

July 2019

A Tour of AI Technologies in
Time Series Prediction

Innovation and Technology

 2

 Copyright © 2019 Society of Actuaries

A Tour of AI Technologies in Time Series
Prediction

Caveat and Disclaimer
The opinions expressed and conclusions reached by the authors are their own and do not represent any official position or opinion of the Society of
Actuaries or its members. The Society of Actuaries makes no representation or warranty to the accuracy of the information

Copyright © 2019 by the Society of Actuaries. All rights reserved.

AUTHOR

Victoria Zhang, FSA, ACIA
Research Actuary
Society of Actuaries

 3

 Copyright © 2019 Society of Actuaries

CONTENTS

Acknowledgments .. 4

Executive Summary .. 5

Chapter 1: Introduction to Machine Learning and Potential Applications in Time Series Prediction........................... 7
1.1 SUPERVISED LEARNING MODELS .. 7

1.1.1 INTRODUCTION OF SUPERVISED LEARNING ALGORITHM .. 7
1.1.2 WHICH MODEL SHOULD I USE? ... 12
1.1.3 ACTUARIAL APPLICATIONS OF SUPERVISED LEARNING .. 13

1.2 ML MODEL FOR TIME SERIES CLASSIFICATION .. 14
1.2.1 DATA PREPARATION ... 14
1.2.2 CLASSIFICATION AND RESULTS ANALYSIS .. 16

Chapter 2: Introduction to Deep Learning and Applications in Time Series Prediction ... 18
2.1 DEEP NEURAL NETWORKS (DNN) ... 19
2.2 DNN EXAMPLE OF TIME SERIES PREDICTION ... 20

2.2.1 MULTI-LAYER PERCEPTRON (MLP) VS. CONVOLUTIONAL NEURAL NETWORKS (CNN) 20
2.2.2 DATA PREPARATION ... 21
2.2.3 CREATING THE MODEL ... 22
2.2.4 TRAINING THE MODEL .. 23
2.2.5 RESULTS ANALYSIS .. 24

Chapter 3: Time Series Prediction with Recurrent Neural Networks (RNN) .. 26
3.1 RECURRENT NEURAL NETWORKS (RNN) .. 26
3.2 VANISHING AND EXPLODING GRADIENT ISSUES ... 27
3.3 LONG SHORT-TERM MEMORY (LSTM) MODEL .. 28
3.4 TIME SERIES PREDICTION WITH LSTM ... 30

3.4.1 DATA PREPARATION ... 31
3.4.2 CREATING THE MODEL ... 31
3.4.3 ROLLING WINDOW TRAINING .. 32
3.4.4 VISUALIZING THE RESULTS ... 33
3.4.5 LSTM VS. TRADITIONAL FORECASTING METHODS ... 33

3.5 TIME SERIES ANOMALY DETECTION WITH LSTM... 34
3.5.1 WHY LSTM ... 34
3.5.2 DATASET .. 35
3.5.3 DATA PREPARATION ... 35
3.5.4 ANOMALY DETECTION WITH A TRAINED MODEL ... 35

Chapter 4: Conclusion and Recommendations .. 37

About The Society of Actuaries ... 38

 4

Copyright © 2019 Society of Actuaries

Acknowledgments
The author would like to thank the Society of Actuaries (SOA) Actuarial Innovation and Technology Steering
Committee for sponsoring this paper. The author would also like to thank all the members of the Project
Oversight Group (POG) for providing governance and advisory oversight on this project. In addition, the
author gratefully acknowledges the assistance of Dale Hall, Mervyn Kopinsky, and Korrel Crawford for their
assistance with various aspects of this project.

Project Oversight Group Members:

Lai Shan (Erica) Chan, FSA

Christopher James Coulter, FSA, MAAA

Lemeng (Sophie) Feng, ASA, ACIA

Carl Ghiselli, FSA, MAAA

Timothy J. Luedtke, FSA, MAAA

Michael Cletus Niemerg, FSA, MAAA

 5

Copyright © 2019 Society of Actuaries

Executive Summary
Over the past few years, Artificial Intelligence (AI) technologies such as Machine Learning (ML) and Deep
Neural Networks (DNN) or Deep Learning (DL) have become a very hot topic in many areas. The emerging
field of DNNs was created around the concept of biological neural networks and has been widely applied
in many fields. AI technologies have been used for computer vision, speech recognition, autonomous
driving, etc. and have demonstrated remarkable results. McKinsey predicts that AI techniques have the
potential to create between $3.5T and $5.8T in value annually across nine business functions in 19
industries1. However, even with the buzzwords around for a few years, AI is still very new to the actuarial
field.

AI is the simulation of the human intelligence process by machines. This associated intelligence is
demonstrated in planning, learning, reasoning, and problem-solving. Machine learning (ML) is a significant
portion of AI, where a computer system is trained with a large amount of data to learn how to carry out a
specific task. It is the science and engineering of getting computers or robots to learn and act like humans
do and improve their learning over time in an autonomous fashion. This involves techniques from statistics,
computer science, and mathematics. DL can be viewed as a more advanced version of ML, with higher
dimensions of representability to solve complicated problems that were difficult to tackle with traditional
ML models. In this report, we will go through some main categories of ML and DL models and explain the
principles of them and how to use those models to address the real-world time series problems.

Figure 1
STRUCTURE OF AI TECHNOLOGIES

1 Columbus, Louis. “Sizing The Market Value of Artificial Intelligence.” Forbes, Forbes Magazine, 30 Apr. 2018
https://www.forbes.com/sites/louiscolumbus/2018/04/30/sizing-the-market-value-of-artificial-intelligence/#5f8806c2ffe9

Deep Learning: Subset of ML that
enables machines to learn, train, and

perform tasks by themselves by exposing
on multilayered neural networks.

Machine Learning: A subset of AI that
includes statistical algorithms that enable
machines to improve learning over time.

Artificial Intelligence: Techniques that enable
computers to mimic human intelligence.

 6

Copyright © 2019 Society of Actuaries

To actuaries, there are numerous advantages to using AI models:

1. Strong representability. They have the ability to handle a tremendous amount of data, which could
be in extremely high dimensions. Multiple layers of neural networks allow the model to detect
relationships in higher dimensions; these relationships may not be visible in traditional modeling.

2. Better accuracy. Compared to traditional predictive modeling, AI models have far better predicting
power thanks to the recent advancements in the DNNs. The DNN models have even outperformed
human beings in areas such as image recognition and complicated board games such as Go.

3. Fast adaptability. AI models are quite dynamic, and they can evolve themselves as more data is fed
in. What makes an AI model useful is that the algorithm can “learn” and adapt its output based on
the new information. The model could update itself based on the error between its prediction and
the new data and will improve its future prediction.

In this report, we will try to provide an in-depth review of current ML and DL models and will explain how
those models work and their possible applications in the actuarial field. Recent studies and successes from
the industry will also be discussed. We intend to bring more actuaries on board regarding those
technologies and start to think about how to bring them into our daily work.

The second purpose of this report is to demonstrate how to use AI technology for time series prediction.
Time series prediction plays a vital role for insurance companies. From assumption setting in pricing,
valuation, and asset liability management strategies, small improvements in time series predictions can
result in significant financial impact. Currently, most insurance companies use predictive modeling
techniques for time series predictions, but the performance is not very good and is not dynamic enough
for environment changes. After the introduction of different ML and DNN models, we will focus on models
that can be used to solve time series problems, including:

• Machine Learning models for time series classification,

• Deep Learning models for time series prediction,

• Recurrent Neural Network models for time series prediction, as well as anomaly detection

The models are uploaded to the GitHub site: https://github.com/rranxxi/soa_research_ai_time_series, so
readers can download the program and utilize it for different purposes.

The report will be concluded with a discussion of the advantages and challenges actuaries are facing with
AI technology. It intends to provide insights into this emerging field and how actuaries would adjust to this
thriving technology.

https://github.com/rranxxi/soa_research_ai_time_series

 7

Copyright © 2019 Society of Actuaries

Chapter 1: Introduction to Machine Learning and Potential Applications in Time
Series Prediction
At a high level, there are three types of machine learning models: supervised learning, unsupervised
learning, and reinforcement learning. In this chapter, we will go through the basic algorithms of supervised
learning models and discuss their potential actuarial applications. At the end of this chapter, we will
showcase how to use these models to solve time series classification problems.

