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Long-Term Impacts of Exposure to the COVID-
19 Pandemic in a Cohort Perspective 
Remaining Life Expectancy, Scarring, and Selection 

Executive Summary 
This report presents findings from a project investigating the long-term impacts of the COVID-19 pandemic on 
mortality. The project had three objectives: 1) estimating the reduction in life expectancy experienced by birth 
cohorts affected by the pandemic, 2) understanding how future life expectancy will change under different mortality 
scenarios after the acute phase of the pandemic, and 3) investigating whether excess mortality at one age is 
associated with excess mortality at subsequent ages across cohorts. The study is based on cohort mortality data 
from the Human Mortality Database for 1985-2023. Cohort-specific excess mortality rates and ratios were 
computed by comparing observed death rates to deaths expected based on pre-pandemic mortality trajectories. 
The gap between observed and expected mortality was investigated under four different scenarios representing 
different paces of return to pre-pandemic trends. Finally, the correlation between cohort-specific excess mortality in 
2020-2021 and 2021-2022 was assessed, revealing important insights into the presence of mortality selection, 
acquired immunity, and scarring effects. 

The main findings of the study are summarized below: 

• Every cohort included in the study displayed higher-than-expected mortality in 2020-2023 compared with 
expected trends based on ten years of pre-pandemic data. 

• Excess cohort mortality was higher at ages affected by 2020-2021 mortality than at ages affected by 2021-
2022 and shows further declines at ages affected by 2022-2023 mortality. Despite declines in excess 
mortality, mortality at all ages affected by the pandemic was above the expected level. 

• Even if mortality were to immediately return to pre-pandemic trends, losses of life that have already 
occurred imply that declines in the probability of reaching age 95 for females will range from 1.4% to 
11.7%, with an average decline of 4.8%. Among males, the declines will range from 1.7% to 12.3%, with an 
average decline of 5.2%. 

• A permanent deviation of mortality from pre-pandemic trends – i.e., no return to the pre-pandemic 
mortality trend – would imply an average decline of 10.8% in the probability of reaching age 95 for both 
females and males. 

• These reductions in expected longevity translate into 206,253 additional female deaths before age 95 
under the best-case scenario, which grow more than two-fold to 505,208 under the worst-case scenario. 

• The corresponding figures for males are 113,083 additional deaths under the best-case scenario, which 
more than doubles to 259,840 under the worst-case scenario. 

• Comparing excess mortality rates between 2020-2021 and 2021-2022, the level of excess mortality in 
2020-2021 predicts almost perfectly the level in 2021-2022, suggesting that common factors such as the 
prevalence of pre-existing conditions or comorbidities and socioeconomic status (correlated environments) 
explain variation in excess mortality across cohorts in both periods. 
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• Conversely, the lack of a relationship between the level of excess mortality in 2020-2021 and changes in 
excess mortality between 2020-2021 and 2021-2022, suggest that high excess mortality at a given age was 
not systematically associated with lower-than-average –– as positive selection of survivors and acquired 
immunity would imply –– or higher-than-average –– as scarring would imply –– excess mortality at 
subsequent ages. These findings are consistent either with the absence of acquired immunity, selection, 
and scarring effects or with effects of opposite sign (e.g. acquired immunity and scarring) offsetting each 
other. 

 

 

 

 

  

