 6.9 we compare results from the two approaches described here, and from the standard

chain ladder method. Column (1) uses the chain ladder estimates of cumulative average severity,

and chain ladder estimates of claim numbers, using the reported claims triangle. Column (2)

uses the incremental average severity by development year of settlement, together with the

same projected claim numbers as column (1), and column (3) uses the aggregate chain ladder

approach. The incremental average severity approach can be useful, particularly if average

severities are changing, for example, through changing claims inflation expectations.

AY Chain ladder of Average severity by Chain ladder,

aggregate severity settlement DY aggregate claims

(1) (2) (3)

0 0 0 0

1 17,231 22,260 17,198

2 256,681 219,084 227,018

3 744,841 705,655 658,333

4 1,157,049 846,890 979,933

Total 2,175,801 1,793,888 1,882,701

Table 6.9: Estimated OCR, using two different frequency-severity methods, and using the ag-

gregate chain ladder method . Table 6.2 and 6.5 data.
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Appendix A

Proof of Theorem 3

Let Tj = f̂I−i f̂I−i+1...f̂j−1

(
fj − f̂j

)
fj+1 fj+2...fJ−1

= f̂I−i f̂I−i+1...f̂j−1 fj fj+1... fJ−1 − f̂I−i f̂I−i+1...f̂j−1 f̂j fj+1... fJ−1

If we sum the Tj , we find successive terms cancel out, leaving the first part of TI−i and the last

part of TJ−1, i.e.

J−1∑
j=I−i

Tj = fI−i fI−i+1 ... fJ−1 − f̂I−i f̂I−i+1 ... f̂J−1

=⇒ Ci,I−i

 J−1∑
j=I−i

Tj

 = Ci,I−i fI−i fI−i+1 ... fJ−1 − Ci,I−i f̂I−i f̂I−i+1 ... f̂J−1

= Ĉi,J − E [Ci,J |DI ]

=⇒ C2
i,I−i

 J−1∑
j=I−i

Tj

2

=
(
Ĉi,J − E [Ci,J |DI ]

)2
.

Now

 J−1∑
j=I−i

Tj

2

=

J−1∑
j=I−i

T 2
j + 2

J−2∑
j=I−i

J−1−j∑
k=j+1

Tj Tk

=⇒
(
Ĉi,J − E [Ci,J |DI ]

)2
= C2

i,I−i

 J−1∑
j=I−i

T 2
j + 2

J−2∑
j=I−i

J−1−j∑
k=j+1

Tj Tk


At this point, we need to approximate T 2

j for j = I− i, I− i+1, ..., J−1, and Tj Tk, for j, k such
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that I − i ≤ j < k and j + k ≤ J − 1. We do this in each case by taking conditional expected

values.

� For Tj , Tk, k ≥ j+1, we condition on Bk. Note that because j < k, Bk contains all the Ci,r

used in Tj , so E[Tj |Bk] = Tj . It also contains all the Ci,r used in Tk, except for the terms

in Ci,k+1 used in the numerator of f̂k. This means that f̂k is the only random variable in

the conditional expectation Tj Tk

∣∣Bk, so that

E
[
Tj Tk

∣∣Bk

]
= TjE

[
Tk

∣∣Bk

]
∝ E

[
(fk − f̂k)|Bk

]
From Theorem 1 we know that f̂k

∣∣Bk is an unbiased estimator of fk, so

E
[
(fk − f̂k)|Bk

]
= 0 =⇒ E

[
Tj Tk

∣∣Bk

]
= 0

� For T 2
j we condition on Bj , which means that f̂j is the only random variable in the

conditional expectation E[T 2
j

∣∣Bj ], i.e.

E
[
T 2
j

∣∣Bj

]
=
(
f̂I−i f̂I−i+1 ... f̂j−1

)2
E
[
(fj − f̂j)

2
∣∣Bj

] (
fj+1 fj+2 ... fJ−1

)2
=
(
f̂I−i f̂I−i+1 ... f̂j−1

)2
Var

[
f̂j
∣∣Bj

] (
fj+1 fj+2 ... fJ−1

)2
because f̂1, ..., f̂j−1 are all known when conditioning on Bj , and fj+1 fj+2 ... fJ−1 are all

unknown parameters, not random variables. Note also that Sj |Bj is not a random variable,

so

Var
[
f̂j
∣∣Bj

]
= Var


I−1−j∑
l=0

Cl,j+1

I−1−j∑
l=0

Cl,j

∣∣∣∣∣∣∣∣∣ Bj

 = Var


I−1−j∑
l=0

Cl,j+1

Sj

∣∣∣∣∣∣∣∣∣ Bj


=

1

S2
j

I−1−j∑
l=0

Cl,j σ
2
j =

σ2
j

Sj

=⇒ E
[
T 2
j

∣∣Bj

]
=

σ2
j

(
f̂I−i f̂I−i+1 ... f̂j−1 fj+1 ... fJ−1

)2
Sj

=
σ2
j

(
f̂I−i f̂I−i+1 ... f̂j−1 fj fj+1 ... fJ−1

)2
f2
j Sj
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If we approximate fk by f̂k, and σ2
j by σ̂2

j , we have

C2
i,I−i T

2
j ≈ C2

i,I−i

(
f̂I−i f̂I−i+1 ... f̂J−1

)2 σ̂2
j

f̂2
j

1

Sj

≈
Ĉ2
i,J σ̂2

j

f̂2
j Sj

Summing over the development years from j = I−i to j = J−1 gives the approximate estimation

error for AY i as(
Ĉi,J − E [Ci,J |DI ]

)2
≈ Ĉ2

i,J

J−1∑
j=I−i

σ̂2
j

f̂2
j Sj

(A.1)