1.1 SUPERVISED LEARNING MODELS

Supervised learning applies where there is input training data 𝑋𝑋 and output ground truth label 𝑌𝑌, and the
algorithm will learn the mapping function 𝑌𝑌 = 𝑓𝑓(𝑋𝑋). It is called supervised learning because the training
process can be thought of as a teacher supervising the learning process. The correct answers are known,
and the algorithm iteratively makes predictions on the training data and is corrected by the teacher. The
learning process stops when the prediction error is smaller than a predefined threshold.

There are two major categories of supervised learning algorithms: classification and regression.

Classification is the task of approximating a mapping function from input data to discrete output labels. We
use classification algorithms widely in our daily lives, such as spam email classification, credit card fraud
detection, customer segmentation, and disease detection and classification.

Regression is another significant part of a supervised learning technique. Instead of predicting discrete
labels as in classification, regression focuses on predicting a continuous quantity. Therefore, some
classification algorithms could also be adapted for regression tasks. Generally speaking, regression can be
linear or non-linear. Regression could help us, for example, predict the financial markets or find correlations
among different indexes or stocks.

1.1.1 INTRODUCTION OF SUPERVISED LEARNING ALGORITHM

To help us understand the supervised learning algorithms, we introduce the six most popular supervised
learning-based algorithms. We will be going through them, discuss how they work, and compare their
performance on the same artificially created datasets to visualize the different impact on the same data.

Naïve Bayes Classifier
Naïve Bayes Classifier is a simple, yet very effective classifier. It is based on applying Bayes’ Theorem with
strong independent assumptions between different features. Our human brains use Naive Bayes classifier
all the time. For instance, if I tell you I have a fruit that is sweet, red, and round, what would you think it is
more likely to be: an apple or a banana? We all agree it’s likely an apple as we have not yet seen a red
banana. In this example, we use our common sense to come up with an answer. Naïve Bayes Classifier
solves this kind of problem with probability.

Recall Bayes Theorem:

𝑷𝑷 (𝐀𝐀|𝐁𝐁) = 𝑷𝑷�𝑩𝑩�𝑨𝑨�
𝑷𝑷(𝑩𝑩) ∗ 𝑷𝑷(𝑨𝑨) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃ℎ𝑃𝑃𝑃𝑃𝑜𝑜

𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃

 8

Copyright © 2019 Society of Actuaries

The Naïve Bayes Classifier calculates the probability of each label given known features and selects the
outcome with the highest probability. This is called maximum a posterior (MAP) hypothesis. In the problem
mentioned above, we could calculate the probability of being an apple as

Pr (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃 | 𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒) =
Pr (𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒 | 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃) ∗ Pr (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃)

Pr(𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒)

Where Pr (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃 | 𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒) is proportional to Pr (𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒 | 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃).

Without any prior information, the probability of picking an apple or being red, sweet, and round is
constant; then we could drop the term Pr(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃) and Pr(𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒). To determine which fruit
it is likely to be, we are essentially comparing Pr (𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒 | 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑃𝑃) and
Pr (𝑃𝑃𝑃𝑃𝑒𝑒, 𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃, 𝑃𝑃𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒 | 𝑏𝑏𝑎𝑎𝑒𝑒𝑎𝑎𝑒𝑒𝑎𝑎). We could use the Naïve Bayes Classifier for problems such as text
classification, spam detection, and sentiment analysis on social media.

K-Nearest Neighbor (KNN)
“Birds of a feather flock together.” KNN is a non-parametric algorithm, which does not make any
assumption on the underlying data distribution. This algorithm is built around the observation that similar
things are near to each other, so could use the values from its neighbors to regress or classify an input 𝑋𝑋.

When using KNN for classification jobs, we will map 𝑋𝑋 to a label based on the majority of its K-nearest
neighbors. As for the regression case, a KNN regression model, instead of using the label of the majority of
the k-nearest neighbor, will use the weighted average value of those neighbors as its prediction results. To
a large extent, using a relatively small amount of neighbors k suppresses the effects of noise, but also makes
the classification boundaries less distinct and the prediction results might be more prone to error.

The KNN algorithm has demonstrated its power in many applications, including credit rating and voting
predictions. The KNN has the benefit of simplicity during the training and effectiveness in prediction.
However, we should be mindful about its cons as well: it is very computationally expensive and highly
memory demanding during the prediction, and it is quite sensitive to outliers within the dataset.

Support Vector Machine (SVM)
The best way to explain SVM is by an example: suppose we have some samples from two classes: blue and
brown. SVM is to find an optimal decision boundary which will maximize the distance from this decision
boundary to the nearest point of each class. The benefit of choosing such a decision boundary is quite
apparent, since the larger this distance is, the more robust our model will be when applying it to the unseen
data.

 9

Copyright © 2019 Society of Actuaries

Figure 2
SVM CLASSIFICATION IN 2-D SPACE

The above example does not demonstrate the true power of SVM as our blue and red samples are clearly
linearly separable, and it is not particularly challenging to find such decision boundaries. What if our
samples for two classes look like this?

Figure 3
SVM CLASSIFICATION IN 3-D SPACE

The SVM model would still be able to find an optimal decision boundary by using a technique called kernel
trick. What it does is lift the data from its original lower dimension space into a higher dimensional space
where the samples are linearly separable and will compute the decision boundaries in this higher dimension
space.

In the above example, the original data was in a cartesian space [𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐]. If we transform the data into a
polar space [𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐,𝒙𝒙𝟏𝟏𝟐𝟐,𝒙𝒙𝟐𝟐𝟐𝟐], then the samples can be nicely separated.

 10

Copyright © 2019 Society of Actuaries

Decision Trees
The Decision Tree algorithm is the systemic classification approach of conducting a series of test questions
to build an optimal decision tree structure. Starting from the root of the tree (raw data), the tree branches
by the decision nodes (features or attributes chosen for splitting) and eventually lead to the leaf nodes,
which could be the classification labels or some continuous values for regression models.

One of the widely used methods to build a decision tree classifier is to use the concept of entropy and
information gain to determine which features or attributes should be used for branching, and when the
splitting should stop. Entropy is a way of measuring the magnitude of information, and it will control how
and when to split from a parent node. Entropy is calculated as the negative summation of probability times
the log of the probability of each item, which can be computed mathematically as below:

𝐇𝐇 = −∑ 𝑷𝑷(𝒙𝒙)𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍(𝑷𝑷(𝒙𝒙)), where 𝑃𝑃(𝑥𝑥) is the probability distribution of a variable 𝑥𝑥.

If all samples belong to the same class, then 𝑷𝑷(𝒙𝒙) = 𝟏𝟏, so we will have the entropy 0. Thus, there is no
information in the data. On the other side, if all items are evenly distributed between classes, then we will
have the max entropy, which is 1.

𝐼𝐼𝑒𝑒𝑓𝑓𝑃𝑃𝑃𝑃𝐼𝐼𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐺𝐺𝑎𝑎𝑃𝑃𝑒𝑒 (𝑒𝑒)
= 𝐸𝐸𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝐸𝐸(𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑒𝑒𝑃𝑃)
− �[𝑠𝑠𝑃𝑃𝑃𝑃𝑤𝑤ℎ𝑃𝑃𝑃𝑃𝑒𝑒 𝑎𝑎𝑒𝑒𝑃𝑃𝑃𝑃𝑎𝑎𝑤𝑤𝑃𝑃] ∗ 𝑃𝑃𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎𝐸𝐸 (𝑒𝑒ℎ𝑃𝑃𝑎𝑎𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒 𝑓𝑓𝑃𝑃𝑃𝑃 𝑓𝑓𝑃𝑃𝑎𝑎𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃)�

When a parent node is divided into sub-nodes, the sub-nodes are called “children.” The goal of a decision
tree is to maximize the information gained on each tree node. When the information gain is 0, that means
the feature does not increase our information, so it is not worth using to split the tree. It is worth
mentioning that there are a few other metrics that can be used to train the data, like variance reduction or
Gini impurity, but the way of splitting is quite similar.

When applying decision trees for regression, instead of entropy, we use a mean square error (MSE) or
similar metrics to determine the split. One of the common methods of a regression decision tree is the
classification and regression tree (CART) method. The method starts by searching for every distinct value
of all its predictors and splitting the values of predictors that minimizes the overall sum of square error
(SSE).