https://soa.qualtrics.com/jfe/form/SV_cTFAdgtTa9furBk?Code=ML234&Type=PR
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Section 1 Introduction 
The potential effects of past mortality conditions on future mortality can be classified by sign (positive or negative) 
and by whether they act through a direct (physiological) or indirect (associational) mechanism.1 Positive effects 
imply that higher mortality in the past, or positive mortality shocks, are associated with higher mortality in the 
future. Negative effects imply the opposite relationship. Direct effects are those acting at an individual level through 
a physiological mechanism, e.g., infection from the hepatitis B virus, increasing the risk of dying from liver cancer.2 
Positive direct effects are usually grouped under the term “scarring,” while negative direct effects are given the 
name of “acquired immunity” since they often result from exposure to a disease offering temporary or permanent 
immunity against reinfection (e.g., influenza). Indirect effects (sometimes referred to as correlated environments) 
are more complex to categorize as positive or negative and are more easily understood as confounders (i.e., 
variables which affect both past and current mortality conditions) as the term is used in the causal inference 
literature.3 Poverty is a good example, likely to positively affect both past and current mortality (positive effect). 
However, one can also think of confounders that would have a positive impact on past mortality and a negative 
impact on current mortality. Another indirect mechanism, which does not fit neatly within the confounders group, is 
selection. Selection refers to the impact of past mortality on population composition. Usually, selection is thought to 
lower future mortality, with past shocks removing the frailest individuals from the population and, thus, reducing 
future mortality.4 However, as for confounders, one can also imagine a positive effect of selection on mortality, e.g., 
war casualties. The concept of selection is also closely related to that of harvesting,5 but the latter is usually 
reserved for short-term effects. 

At its core, the relationship between past and future mortality can only operate directly (physiologically) through 
cohorts. For example, if it is hypothesized that being exposed to COVID-19 increases the risk of mortality for other 
causes of death (scarring), the analysis should focus on relationships between past and present mortality within 
cohorts over subsequent ages (cohort perspective), rather than within age groups over time (period perspective). 
The same argument applies for acquired immunity. Even though indirect links between past and current mortality 
can operate across cohorts, most should be stronger within cohorts. The presence of mortality selection, i.e., 
COVID-19 mortality only affecting the frailest and, thus, potentially lowering future mortality, also operates 
exclusively within cohorts. 

Aside from the question of whether the effects of past mortality on future mortality are easier to identify within 
cohorts, there is a second argument for adopting this perspective. Demographers distinguish between two types of 
demographic measures, those based on the number of events occurring to a cohort of individuals (cohort measures) 
and those based on the number of events occurring to any individual in each time point (period measures). Birth 
cohorts (all individuals born in the same year) are the most common type of cohort, though not the only one. 
Cohort rates are arguably easier to model compared to period rates because the passing of time in a cohort 
perspective occurs in the form of aging. The relationship between age and mortality has been the subject of 
demographic research dating back to at least the 1600’s and a variety of parsimonious but accurate mortality laws 
for different ages have been developed.6–12 With the advent of more computing power, the tools available to flexibly 
model the age-mortality relationship have increased. New tools include semi-parametric methods based on 
penalized splines13,14, closely related to Generalized Additive Models.15 

For both theoretical and modeling reasons, assessing the long-term impact of the COVID-19 pandemic on mortality 
is a much simpler enterprise when examining cohort-specific mortality trajectories rather than period ones. Based 
on previous research on forecasting cohort mortality rates14,16, observed age-specific mortality rates for a cohort up 
to age 60 gives enough information to accurately forecast future mortality for that cohort, at least to age 90, with 
remarkably simple models. To perform the same kind of projection on a period basis would instead be close to 
impossible without accepting wide margins of uncertainty. 
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In this report, a cohort perspective is adopted to investigate the realized and potential impact of the COVID-19 
pandemic on the mortality of cohorts born between 1935 and 1949 in the United States. For each cohort, mortality 
at ages unaffected by the pandemic are used to fit models that relate age to mortality. The observed and projected 
cohort age-specific mortality rates are then compared to assess the impact of COVID-19 in 2020-2023. Finally, 
different scenarios for mortality beyond the acute phase of the pandemic are formulated to examine how life 
expectancy for each of the affected cohorts varies when moving from more optimistic to more pessimistic 
assumptions. 
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Section 2 Data and Methods 

2.1 DATA 
Deaths and exposures by Lexis triangle for the years 1985-2023 were obtained from the Human Mortality Database 
(HMD).17 These data were used to compute age-specific mortality rates by single years of age and birth cohort. The 
analysis was restricted to the 1935-1949 cohorts, which reached ages 70 to 85 in 2020. This restriction provided 
pre-pandemic mortality data for ages 50 to 69 for each cohort, which served as the basis for constructing cohort 
forecasts of age-specific mortality rates in the absence of the COVID-19 pandemic. 

