Use of Goal-Setting and Executive Function to Enhance Student Performance Russell Jay Hendel Towson University RHendel@Towson.Edu

Actuarial Teaching Conference (ATC) June 27 2019, 3:50 -4:30 PM

Outline

I: Intro (Goal Setting, Executive Function)

II: FM Examples

Goal SettingExecutive Function

GOAL SETTING means

Dividing
 A Complex Task
 Into a sequence of
 Subtasks

 EXAMPLES: Graphing (Calculus); Advertising Efficacy (Stat 101); Approximating a Bond price from interest rate changes (FM)

Good Goalsetting means

- On average
- class performance AND satisfaction
- are bettter

•	Technique	Avg Grade	Avg Satisfaction
	#1	90	60
	#2	70	40

GoalSetting: Good Attributes

	SMART	Misc.
_	Specific #	Clear #
	Measurable #	Challenging !!
	Attainable	Encourage commitment
	Realistic	With Feedback
	Timely achievable !!	Complex !!

Goal Setting Paradox: Challenging<->Achievable Timely

Group #1 (Stage I,II)

I: Easy problems

Group #2 (Stage I,II)

I: Difficult problems

Good performance

Poor performance

 II:Easy, Moderate, Good problems

Medium peformance

ATC, Jun 27th 2019, 3:50-4:30 PM, Columbus Ohio, Goal Setting, Hendel

II: Easy, Moderate, Good

Superior performance

Examples: Different Goal Setting

High Level Description	Instructions to Students
No Goal	Practice throwing darts
Goal Outcome (GO) (grade) – no specificity	Try to achieve high score
Process Outcome (PO)	At each throw do following a) Site Target b) Throwing position c) Follow through (Throw)
PO + Feedback	Feedback after each attempt
Stratified Goals: PO, then, GO	First, focus on <i>a,b,c</i> Then, on "grade"

Executive Function

- Old approach: Bloom, Anderson, Marzano
- Marzano: Analysis ->generalize, specify, contrast, classify, match, error detect
- My approach: Executive Function, multiple modalities
- Rule of 4 (Hughes-Hallet, Calculus Reform)
 Verbal
 Graphical
 Computational

II: THE EXAMPLES

I: Parameter Counting
II: Fellowship approach to pedagogy
III: Familiar; New: as subgoals
IV: Define the "unit" subgoal
V: Executive Function + Goal Setting
VI: HW Tips as Goalsetting

I: Counting Parameters

Sample Problem: Calculate the probability of a student, using random answering, passing a 3-question multiple-choice test with 3 choices per question, 2 of which are correct Bin (n=3 questions, 2 correct, 3 choices, at least 2) Last variable verbal-categorical: Possible values are {at most r, at least r, more than r, fewer than r, between r and s?

Counting Parameters: Advanced

The surprises ⁽²⁾ ⁽²⁾

How to implement:

One parameter at a time

'Full set of parameters' HW problems

II:Pedagogy FellowShip Approach Problem (Level 7 ADAPT > FM SOA exam) Timeline: 0 *** 1 *** 2 *** 3 *** 4 *** 5 -P 970.95 980.44 Coupon payments 2.5...2.5 C Calculate i, P, C, r Traditional Approach: Lay out steps, formulae - Formulae boring, not challenging Goal Setting: Challenging + Achievable timely

Method Name	Description	When Used
Prospective	PV Future Payments	lf you know <i>n, i</i>
Retrospective	CV Loan – AV payments	lf you know <i>P, t</i>
BV-Buy/Sell Method	Buy BV=>Coupons, Sell BV	Don't know <i>n,P</i> ***
Spreadsheet method	<i>I=i</i> *OLB; <i>R</i> = <i>I</i> + <i>P</i> , <i>OLB-P</i> => <i>OLB</i>	Line by line

III:OLD and NEW as SUBGOALS

ILLUSTRATIVE PROBLEM: Given a term structure, Calculate *P*:
 0-----1----2-----3-----4-----5
 P 5 10 100+15

OLD APPROACH: spot-forward rates in one unit with pricing problems (Too much)
 GOAL SETTING APPROACH: Separate familiar with new ("achievable timely")

OLD and NEW as SUBGOALS WHAT IS <u>NEW</u>: Complete table (3rd row)

t	1	2	3	4	5
r _t	3%	4%	4.75%	5.25%	5.5%
$P_{t} = v(t)$	9709	9246	8700	8149	7651

OLD: 0----1---2----3-----4-----5
P 5 10 100+15
OUTFLOW = INFLOW Verbal Goal
P v(2) = 5 v(3) + 10 v(4) + 15 v(5) + 100 v(5)

IV: Define Subgoals Illustrative Problem: Calculate L <u>0---1----2-----3-----4----5-----6----7</u> -L 10 10 10 10 15 15 15 1.5% 1.5% 1% 1% 1% 2% 2% Subgoal approach by defining criteria Breakup problem into units such that each unit is governed by one formula (e.g. 1 rate, 1 payment type, 1 money growth method)

Sugoals using Definition/Criteria Illustrative Solution: (TL = Timeline) <u>0----1-----2------3------4-----5------6-----7</u> <u>-L 10 10 10 10 15 15 15</u> 1.5% 1.5% 1% 1% 1% 2% 2% TL_1 TL_1 TL_2 TL_2 TL_3 TL_4 TL_4 = EOV: $L = PV_1 + v^2 PV_2 + v^2 v^2 PV_3 + v^2 v^3 PV_4$ Homework tips: Give: i)Difficult HW problem, ii) Subgaol definition, iii) Students set goals

V: Executive Function-Subgoals REVIEW Executive Function: Use different modalities Rule of four: *formal,verbal,graph,calculator*

IDEA:

Easy in one modality; harder in other
Illustrate: TV line vs. EOV for refinancing
Can you *think of* TV lines as primary description

Executive Function+Subgoals

Ν	l	PV	PMT	FV	Coents
15*12	9/12	-4	CPT	0	Original Loan
12*12	Keep	CPT	Keep	Keep	OLB ₃₆
Кеер	CPT	Кеер	Last row – 0.0040988	Keep	Refinanced loan

VI: HW Tips using Subgoals IDEA: Give a very hard HW problem Give tips = Subgoals to be reached Illustration Using Reinvestment Problems Reinvestment intrinsically requires goalsetting Subgoals:Identify each subproblem with 1 rate For all problems classify: terminal outflow; terminal inflow; intermediate inflow Key idea: Create summary line all in/out flows

HW Tips Using Subgoals

Illustrative Problem TL: 0----1----2----3----4----5----6----7---8----10 **TL1:-P** 10 10 10 **10..** *i* = 4.5% 1000 - TL2: 5 5 **5 5**... *i* = 5% 5 Summary Timeline: -P 5 5 5 5 ...i....1000+AV2(10) - EOV: $P = 5 a_{10li} + [1000 + AV2(10)]v^{10}$