Assume there are two labels, 1 and 2, in one dataset, which could be split into two exclusive groups 𝑆𝑆1and
𝑆𝑆𝟐𝟐, then we have 𝑺𝑺𝑺𝑺𝑺𝑺 = ∑ (𝒚𝒚𝑃𝑃 − 𝒚𝒚𝟏𝟏���)𝒊𝒊∈𝑆𝑆1 + ∑ (𝒚𝒚𝑃𝑃 − 𝒚𝒚𝟐𝟐���)𝒊𝒊∈𝑆𝑆𝟐𝟐 where 𝒚𝒚𝟏𝟏��� and 𝒚𝒚𝟐𝟐��� are the average values of
the dependent variables in the group 𝑆𝑆1and 𝑆𝑆𝟐𝟐.

For group 𝑆𝑆𝟏𝟏and 𝑆𝑆𝟐𝟐, the method will recursively split the prediction values within the group. The method
stops when the remaining sample size falls below a certain threshold or hits a predefined depth.

Decision Trees are easy to explain and great for visualizations. They can be applied from business
management to engineering. They also have the benefit of being systematic and require little effort for
data preparation. However, there is a high probability of overfitting with Decision Trees. Potential bias may
also exist if there are many categories. These two significant disadvantages can be mitigated through a
method called bagging, which will be discussed in the next random forest algorithm.

 11

Copyright © 2019 Society of Actuaries

Random Forests
Random Forests are an ensemble technique that takes multiple decision trees and merges them with the
bagging method. Instead of relying on one individual decision tree, a random forest combines the
prediction results from multiple decision trees to get more robust and accurate results.

The bagging method involves training each decision tree with a random set of training data points;
furthermore, at each split, a subset of features is selected. This increases the diversity of the forest, which
leads to the name “random forest.” The final prediction result is the average of all the individual decision
tree estimations.

Compared to the decision tree approach; there are many advantages of the random forest:

 Reduce overfitting and improve prediction accuracy: one of the major drawbacks of decision trees
is that they are prone to overfitting. As the tree splits deeper and deeper, the model becomes too
catered towards the training dataset and performs poorly when deployed for new data. Random
forests reduce overfitting by considering a subset of data for each tree node and generalize the
results of the forest.

 Lower variance, less bias: because we are averaging all the trees in the random forest, we are
averaging the variance of decision trees as well so that the variance of the random forest is lower.

 Robust to outliers: since each decision tree in the random forest selects a subset of data, the
number of outliers in each tree will be much smaller, and so is their influence. Thus, a random
forest is more immune to the outliers.

 Fast in training and prediction: the random forest algorithm is highly parallelizable, which means
the computation can be split and run in parallel at the same time and could be ideal for running on
Graphics Processing Units (GPU). In addition, the fact that each decision tree is only working on a
subset of features will speed up the calculation as well.

Gradient Boosted Trees (GBT)
GBT is another ensemble learning method that fuses output from multiple decision trees. It is different
from a random forest as GBT builds one tree at a time, and each new tree is meant to correct errors made
by the previous tree.

There is a total loss function defined to track the difference between prediction and ground-true results.
In addition to this total loss function, there is usually a regularization term as well to avoid overfitting. When
handling an imbalanced dataset where there is way more samples of some labels compared to others, there
is a high chance of bias if we try to fit the data with a random forest. The model will predict the majority of
the data and still achieve a high accuracy score. Taking the above apple and banana example again - assume
there are 100 apples and 1 banana in a black box. If you are asked to guess the type of one fruit randomly
picked from this black box without watching or touching it, you could have extremely good accuracy if you
always guess it is an apple. On the other hand, gradient boosting is a sequential process, and it focuses on
the error every time there is an incorrect prediction. Therefore, gradient boosting fits better for imbalanced
data than random forests.

 12

Copyright © 2019 Society of Actuaries

In real life, gradient boosting is ideal for applications such as anomaly detection, credit card transaction
monitoring, insurance claim fraud, and cybersecurity. All of these data are highly imbalanced as the chances
of an anomaly are very low. However, that is exactly where we want to focus on when modeling the data.

1.1.2 WHICH MODEL SHOULD I USE?

Depending on the characteristics of the input training data, different classifiers might create significantly
different shapes of decision boundaries. In the following images, we artificially created two datasets by the
scikit-learn framework and applied all the classifiers we have discussed to the two datasets, and then
visualized their decision boundaries. In each of the datasets, there are two categories of samples, which
are marked as red or blue in color in the leftmost image.

In the first dataset, the red and blue samples are linearly separable with some noise added intentionally.
As we can see from the top part of the images, almost all the classifiers perform reasonably well for this
kind of data sample.

Things get more interesting for the second dataset where the data can only be separated by a circular-
shaped decision boundary. The simple classifier, such as Naive Bayes, incurs quite a few mistakes, whereas
the more sophisticated models such as SVM, Decision Tree, Random Forest, and Gradient Boosted Tree all
work quite well. From these two examples, we find that the k-nearest neighbors’ model is especially
interesting. Although it is a simple model, its accuracy is always remarkably good compared to some more
advanced models.

A natural question we might ask is what the guideline is to pick a model. Unfortunately, there is no silver
bullet here. It is a trial and error process; we usually need to try different models and manually compare
their results to know which model is the best fit for our data.

 13

Copyright © 2019 Society of Actuaries

Figure 4
CLASSIFICATION RESULTS BY SIX (6) DIFFERENT ML ALGORITHMS

1.1.3 ACTUARIAL APPLICATIONS OF SUPERVISED LEARNING

Classification
Underwriting is the heart of insurance. The ability to evaluate and accept the risk sets the foundation of
the business. Insurance companies still rely on large underwriting teams to process new policies; there are
lots of manual touch points and redundancies in the process. Machine learning classification has the
advantage of being robust, accurate, and fast in response. The technique could be leveraged in the
insurance underwriting process. Supervised classification models could replace the traditional underwriting
process easily. Internal data could be used as training data, and the process of underwriting could be
reduced to a few seconds. Classification algorithms such as Boosted Trees or Deep Neural Networks (DNN)
could be trained on internal historical data and predict risk class labels.

Together with other AI techniques, we could assess more data. Third-party data, such as medical records,
financial data from banks, social media, etc., could all be leveraged to build a sophisticated underwriting
model. Compared to traditional underwriting models where all the information is from the customer’s
questionnaire and medical testing, an AI underwriting model tends to be more comprehensive yet cost-
effective.

 14

Copyright © 2019 Society of Actuaries

Regression
The regression models could be deployed in a few areas: it could be used in the actuarial valuation model,
assumption setting, experience studies, and projections.

Compared to traditional predictive modeling, a regression model based on neural networks could consist
of a huge number of neurons and adapt higher dimension data in the valuation. In traditional predictive
modeling, we need to handpick a small piece of information (sex, age, smoking habit) from the input data
and build a particular model around the features selected. However, the information available to us could
be vast, and we just would not know how to incorporate it into traditional predictive modeling. With deep
neural networks, we could make the best use of all the information available to us, and the networks will
pinpoint the information relevant to the output of interest.

Time series projection is another area where ML regression plays a game-changing role. Investment-related
insurance products all face market risk. The projected fund value of a UL or annuity product could be
dramatically different over time and change the reserve, which is why a time series prediction is so critical
to these products. In Chapters 2 and 3, we will demonstrate how to build AI models to address time series
prediction problems.

1.2 ML MODEL FOR TIME SERIES CLASSIFICATION

In this section, we will provide a concrete example of how to use different classifiers to model a time series
classification problem. The task is to classify whether the NASDAQ index trend is going up or down or will
stay stationary based on the last T data points. Stock markets are infamous for being unpredictable.
However, this does not stop people from trying. This is another try. We will leverage the classifiers we have
covered so far to see whether we can at least predict the thread of it. In Chapter 3, we will try to use
recurrent neural networks to predict the price.

1.2.1 DATA PREPARATION

This dataset can be downloaded from http://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html,
which has the NASDAQ 100 index value collected every minute covering the period from July 26, 2016 to
April 28, 2017, 191 days in total. Each day contains 390 data points from the opening to the closing of the
market. The values of the data are visualized in the below figure.

http://cseweb.ucsd.edu/%7Eyaq007/NASDAQ100_stock_data.html

 15

Copyright © 2019 Society of Actuaries

Figure 5
NASDAQ 100 DATA FROM JULY 26, 2016 TO APRIL 28, 2017

From Figure 5, we can observe that, in the first 45,000 samples, the NASDAQ index goes both up and down,
but between 45,000 to the end of the dataset, the trend is mostly up. To make sure we have balanced
trends, we only use the first part of the samples, which are plotted with orange color during this
experiment.