2.2 PREDICTING AGE-SPECIFIC MORTALITY RATES BY COHORT IN THE ABSENCE OF THE PANDEMIC 
Predicting age-specific mortality rates for several cohorts using a unique modeling approach is challenging. The main 
issue encountered is that the amount of data for older cohorts is significantly greater than for younger cohorts, 
since older cohorts have already gone through more years of life. In turn, this means that simpler parametric 
models, like Gompertz6 or the Perks-Kannisto logit model9,10, generally provide more realistic estimates for younger 
cohorts since they impose a very regular age progression. In contrast, more flexible GAM-based models provide a 
better fit for the mortality profile of older cohorts, because they are able to fit the observed rates at all ages and 
produce reasonable extrapolations for narrow age ranges. The downside of using different approaches for different 
cohorts is that comparing results across cohorts, particularly with respect to uncertainty, becomes harder, and 
inconsistencies or discontinuities may arise. To balance model fit with comparability across cohorts, the analysis 
employed a procedure that achieves a good fit for both younger and older cohorts by relaxing the functional-form 
constraints typically imposed by Gompertz or Kannisto models. At the same time, the approach ensured that only 
demographically plausible age progressions were permitted. The procedure combines the selection of an “optimal” 
model life table to represent the observed mortality of a cohort with a modeling step based on the Brass relational 
logit model. This procedure has its predecessor in the Brass logit life table system18 and a similar idea is discussed in 
the UN Manual X.19 The procedure has three steps. First, the data for each cohort is limited to the ten ages before 
the first one affected by the pandemic. For the 1949 cohort, ages 60 to 69 are used while, for the 1935 cohort, ages 
75 to 84 are used. Second, the analysis refers to the West family United Nation model life table20–23, which achieves 
the lowest Root Mean Squared Difference (RMSD) relative to the observed mortality rates. Formally, denoting with 
𝐿𝐿𝑇𝑇𝑖𝑖 the 𝑖𝑖𝑡𝑡ℎ  model life table: 

𝐿𝐿𝑇𝑇𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑖𝑖 ��
∑ (𝑀𝑀𝑥𝑥

𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑀𝑀𝑥𝑥
𝑖𝑖 )2𝑜𝑜

𝑥𝑥=𝑎𝑎

𝑏𝑏 − 𝑎𝑎
� 

where 𝑎𝑎 is the start of the age range for a given cohort and 𝑏𝑏 is the endpoint, as identified in the first step. Since 
mortality generally increases by age for adults, the RMSD to be minimized will give more weight to older ages (i.e., 
the same proportional error will increase the RMSD more at older than younger ages). This is a desirable property in 
this application because the model will extrapolate to older ages, so accuracy closer to the starting point of the 
extrapolation interval is particularly important. The third and final step in the procedure is to fit a Brass relational 
logit model 24 using the selected UN model life table as the standard. The following equation is fit: 

log �
𝑀𝑀𝑥𝑥

𝑜𝑜𝑜𝑜𝑜𝑜

1−𝑀𝑀𝑥𝑥
𝑜𝑜𝑜𝑜𝑜𝑜� = 𝛼𝛼 + 𝛽𝛽 ⋅ log �

𝑀𝑀𝑥𝑥
𝑜𝑜𝑡𝑡𝑠𝑠

1−𝑀𝑀𝑥𝑥
𝑜𝑜𝑡𝑡𝑠𝑠� 

where 𝑀𝑀𝑥𝑥
𝑜𝑜𝑜𝑜𝑜𝑜  are the observed and 𝑀𝑀𝑥𝑥

𝑜𝑜𝑡𝑡𝑠𝑠 the standard age-specific mortality rates. As for the selection of the model 
life table, the model is only fit between ages 𝑎𝑎 and 𝑏𝑏, as defined above. Notice also that a more accurate model 
specification would relate the logit of age-specific probabilities of dying 𝑞𝑞𝑥𝑥 in the two populations, but this would 
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complicate the analysis by requiring first the conversion of mortality rates into probabilities of death and then to 
convert predicted probabilities back to rates. In practice whether the logit of rates or probabilities are used is 
unlikely to matter for the age ranges being modeling since*: 