We will also need to generate the classification labels 𝑌𝑌(ground truth) from the input NASDAQ index. We
define a threshold 𝜀𝜀 and a sliding window with length T, and for each time point together with all the
preceding data within the sliding window, the current NASDAQ index could be one of three trends: up,
down, or stationary (unchanged). Assume mt is the average index price within the current sliding window,
and mt+T is the average price of the next sliding window, then label y can be derived based on the following
equation:

y = �
1, mt < mt+T − 𝜺𝜺
−1, mt > mt+T + 𝜺𝜺
0, 𝑃𝑃𝑎𝑎𝑃𝑃𝑃𝑃 𝑒𝑒𝑎𝑎𝑃𝑃𝑃𝑃

To ensure the number of samples for each label is balanced, the 𝜀𝜀 needs to be carefully selected. During
our experiment, we set 𝜀𝜀 = 0.0055. We apply the conversion method throughout the selected samples 𝑋𝑋
to generate the training labels 𝑌𝑌. We also split the total 𝑋𝑋 and the generated 𝑌𝑌 into two parts, the first 70%
will be our training data, and the remaining 30% will be for testing and will be reserved to evaluate the
classifier’s accuracy after the training is complete. The graph below provides a visual presentation of the
distribution of the three labels within both the training and testing data. We see that the up and down
trends are almost evenly distributed and the stationary label has slightly more than the other two labels.
We could further tweak the above threshold 𝜀𝜀 to have even more balanced labels; however, from our later
experiments, this setup is already enough to show that the ML classifiers could effectively classify the
NASDAQ trend.

 16

Copyright © 2019 Society of Actuaries

Figure 6
TRAINING AND TESTING SAMPLE DISTRIBUTION

1.2.2 CLASSIFICATION AND RESULTS ANALYSIS

The classification was done by all six classification algorithms discussed earlier: K-Nearest Neighbors, SVM,
Decision Tree, Random Forests, Naïve Bayes, and Gradient Boost. After training all of the six classifier
models with the same data, we applied the trained models to the reserved 30% testing data, which had
never been seen by those models to evaluate the classification accuracy. The results have been summarized
in the below Figure 7. The ending result is showing that among the six algorithms, three appear to be
effective as they achieved an accuracy score higher than 50%. K-Nearest Neighbors has the highest
accuracy for about 84% of the testing data, followed by Gradient Boosted Trees and SVM. As we discussed
earlier, the algorithm of K-Nearest Neighbors is simple, but it is very compelling in predicting the future
trend. Gradient Boosting performed better than Decision Trees and Random Forests. However, all six
algorithms seem to avoid overfitting issues as the accuracy scores on the testing dataset are relatively close
to the ones from the training data. If the model falls into the overfitting trap, we would expect to see a high
accuracy score in the training dataset but low accuracy score for testing data. The models can be
downloaded from GitHub site at:

https://github.com/rranxxi/soa_research_ai_time_series/tree/master/trend_classfication.

https://github.com/rranxxi/soa_research_ai_time_series/tree/master/trend_classfication

 17

Copyright © 2019 Society of Actuaries

Figure 7
CLASSIFICATION ACCURACY SCORE BY SIX (6) ML CLASSIFIERS

The power of predicting the future trend of time series data opens enormous potentials and opportunities
for actuaries. Actuaries need to make decisions based on outlooks; these outlooks are usually based on
experience, actuarial judgments, and sometimes a little extra conservatism. With an ML model, these
outlooks are no longer blurry to us; it sets more confidence in the future outlooks.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

Nearest Neighbors

RBF SVM

Decision Tree

Random Forest

Naive Bayes

Gradient Boost

Nearest
Neighbors RBF SVM Decision

Tree
Random
Forest Naive Bayes Gradient

Boost
test score 84.13% 57.16% 45.94% 47.55% 37.92% 62.29%
train score 95.92% 56.69% 46.43% 47.79% 37.71% 65.63%

ML Algorithm Classifiers Accuracy Score

test score

train score

 18

Copyright © 2019 Society of Actuaries

Chapter 2: Introduction to Deep Learning and Applications in Time Series Prediction
In this chapter, we are going to explore a little bit about deep learning. Deep learning is an advanced form
of machine learning. One of the most significant differences between deep learning and machine learning
is the former’s model size is typically much larger, and there are much more parameters needed to be
trained. Another crucial difference is deep learning could automatically learn the relevant features from
the training data to make a prediction, compared to a typical machine learning model where we need to
hand engineer the features from the training data first and then feed them into the model. Therefore,
before the invention of deep learning, a lot of effort was spent in machine learning research on feature
engineering, not the design of models.

For example, when we use SVM to perform an image classification task to tell whether an image is a dog
or cat, we need to first handcraft some features and extract those features from the images. After that, the
original images are no longer required. Features could be the gradient information of an image as we have
demonstrated in the below image, where we extracted the gradient information from a dog image and a
cat image. If we want to train an SVM classifier, we will need to convert all our dog images and cat images
by the same feature transformations before feeding them to train the SVM.

Figure 8
EXAMPLE OF IMAGE RECOGNITION WITH SVM CLASSIFIER

However, if we want to solve the same problem by using deep learning, we simply need to feed the whole
image into the neural networks, and the networks will automatically learn what kind of features are
important to tell whether it is a dog or cat.

 19

Copyright © 2019 Society of Actuaries

2.1 DEEP NEURAL NETWORKS (DNN)

Deep Neural Networks (DNNs) gained much attention since Alex Krizhevsky successfully applied them and
won the ImageNet Large Scale Visual Recognition Challenge in 2012. A deep neural network will look similar
to Figure 9, where we have a Multiple Layer Perceptron (MLP), and each node in the network is a neuron
except the first input layer. The input layer is the training data, and the output layers are the results we
want to predict. Between the input and output layers, there are multiple hidden layers. In each layer other
than the input layer, the nodes are called neurons, which will use a non-linear activation function to map
the input to the output. One of the reasons why deep neural networks are so powerful is that they typically
have a lot of hidden layers and a massive number of neurons. This allows them to learn a very high
dimensional relationship between input and output, which could be an ideal fit for financial data since they
can seem entirely random sometimes.

The lines between neurons are called connections, which represent how the data flows between different
neurons. In the case of an MLP, each neuron has a connection to all the neurons in the previous layer, and
we call those dense layers or fully connected layers. Taking the above dog and cat image classification
problem as an example, to use an MLP as a classifier, we would need to flatten the 2-D image into a 1-D
vector and would only have one neuron at the end of the MLP, which will output the labels indicating dog
or cat. As we have already pointed out, there is no process for extracting features from images.

Figure 9
ILLUSTRATION OF A DEEP LEARNING MODEL

 20

Copyright © 2019 Society of Actuaries

Each circular node represents a neuron, and the lines denote the connectivity between neurons. Neurons
will apply a weight matrix 𝑾𝑾 and a bias term 𝒃𝒃 to the input data 𝑿𝑿 it receives and will then apply an
activation function 𝜎𝜎 to the results before passing the results 𝒀𝒀 to the neurons in the next layer. This whole
process could be summarized as

𝑌𝑌 = 𝜎𝜎(𝑾𝑾𝑿𝑿 + 𝒃𝒃)

The activation function controls whether the current neuron should be active or not and how much it
should be active. The range of the output of activation functions usually is in the range of [−1,1] or [0,1]
and the choice of activation functions is usually a non-linear function such as a sigmoid function, Rectified
Linear Unit (ReLU), or tanh function. The use of non-linear activations is one of the reasons the DNN models
are capable of learning the non-linear relationships within the data and, thus, have better ability to
represent the training data.2

Like machine learning, deep learning can be grouped into supervised learning, unsupervised learning, and
reinforcement learning. For insurance applications, there is a recent success story from AXA Japan about
applying deep learning in pricing.3 AXA Japan’s R&D team developed a deep learning model to predict
significant claims, i.e., by entering the information of individual policies, we want to predict the likelihood
that they will result in a substantial claim in the future. AXA entered over 70 input features including age,
region, annual insurance premium, age of car, etc. into the deep learning model. The model is a fully
connected neural network with three hidden layers. AXA used data in Google Compute Engine to train the
model and Cloud Machine Learning Engine’s HyperTune feature to tune hyperparameters. The resulting
accuracy rate was about 78%.

2.2 DNN EXAMPLE OF TIME SERIES PREDICTION

In this section, we are going to demonstrate how to use deep neural networks (DNNs) to predict bitcoin
prices. The DNN we are using in this section is mostly a feed-forward network. We are going to use two
types of DNNs: Multi-layer Perceptron (MLP) and Convolutional Neural Networks (CNN).

2.2.1 MULTI-LAYER PERCEPTRON (MLP) VS. CONVOLUTIONAL NEURAL NETWORKS (CNN)

MLPs are probably one of the oldest DNN models and we have shown their network structure above in
Figure 9. In an MLP, every neuron of the current layer will have one connection of every other neuron of
the next layer. That is why the layers of an MLP are also called a fully connected or dense layer.

2 Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert. “Multilayer feedforward networks are universal approximators.” University
of California, San Diego . March 1989. https://www.sciencedirect.com/science/article/pii/0893608089900208

3 Sato, Kaz. “Using Machine Learning for Insurance Pricing Optimization.” March 2017. Google Cloud Platform
https://cloud.google.com/blog/products/gcp/using-machine-learning-for-insurance-pricing-optimization

https://cloud.google.com/blog/products/gcp/using-machine-learning-for-insurance-pricing-optimization

 21

Copyright © 2019 Society of Actuaries

CNNs were invented to process 2-D images. However, in recent years, they are also widely used in time
series data such as natural language processing or human activity recognition from accelerometer data
recorded by smartphones or other wearable devices.4

It is natural to think that MLPs should be useful for time series applications. In some sense, MLPs are a lot
like the traditional regression problem where we have a model to regress the input data. The difference is
there is no need to design the mathematical model by hand; we only need to define how many neurons
we need in the MLP, and the weights of the connections between different neurons describe the
mathematical relationship to regress the training data. Nevertheless, the problem with MLPs is that the
connections are so dense that it is very computationally demanding and slow, and it is also quite easy to
overfit the training data.

As for a 1-D CNN, it is designed to find the pattern of a fixed segment of time series data. For each to-be-
found pattern, we define a set of parameters, and we can predefine how many patterns we would like to
reveal from each segment by experience. Therefore, CNNs require fewer connections between neurons
across layers.

In the below experiment, we will present how to use both MLP and CNN in time series application with
bitcoin history data.

2.2.2 DATA PREPARATION

The dataset used is the bitcoin historical data from January 2012 to March 2019 and can be downloaded
from the Kaggle website: https://www.kaggle.com/mczielinski/bitcoin-historical-data. The original dataset
contains the bitcoin history data updated every minute with Open, High, Low, and Close prices. In this
simple demonstration, we average the coin prices observed each day and use both an MLP and CNN to
predict the next five days of bitcoin prices using the past 15 days prices.

There are 2,627 valid data points from January 2012 to March 2019. The original data is illustrated in the
left figure below. It can be observed that the price is relatively flat between 2012 and 2017 and then rises
quite high at the beginning of 2018 before falling later. The original data needs to be normalized first so
that the model will treat every section of the data equally. Otherwise, the section with a large scale will
have a bigger impact on the model and the model might overfit to those sections.

4 Ackermann, Nils. “Introduction to 1D Convolutional Neural Networks in Kera for Time Sequences.” Goodaudience, The Medium
Spet 2018. https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-
3a7ff801a2cf

https://www.kaggle.com/mczielinski/bitcoin-historical-data
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf
https://blog.goodaudience.com/introduction-to-1d-convolutional-neural-networks-in-keras-for-time-sequences-3a7ff801a2cf

 22

Copyright © 2019 Society of Actuaries

Figure 10
BITCOIN PRICE NORMALIZATION

The time series bitcoin data does not explicitly have the ground truth label y (ground truth refers to the
target variable being measured in training or testing), and both CNNs and MLPs are supervised, learning
models. Therefore, we need to generate ground truth labels. As the goal here is to use the last 15 days of
bitcoin prices to predict the following five days, both the MLP and CNN are used to try to find a mapping
function 𝑓𝑓(⋅), which will perform the below mapping:

 𝐸𝐸� = 𝑓𝑓(𝑋𝑋[𝑃𝑃0 ⋯ 𝑃𝑃14]), and the ground truth 𝐸𝐸 = 𝑋𝑋[𝑃𝑃15 ⋯ 𝑃𝑃19] and the goal is to make sure the mean

square error 1
𝑁𝑁
𝛴𝛴‖𝐸𝐸 − 𝐸𝐸�‖2 is within some acceptable range. The 2,627 samples are split into two parts: the

first 70% is used as training data, and the remaining 30% as testing data to evaluate the model accuracy
after the training is complete.

2.2.3 CREATING THE MODEL

The MLP model used in this task consists of multiple dense layers (or fully connected layers), where each
neuron in the previous layer will have a connection to every neuron in the next layer. Due to the use of
dense layers, there are many parameters to be trained in the MLP model. In the MLP model we built, there
are 21,509 parameters to be trained.

 23

Copyright © 2019 Society of Actuaries

For the CNN model, multiple 1-D convolutional layers are used. Inside a convolutional layer, a set of weights
(usually called filters or kernels) is systemically applied across the input data. For 2-D image detection, the
filter is a 2-D dimensional array of weights. The filter is designed to detect the specific features of the input
data, and the output of this operation is called a “feature map.” Each convolutional layer will learn specific
patterns from the data, and the next layer of the convolutional layer will learn more high dimension
patterns from earlier layers. A Max-pooling layer is added right after the last convolutional layer to avoid
overfitting. A dense layer is also used to make sure the output dimension is five. CNN models are quite
effective at identifying the repeated patterns in the time series data; therefore, the required number of
parameters is significantly smaller than for an MLP. In the CNN model we built, there are only ~9,000
parameters. For more details, please refer to the model on the GitHub site:

https://github.com/rranxxi/soa_research_ai_time_series/tree/master/bitcoin_cnn.

2.2.4 TRAINING THE MODEL

Both the CNN and MLP models were trained for around 64 epochs (an epoch is one complete presentation
of the dataset to be learned to a learning machine). The MSE after each epoch of training is shown in Figure
15 for both models. The MSE of both models plateaued after around 20 epochs, which indicates that both
of the models converged to their optimal state. Overall, MLPs tends to have slightly smaller MSEs than CNN
models during the training stage. Next, we want to visit the testing results of the two models.

Figure 11
TRAINING LOSS COMPARISON OF MLP AND CNN MODELS IN BITCOIN TIME SERIES PREDICTION

https://github.com/rranxxi/soa_research_ai_time_series/tree/master/bitcoin_cnn

 24

Copyright © 2019 Society of Actuaries

2.2.5 RESULTS ANALYSIS

After the models were trained, we used them to predict bitcoin prices. We have a sliding window, which
includes the 15 days of bitcoin data used both as the model input and predictor of the bitcoin price for the
following five days. Then, we moved this sliding window by five days to predict the next five days. It is not
surprising that, in the first 1,828 days, the predictions from both of the models have almost no errors since
this part of the data has been used as training data. What is interesting is that, even with the testing data
section, the predictions from both of the models are excellent. The MSE of the CNN model is 0.039 and the
MSE of the MLP model is 0.0479, although the CNN model uses less than half of the parameters required
by the MLP model. This result demonstrates that CNNs should be the preferred model in this time series
analysis. This is, in fact, not counterintuitive. We human beings are also trying to recognize the patterns
from the time series data to help us predict the future, and CNNs excel in identifying the pattern in both 1-
D sequential data and 2-D image data. The fact that CNNs are proficient in recognizing pattern sets is a
great advantage in time series predictions.

Figure 12
CNN/MLP PREDICTION ERROR

 25

Copyright © 2019 Society of Actuaries

Figure 13
CNN/MLP PREDICTION VS GROUND TRUTH

 26

Copyright © 2019 Society of Actuaries

Chapter 3: Time Series Prediction with Recurrent Neural Networks (RNN)
In this chapter, we are going to explore the method of using RNNs to perform time series predictions and
how to use them for anomaly detection in the time series data. We will first introduce RNNs and follow that
with one special type of RNN, the Long Short-Term Memory (LSTM) model. We will provide a step-by-step
guide about how to use the LSTM model for time series predictions, as well as anomaly detection.

3.1 RECURRENT NEURAL NETWORKS (RNN)

RNNs are very close to our daily life. They are used by Apple Siri, Google Voice, Google Translate, etc. RNNs
are a special type of deep learning model designed to recognize interesting patterns in time series data,
such as stock markets, interest or exchange rates, natural languages, etc.

Different from the deep learning networks we have seen previously, RNNs have an internal memory and
they can remember the important things they have observed and leverage that information to predict the
future.