𝑞𝑞𝑥𝑥 = 𝑒𝑒𝑀𝑀𝑥𝑥 − 1 ≈ (1 +𝑀𝑀𝑥𝑥)− 1 = 𝑀𝑀𝑥𝑥 

where the approximation holds if 𝑀𝑀𝑥𝑥 ≈ 0. Equipped with these models, fit separately by birth cohort and sex, 
extrapolate the age-specific mortality rates from the last age unaffected by the pandemic are extrapolated to age 
95. Age 95 was chosen as an upper threshold because mortality at the oldest ages becomes harder to predict. 

2.3 MEASURING AND QUANTIFYING THE IMPACT OF THE PANDEMIC ON COHORT MORTALITY 
TRAJECTORIES 

To quantify the impact of the pandemic on cohort mortality, the expected age-specific mortality rates are compared 
to the observed rates for the four ages affected by the COVID-19 pandemic within each cohort. For example, for the 
1949 cohort, mortality at ages 70 to 74 (which occurred between 2020 and 2023) was affected by the pandemic; for 
the 1935 cohort, the affected ages were 85 to 89. For each cohort, the mortality for the last age is still incomplete 
because some of the deaths and exposures will have occurred in 2024, for which data is not yet available. Figure 1 
illustrates the study design using the 1949 cohort as an example. Looking at the Lexis diagram, it can be seen that, 
for the 1949 cohort, mortality at age 70 will occur between 2019 and 2020, mortality at age 71 will occur between 
2020 and 2021, mortality at age 72 between 2021 and 2022, mortality at age 73 between 2022 and 2023, and 
mortality at age 74 between 2023 and 2024. It is thus important to keep in mind that each age- and cohort-specific 
mortality rate reflects deaths and exposures for two consecutive calendar years. 

 

 

* The expression below is valid when the mortality rate 𝑀𝑀𝑥𝑥  or ,1 𝑀𝑀𝑥𝑥  is constant between age 𝑥𝑥 and 𝑥𝑥 + 1, which is not a strong assumption for adult ages 
and when using one-year intervals. 
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Figure 1 
ILLUSTRATION OF STUDY DESIGN ON A LEXIS DIAGRAM USING THE 1949 BIRTH COHORT AS AN EXAMPLE 

 
Notes: The graph shows the 1949 cohort as it ages and enters the pandemic period. Mortality at four ages (70-74) is affected by the first 
four years of the pandemic. This discrepancy between the number of years and ages affected by the pandemic arises because, from a 
cohort perspective, mortality at a given age can occur across two consecutive years. For the fifth age affected by the pandemic, 74 for 
the 1949 cohort, the data is incomplete because part of mortality at that age will have occurred in 2024, for which data is not yet 
available. By treating it as other data points, it is implicitly assumed that the data for 2023 is representative of that for the full 2023-2024 
period. 

For each cohort, four different scenarios were constructed, which were compared to the baseline of no deviation 
from the pre-pandemic trend. In each scenario, mortality rates are allowed to increase as observed for the ages 
affected by the pandemic (e.g., 70-74 for the 1949 cohort). It is assumed excess mortality would decline to half of its 
2023-2024 value (partially observed) in 2024-2025 (age 75 for the 1949 cohort). This adjustment is based on excess 
mortality estimates for 2023 and 2024.25,26  
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From the 2024-2025 data point, different assumptions about the number of years it will take for the rates to go back 
to the pre-pandemic trend are made: 1) mortality returns to the expected trend in five years (with a linear decline), 
2) mortality returns to the expected trend in ten years (with a linear decline), 3) mortality only returns to the pre-
pandemic trend in 30 years (with a linear decline), or 4) mortality remains permanently above the pre-pandemic 
trend. These scenarios align roughly with those in a similar analysis of potential long-term trends in mortality 
following the COVID-19 pandemic.25 Scenario (1) is referred to as the best-case scenario, scenario (2) the average 
scenario, scenario (3) the pessimistic scenario, and scenario (4) the worst-case scenario. 