In a feed-forward neural network, we have an input 𝑿𝑿 and a ground truth 𝒀𝒀. The goal is to learn the
mapping function from 𝑿𝑿 to 𝒀𝒀. In the most simple feed-forward network, this mapping will look like 𝒀𝒀 =
 𝜎𝜎(𝐖𝐖𝐖𝐖 + 𝐛𝐛), where 𝑾𝑾 and 𝒃𝒃 are the weight matrix and bias vector, respectively, and the 𝜎𝜎 is a non-linear

activation sigmoid function 1
1+𝑙𝑙−𝑥𝑥

, which allows the model to learn the non-linear relationship between the

training data 𝑿𝑿 and the ground truth 𝒀𝒀.

The input of the RNN will depend not only on the training data 𝑿𝑿, but also on its past output. It maintains
an internal state (or memory) 𝒉𝒉𝑡𝑡, which is a high-level summarization of all the data it has observed. At
each time step t, this state is updated according to the update function 𝒉𝒉𝑡𝑡+1 = 𝑓𝑓(𝒉𝒉𝑡𝑡 ,𝑿𝑿𝑡𝑡), where 𝑿𝑿𝑡𝑡 is
the input data at time step t.

In a simple RNN, the mapping function 𝑓𝑓 can be parameterized by the weight matrices 𝑾𝑾 and 𝑼𝑼, and its
state can be updated according to 𝒉𝒉𝑡𝑡+1 = tanh(𝑾𝑾𝒉𝒉𝑡𝑡 + 𝑼𝑼𝑿𝑿𝑡𝑡), where 𝑃𝑃𝑎𝑎𝑒𝑒ℎ is the non-linear activation
function. During the training, we will feed the RNN a sequence of data and will learn 𝑊𝑊 and 𝑼𝑼 from those
training sequences.

 27

Copyright © 2019 Society of Actuaries

Figure 14
ILLUSTRATION OF RECURRENT NEURAL NETWORK AND FEED-FORWARD NEURAL NETWORK

3.2 VANISHING AND EXPLODING GRADIENT ISSUES

The RNN could be unrolled over time and it will look more like a feed-forward neural network. Because the
output at the current time will also depend on the previous output, there is a backward propagation
through time (BPTT) to update the weights of RNN during the training stage. However, BPTT might cause a
fundamental flaw in the RNN. When the gradient is small, it will diminish during the BPTT, thus causing a
vanishing gradient issue. On the other hand, if the gradient is large, it will explode during the BPTT and lead
to the exploding gradient problem. An RNN variation named Long Short-Term Memory (LSTM) is more
widely used as it mitigates those issues.

Figure 15
STRUCTURE OF RNN5

5 Figure Source: Stanford CS231n course note http://cs231n.github.io/

http://cs231n.github.io/

 28

Copyright © 2019 Society of Actuaries

3.3 LONG SHORT-TERM MEMORY (LSTM) MODEL

Due to the vanishing and exploding gradients issues, RNNs are hard to train and unable to memorize long-
term information. In addition to that, the RNN model transforms the current information entirely by
applying a mapping function and does not treat important information any differently. The LSTM extends
RNN’s memory and can selectively remember or forget information by structures called cell states and
gates. Cell states are similar to the memory system of RNNs and gates are the valve to decide what
information needs to be stored into memory and what information is required for output. A gate is
illustrated below. It has a sigmoid function and a point-wise multiplication operation. The sigmoid output
is within the range of [0, 1], where 0 means discard this information, and one means keep all the current
information.

Figure 16
GATE OF LSTM

If we unroll the LSTM over time, it will be similar to the figure below. At each time step t, the cell state
𝑪𝑪𝑡𝑡 will be updated based on the input training data 𝑿𝑿𝑡𝑡 and the previous output 𝒉𝒉𝑡𝑡−1. The different gates
will determine what new information needs to be added into the cell state and to the output from the cell
state. So, let us have a look at how each gate inside the LSTM works.

Figure 17
ILLUSTRATION OF LSTM STRUCTURE6

6 Figure Source: Stanford CS231n course note http://cs231n.github.io/

http://cs231n.github.io/

 29

Copyright © 2019 Society of Actuaries

Forget Gate 𝒇𝒇𝒕𝒕: to forget the past information and reset the memory. In the time-series data, some past
information might not be important to help us predict the future. The forget gate will take 𝒉𝒉𝑡𝑡−1 and 𝑿𝑿𝑡𝑡
and output a weight between [0,1] to scale the previous cell state and remove the unnecessary information.
Forget gates can be described by equation 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 [𝒉𝒉𝑡𝑡−1,𝑿𝑿𝑡𝑡] + 𝒃𝒃𝑓𝑓�, where 𝜎𝜎 is the sigmoid activation
function, 𝑾𝑾𝑓𝑓 and 𝒃𝒃𝑓𝑓 are the weight matrix and bias vector, respectively, which will be learned from the
input training samples.

Figure 18
FORGET GATE OF LSTM MODEL7

Input Gate 𝒊𝒊𝒕𝒕: to add valuable information to its internal state. It makes sense that at each point of the time-
series data, there may be some new important information that the LSTM would like to store. The input
gate can be mathematically described as 𝒊𝒊𝑡𝑡 = 𝜎𝜎(𝑾𝑾𝑃𝑃 [𝒉𝒉𝑡𝑡−1,𝑿𝑿𝑡𝑡] + 𝒃𝒃𝑃𝑃), where 𝑾𝑾𝑃𝑃 and 𝒃𝒃𝑃𝑃 are the weight
matrix and bias vector, respectively. They will be learned from the input training samples. At each time step
with the new information 𝑿𝑿𝑡𝑡, we can compute a candidate cell state 𝑪𝑪�𝑡𝑡 = tanh(𝑾𝑾𝐶𝐶 [𝒉𝒉𝑡𝑡−1,𝑿𝑿𝑡𝑡] + 𝒃𝒃𝐶𝐶),
where 𝑾𝑾𝐶𝐶 and 𝒃𝒃𝐶𝐶 are the weight matrix and bias vector, respectively, to be trained.

Figure 19
INPUT GATE OF LSTM8

7 Figure Source: Stanford CS231n course note http://cs231n.github.io/
8 Figure Source: Stanford CS231n course note http://cs231n.github.io/

http://cs231n.github.io/
http://cs231n.github.io/

 30

Copyright © 2019 Society of Actuaries

The forget and input gates are essentially two weights to control the contribution of the old cell state 𝑪𝑪𝑡𝑡−1
and the new information 𝑪𝑪�𝑡𝑡 to the new cell state 𝑪𝑪𝑡𝑡, which will be updated by the equation:

𝑪𝑪𝑡𝑡 = 𝒇𝒇𝒕𝒕 ∗ 𝑪𝑪𝑡𝑡−1 + 𝒊𝒊𝑡𝑡 ∗ 𝑪𝑪�𝑡𝑡

Output Gate 𝑶𝑶𝑡𝑡: controls how much information to reveal from its internal state 𝑪𝑪𝑡𝑡 to the output. With the
updated cell state, the LSTM has a fused version of its past information and the new information; what’s
left is how to make a prediction. In a similar fashion to the forget and input gates, the output gate will
compute a weight 𝑶𝑶𝑡𝑡 with previous output 𝒉𝒉𝑡𝑡−1 and current input 𝑿𝑿𝑡𝑡: 𝑶𝑶𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑃𝑃 [𝒉𝒉𝑡𝑡−1,𝑿𝑿𝑡𝑡] + 𝒃𝒃𝑃𝑃) ,
where 𝑾𝑾𝑃𝑃 and 𝒃𝒃𝑃𝑃 are the weight matrix and bias vector, respectively, to be trained. The current output
can be simply calculated by applying a non-linear tanh function to the current cell state 𝑪𝑪𝑡𝑡 and scaled by
the output gate 𝑶𝑶𝑡𝑡 : 𝒉𝒉𝑡𝑡 = 𝑶𝑶𝑡𝑡 ∗ tanh(𝑪𝑪𝑡𝑡).

Figure 20
OUTPUT GATE OF LSTM9

With the forget, input, and output gates, the LSTM optimally decides what information to store into its
internal state 𝑪𝑪𝑡𝑡 and how to make a prediction based on it. All the parameters of those gates will be
updated during the training stage. Once the training is complete, the parameters of the three gates will be
frozen to make predictions.

3.4 TIME SERIES PREDICTION WITH LSTM

In this section, we are going to design an LSTM network to predict a dataset based on the NASDAQ index.
This dataset includes 105 days of stock data starting from July 26, 2016, to December 22, 2016. Each day
contains around 390 data points of most of the NASDAQ 100 stocks and its index value. The dataset can be
download from this link: http://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html. We will use the
stock price and current NASDAQ index value to predict the future index value.

9 Figure Source: Stanford CS231n course note http://cs231n.github.io/

http://cseweb.ucsd.edu/%7Eyaq007/NASDAQ100_stock_data.html
http://cs231n.github.io/

 31

Copyright © 2019 Society of Actuaries

3.4.1 DATA PREPARATION

We will be using the same data as in section 1.4 for the NASDAQ 100. The stock prices of the NASDAQ 100
have quite different scales. If we treat them equally, the model might put more weights on the stocks with

more substantial value. We will apply the standard normalization by the formula 𝑋𝑋 – 𝜇𝜇
𝜎𝜎

, where 𝜇𝜇 is the mean

and 𝜎𝜎 is the standard deviation of each stock and the index. To demonstrate the normalization process, we
plot the NASDAQ index value before and after the normalization process as below. Each stock is also being
normalized in the same fashion.

Figure 21
DATA COMPARISON OF NORMALIZATION

Similar to the previous modeling, we will also need to split all the data into a 70%/30% ratio for training
and testing.

3.4.2 CREATING THE MODEL

Next, we need to create a model and train it with the training data. The model consists of two LSTM layers
and there is one dropout layer after each LSTM layer, which will randomly disable some neurons during the
training to avoid model overfitting. We stack multiple LSTM layers together to allow the model to learn to
complicate temporal dynamics between the index and all its stocks. The output of the second dropout layer
will connect to a dense layer (fully connected layer) before sending it to the activation function, which will
map the dense layer output to a prediction value. We are using the mean-squared error function as our
loss function to force the model to make a prediction as close to the training data as possible. The model
looks like below:

 32

Copyright © 2019 Society of Actuaries

Figure 22
STACK LSTM MODEL STRUCTURE

The model is available at:
https://github.com/rranxxi/soa_research_ai_time_series/tree/master/stock_prediction.

3.4.3 ROLLING WINDOW TRAINING

Although the LSTM, in theory, could memorize long-term features, in reality, the events happening right
now likely depend only on data within a limited time window. For example, it is unlikely that the stock price
from a year ago would be helpful for us to predict the stock price at 3:00 A.M. next Monday. Also, the forget
gate in the LSTM has the same vanishing/exploding gradient issue with RNN. If we do not limit the window
size, the model might take very long to train, and the convergence might be very slow. Therefore, we limit
the LSTM to only use the stocks and index value in the past T time points for training.

The model is trained with 32 epochs, and we can see from Figure 27 that the MSE error after each epoch
is descending, which indicates that the model is converging to its optimum value, and its prediction
accuracy is improving over each epoch. Also, we notice that after around 20 epochs, the error has already
plateaued. At this point, more rounds of training will not improve the model performance and may cause
the model to overfit the training data. That is why we only train for 32 epochs.

Figure 23
TRAINING LOSS OF LSTM MODEL

LSTM1 Dropout1 LSTM2 Dropout2 Dense Activation

https://github.com/rranxxi/soa_research_ai_time_series/tree/master/stock_prediction

 33

Copyright © 2019 Society of Actuaries

3.4.4 VISUALIZING THE RESULTS

After the model has been trained, we will freeze all the parameters in the model and use it to make
predictions. The following figure shows the results when we apply the model to the entire dataset. It is
expected that the prediction results will be exceptional in the training data section as the model has seen
those data during the training. In the testing data section, the model has predicted the trend correctly, but
failed to predict the correct scale. The red line (predicted results) appears to have the same trend with the
light blue line (ground truth). However, the scale is off a bit. This is not surprising to us as the stock market
is notoriously hard to predict. Even though we could not predict the exact value of the index, we could
know the trend ahead of time.

LSTM models have proven their capability of predicting time series data. This model intends to provide a
starting point for the readers to perform a similar time series prediction. Nevertheless, depending on the
nature of the input data and the issues to be resolved, the program needs to be further adjusted and tested.

Figure 24
NASDAQ PREDICTION RESULTS

3.4.5 LSTM VS. TRADITIONAL FORECASTING METHODS

Time series forecasting is an essential subject in business and finance. There are several traditional
forecasting techniques - one of the most notable statistical models is the Autoregressive Integrated Moving
Average (ARIMA) with several variations. ARIMA has been a popular method for time series prediction for
a long time; however, there are significant limitations to the ARIMA model. For instance, in a simple ARIMA
model, it is hard to model the nonlinear relationship between variables. Furthermore, it is assumed that
there is a constant standard deviation in errors of ARIMA, which usually is not satisfied in reality.

S.S. Namin and A.S. Namin conducted a study to compare the performance of LSTM vs. ARIMA models in
time series forecasting in 2018.10 Their study was conducted on many major indexes and shows that the

10 Namin, Sima Siama, Namin Akbar Siamo, “FORECASTING ECONOMIC AND FINANCIAL TIME SERIES: ARIMA VS. LSTM “, Texas
Tech University , March, 2018 https://arxiv.org/ftp/arxiv/papers/1803/1803.06386.pdf

https://arxiv.org/ftp/arxiv/papers/1803/1803.06386.pdf

 34

Copyright © 2019 Society of Actuaries

LSTM outperformed the ARIMA model by about 85% on average in terms of reducing the error rate of
forecasting results. As we noted earlier, the design of multiple layer neural networks allows high dimension
data processing, which could uncover correlations that are typically not seen with traditional forecasting
techniques.

Compared to traditional modeling techniques, the beauty of an RNN model is that it provides not only the
data but also the previous state. Take a speech recognition example: if I say, “I lived in Paris for about eight
years, mon français est bon.” In an RNN model, after studying the context of the first part of my speech,
the state of the first part will be carried forward to the second part of my sentence and it could recognize
that the second part is in French. However, traditional predictive modeling would fail to recognize this.
Furthermore, an LSTM model is capable of learning from more extended memory, not just the previous
state. In the speech recognition example above, if I start talking about how much I like the city, the model
could automatically figure out I am talking about Paris based on the prior context.

This is not saying that RNN is better than traditional statistical modeling in all circumstances. ARIMA has
been found to better model linear relationships, while RNN is better at modeling non-linear relationships.
A classical method like ARIMA yields better results in forecasting short-term and univariate problems where
LSTM is better for long-term forecasting. We can say the classical method is good at predicting simple,
short-term, univariate problems, while RNN is good at more complex predictions.

3.5 TIME SERIES ANOMALY DETECTION WITH LSTM

Anomaly detection is critical in time series data, especially for the financial industry. It could help us remove
outliers from the data. Anomaly detection has a wide range of applications such as fraud detection, health
monitoring, web traffic monitoring, and so on. Anomaly detection in time series data can also help us
identify the signals before some events happen. In this section, we are going to use the Numenta Anomaly
Benchmark (NAB) dataset to demonstrate that the LSTM model can also be used to detect anomalies in
time series data.

3.5.1 WHY LSTM

In theory, a classifier can also be used for anomaly detection as long as we have labels for each time point
to know whether the current time point is an outlier or not. However, labeling every time point in practice
is very costly. Moreover, the number of anomalies is typically way less than the regular data points. Thus,
it is highly unbalanced. Training a machine learning based classifier with unbalanced labels is very difficult
as the model might be overfitted with the classifier with more labels. RNN or LSTM are natural fits for time
series anomaly detection. We are trying to train an LSTM model so it can predict future data. If we see a
vast difference between our prediction and the incoming data, then we would suspect that the current
data might be an outlier.

 35

Copyright © 2019 Society of Actuaries

3.5.2 DATASET

Numenta Anomaly Benchmark (NAB)11 is a new scale used for evaluating algorithms for anomaly detection
in streaming, real-time applications. It is comprised of over 50 labeled real-world and artificial time-series
data files, plus a novel scoring mechanism designed for real-time applications. We select the NYC taxi data
from this dataset. It includes the number of taxi passengers between July 1, 2014, and January 31, 2015,
and it consists of aggregating the total number of taxi passengers into 30-minute buckets. In this NYC taxi
data, five anomalies occurred: during the NYC marathon, Thanksgiving, Christmas, New Year’s Day, and a
snowstorm. We will build an LSTM model to try to detect those anomalies.