Under each scenario, two metrics are calculated: 1) the ratio between the average age-specific mortality rate under 
the scenario and in the baseline (rate ratio), and 2) the percentage reduction in the probability to reach age 95 for 
those alive in January 2020 compared with the baseline. For example, for the 1949 cohort, the probability of 
reaching age 95 for those who survived to age 70 is calculated under mortality rates in each of the scenarios and 
contrasted with the same probability under the baseline rates. These probabilities are obtained by constructing 
truncated cohort life tables with standard techniques and assuming deaths occur in the middle of each age 
interval.27 

2.4 ESTIMATING THE CORRELATION BETWEEN EXCESS MORTALITY IN CONSECUTIVE YEARS 
Having estimated age- and cohort-specific mortality deviations from the expected mortality trajectories, the 
question of whether deviations at one age are associated with deviations at later ages can be considered. To 
simplify the analysis, excess mortality at the age affected by the pandemic in 2020-2021 will be compared to excess 
mortality at the age affected by the pandemic in 2021-2022. For example, for the 1949 cohort, excess mortality at 
age 71 is compared to excess mortality at age 72. Since mortality is higher at older ages, looking at absolute excess 
can be problematic because the data points will be heteroskedastic. To alleviate this issue, excess ratios, i.e., 
excess/expected ratios or p-scores will be assessed. Using separate models by sex, the ratio in the age affected by 
2021-2022 mortality, 𝑅𝑅21−22, is related to the ratio in the age affected by 2020-2021 mortality, 𝑅𝑅20−21. To simplify 
the interpretation of the coefficients, the average of the 2020-2021 ratios is subtracted from both quantities and 
the result is multiplied by 100. This does not affect the slope of the model but makes the intercept easily 
interpretable: 

𝑅𝑅21−22,𝑐𝑐 = 𝛼𝛼 + 𝛽𝛽 ⋅ 𝑅𝑅20−21,𝑐𝑐 + 𝜀𝜀1,𝑐𝑐 

where the 𝑐𝑐 subscript indicates cohort 𝑐𝑐. The presence of an intercept and the transformation from absolute to 
relative excess measures make the assumption, 𝜀𝜀𝑐𝑐 ∼ 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁(0,𝜎𝜎2), more plausible by reducing the 
heteroskedasticity of the residuals. The intercept of this equation, 𝛼𝛼, indicates the average difference in percentage 
points between the 2021-2022 ratios and the 2020-2021 ratios. Positive values indicate that excess mortality 
declined over time, while positive values indicate that they have increased. The slope of the model, 𝛽𝛽, indicates how 
many additional percentage points of excess mortality in 2021-2022 are associated with an additional percentage 
point of excess mortality in 2020-2021. In the presence of correlated environments, it would be expected for w 𝛽𝛽 to 
be close to 1, indicating that accounting for overall declines or increases in excess mortality cohorts with higher 
excess in one period also had higher excess in the next one. Because the transformation of the excess ratios, 𝛽𝛽 − 1 
also represents the expected change in the excess ratio between 2020-2021 and 2021-2022 associated with a 1% 
increase in 2020-2021. Positive values of 𝛽𝛽 − 1 would indicate that higher excess in 2020-2021 predicts an increase 
in excess mortality in 2021-2022 (net of the average change) and suggest the presence of scarring effects. On the 
contrary, negative values of 𝛽𝛽 − 1 would indicate that higher excess in 2020-2021 predicts a decrease in excess 
mortality in 2021-2022 (net of the average change) and, thus, suggests the presence of acquired immunity or 
positive selection. 
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Section 3 Results 