3.5.3 DATA PREPARATION

As we have discussed previously, the first step to train a machine learning model is to normalize the data
so that the data has a zero mean and a normalized scale. The model we used is pretty much the same as
with the NASDAQ index prediction; the difference is we only have the number of passengers at previous
time points and we are trying to predict the number in the next 30 minutes. Here, we are also using a rolling
window approach and will use the last N time points to predict the next time point. N is a tunable hyper-
parameter and is set to 50 during the training. Mathematically, we are trying to find a mapping function f,
which will map the current LSTM state ℎ𝑡𝑡 and past N data to predict 𝑥𝑥𝑡𝑡+1, where 𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(ℎ𝑡𝑡 ,𝑥𝑥𝑡𝑡−𝑛𝑛, … , 𝑥𝑥𝑡𝑡).

The whole data is split into two parts, the first 70% will be used for training, and the remaining 30% will be
used as testing data to evaluate the model.

3.5.4 ANOMALY DETECTION WITH A TRAINED MODEL

We trained the model with 25 epochs and stopped the training once the error between the prediction and
training data was small enough. We first used the trained model to predict the future number of taxi
passengers and visualized the prediction results below. From the plot, the prediction looks pretty close to
the test data, which proves that the model fits both the training and test data quite well.

11 The Numenta Anomaly Benchmark: https://github.com/numenta/NAB.

https://github.com/numenta/NAB

 36

Copyright © 2019 Society of Actuaries

Figure 25
PREDICTED RESULTS OF NYC TAXI DATA WITH LSTM MODEL

Next, we detected the outliers from the test data. We defined that there were about 0.5% of outliers. We
computed the error between the prediction and original test data, and the top 0.5% with the most
significant errors were the suspicious outliers. It is interesting to see that we correctly detected the outliers
around Christmas, New Year’s Day, and the snowstorms (2015-01-23 to 2015-01-30), but failed to detect
the NYC marathon (2014-11-02) and Thanksgiving (2014-11-27). There are some adjustments we could
make to improve the model’s performance, but the results are good enough to show that we could use
LSTM to detect most of the anomalies successfully.

Figure 26
ANOMALY DETECTION RESULTS OF NYC TAXI DATA

 37

Copyright © 2019 Society of Actuaries

Chapter 4: Conclusion and Recommendations
Artificial intelligence (AI) technology has extraordinary potential in the actuarial field. This report provided
a high-level overview of AI and how it could be applied to actuarial work. We reviewed different kinds of
machine learning algorithms, discussed potential actuarial applications of different AI models, and touched
on some current success from the industry. We tied back to actuarial work with some real-life examples
and provided results following each algorithm/model. Our hope is that, after reading this paper, actuaries
will think more about “how could I bring AI into my daily work?”

Time series prediction is a critical topic in the business and finance areas. To actuaries, a better time series
prediction could mean a more accurate valuation result, more effective asset management, or even more
strategic business planning. The second goal of this report was to provide some concrete examples of
solving different time-series related problems. We compared six supervised learning models for solving
time series classification problems, implemented MLP and CNN deep learning models to predict Bitcoin
prices, and provided an in-depth discussion about the LSTM model and how to apply it for stock index
prediction, as well as for anomaly detection. All the models were built for the purpose of providing a clear
starting point for actuaries to solve time-series related problems; however, we believe as AI develops, there
will be more models that are better suited for the job.

To insurance companies, there are many challenges and obstacles in adapting AI technologies:

i. First, there are censorship and privacy concerns. After news spread about Facebook’s use of private
data in 2018, questions were raised as to how much privacy we should have after accepting AI into
our daily lives? We know we will have a better sense of someone’s mortality if we monitor his/her
social media posts and subscriptions, grocery purchases, etc., but should we be allowed to do that?

ii. Secondly, there are regulatory concerns. Machine learning is a giant black box to regulators. There
are no pre-defined mathematical equations, and the output from the program can constantly
change due to new input data feeds. This certainly raises concerns from a regulatory perspective;
regulators want all actuarial models to be transparent, well understood, and justified for control
purposes.

iii. Lastly, there is a significant initial investment and ongoing cost. Insurance companies need to invest
in both knowledge and hardware to adapt AI technology. There is a significant knowledge gap
between actuaries and computer scientists. We cannot do the work without knowing both sides of
the story. Continuous study and development are needed for all actuaries. From the hardware
perspective, insurance companies need to upgrade their Graphics Processing Units (GPU) for
model training and testing.

While AI can be a useful tool for actuaries, it is hard to imagine that a machine could think up worst case
scenarios, provide business interpretations based on observed data, and continuously ask innovative
questions about the products. Thus, actuaries will still need to intervene and interface with machines. The
actuarial profession has a long history and actuaries are known for their continuous studying and being
innovative. The emerging field of AI technology sets another opportunity for us to step to the next level.

 38

Copyright © 2019 Society of Actuaries

About The Society of Actuaries
The Society of Actuaries (SOA), formed in 1949, is one of the largest actuarial professional organizations in the world
dedicated to serving more than 32,000 actuarial members and the public in the United States, Canada and worldwide.
In line with the SOA Vision Statement, actuaries act as business leaders who develop and use mathematical models
to measure and manage risk in support of financial security for individuals, organizations, and the public.

The SOA supports actuaries and advances knowledge through research and education. As part of its work, the SOA
seeks to inform public policy development and public understanding through research. The SOA aspires to be a trusted
source of objective, data-driven research, and analysis with an actuarial perspective for its members, industry,
policymakers, and the public. This distinct perspective comes from the SOA as an association of actuaries, who have
a rigorous formal education and direct experience as practitioners as they perform applied research. The SOA also
welcomes the opportunity to partner with other organizations in our work where appropriate. i

The SOA has a history of working with public policymakers and regulators in developing historical experience studies
and projection techniques as well as individual reports on health care, retirement, and other topics. The SOA’s
research is intended to aid the work of policymakers and regulators and follow certain core principles:

Objectivity: The SOA’s research informs and provides analysis that can be relied upon by other individuals or
organizations involved in public policy discussions. The SOA does not take advocacy positions or lobby specific policy
proposals.

Quality: The SOA aspires to the highest ethical and quality standards in all of its research and analysis. Our research
process is overseen by experienced actuaries and nonactuaries from a range of industry sectors and organizations. A
rigorous peer-review process ensures the quality and integrity of our work.

Relevance: The SOA provides timely research on public policy issues. Our research advances actuarial knowledge while
providing critical insights on key policy issues, and thereby provides value to stakeholders and decision makers.

Quantification: The SOA leverages the diverse skill sets of actuaries to provide research and findings that are driven
by the best available data and methods. Actuaries use detailed modeling to analyze financial risk and provide distinct
insight and quantification. Further, actuarial standards require transparency and the disclosure of the assumptions
and analytic approach underlying the work.

Society of Actuaries
475 N. Martingale Road, Suite 600

Schaumburg, Illinois 60173
www.SOA.org

	Acknowledgments
	Executive Summary
	Chapter 1: Introduction to Machine Learning and Potential Applications in Time Series Prediction
	1.1 Supervised Learning Models
	1.1.1 Introduction of Supervised Learning Algorithm
	Naïve Bayes Classifier
	K-Nearest Neighbor (KNN)
	Support Vector Machine (SVM)
	Decision Trees
	Random Forests
	Gradient Boosted Trees (GBT)

	1.1.2 Which Model Should I Use?
	1.1.3 Actuarial Applications of Supervised Learning
	Classification
	Regression

	1.2 ML Model for Time Series Classification
	1.2.1 Data Preparation
	1.2.2 Classification and Results Analysis

	Chapter 2: Introduction to Deep Learning and Applications in Time Series Prediction
	2.1 Deep Neural Networks (DNN)
	2.2 DNN Example of Time Series Prediction
	2.2.1 Multi-layer Perceptron (MLP) vs. Convolutional Neural Networks (CNN)
	2.2.2 Data Preparation
	2.2.3 Creating the Model
	2.2.4 Training the Model
	2.2.5 Results Analysis

	Chapter 3: Time Series Prediction with Recurrent Neural Networks (RNN)
	3.1 Recurrent Neural Networks (RNN)
	3.2 Vanishing and Exploding Gradient Issues
	3.3 Long Short-Term Memory (LSTM) Model
	3.4 Time Series Prediction with LSTM
	3.4.1 Data Preparation
	3.4.2 Creating the Model
	3.4.3 Rolling Window Training
	3.4.4 Visualizing the Results
	3.4.5 LSTM vs. Traditional Forecasting Methods

	3.5 Time Series Anomaly Detection with LSTM
	3.5.1 Why LSTM
	3.5.2 Dataset
	3.5.3 Data Preparation
	3.5.4 Anomaly Detection with a Trained Model

	Chapter 4: Conclusion and Recommendations
	About The Society of Actuaries