3.1 EXPECTED AND OBSERVED COHORT-SPECIFIC MORTALITY RATES 
Figure 2 shows age-specific mortality rates by cohort and sex for years 2010-2023. The age range included for each 
cohort depends on its age in 2010, so that earlier cohorts are observed at older ages and more recent cohorts at 
younger ones. Within each panel, containing mortality rates for cohorts born within five years of each other, there is 
little between cohort variability for ages unaffected by the pandemic. The small differences manifest as vertical 
deviations from a common trend rather than as differences in the rate of mortality increase over age, as indicated 
by the lines being approximately parallel. This pattern indicates that, in the absence of the pandemic, a roughly 
linear increase in the log-mortality rates would have been expected. Each of the 15 cohorts included in the study 
saw a sharp mortality increase in 2020 (i.e., ages 70 and 71 for the 1949 cohort). For all cohorts, and particularly for 
the younger ones, while mortality at ages affected by the second year of the pandemic (ages 71 and 72) and the 
third (ages 72 and 73) returned closer to the pre-pandemic trend, it remained elevated. Mortality at ages affected 
by the fourth year of the pandemic (i.e., age 74) did not show clear convergence towards the pre-pandemic trend 
for most cohorts. 
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Figure 2 
AGE-SPECIFIC MORTALITY RATES BY SEX AND COHORT (1935-1949) 

 

Notes: Each line represents the log age-specific mortality rates (single ages) for a different birth cohort. To simplify the visualization, the 
line for each cohort starts ten years before the pandemic so all lines have the same length. 
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Figure 3 shows predicted and observed mortality rates for three cohorts (1935, 1940, and 1945). Figure 4 shows the 
difference between the two series (observed minus predicted). To reduce the complexity of the figures, only the 
ages used to fit the model and those affected by the pandemic are included. As seen in Figure 3, the fit is close to 
perfect for both older and younger cohorts, and the confidence intervals around the estimated rates confirm that 
differences between expected and observed rates fall outside expected variation. This analysis confirms that, for 
each of the six cohorts, mortality rates at ages affected by the pandemic are higher than expected and the 
differences are significant. Figure 4 also confirms that, while the deviations from the trend were larger for ages 
affected by 2020 and 2021 mortality compared to ages affected by 2021 and 2022 mortality, and it continued to 
decline at ages affected by 2022 and 2023 mortality, it subsequently stabilized, showing limited signs of 
convergence to the pre-pandemic trend for most cohorts. 
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Figure 3 
FITTED, OBSERVED, AND EXTRAPOLATED AGE-SPECIFIC MORTALITY RATES BY COHORT AND SEX 

 

Notes: The dotted lines represent the expected age-specific mortality rates. The shaded areas around the dotted line are 90% confidence 
intervals. Dots reflect observed rates, with color indicating observations unaffected by the pandemic (black) and those affected (red). 
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Figure 4 
OBSERVED DEVIATIONS FROM THE EXPECTED RATES BEFORE AND AFTER THE COVID-19 PANDEMIC BY COHORT 
AND SEX 

 

Notes: The dotted horizontal lines represent the expected age-specific mortality rates. The shaded areas around the dotted line are 90% 
confidence. Dots reflect observed rates, with color indicating observations unaffected by the pandemic (black) and those affected (red). 
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3.2 MORTALITY TRENDS UNDER FOUR SCENARIOS 
Figure 5 illustrates the four scenarios in terms of deviations from the expected trend and with respect to the 
observed rates up to 2023. Only three cohorts (1935, 1940, and 1945) are included to simplify the visualization, but 
the scenarios are identically constructed for all cohorts. All the scenarios, except the “Permanent Deviation” 
scenario, converge back to the pre-pandemic trend but approach it at different speeds, with “5 Years to Return to 
Expected” being the fastest and “30 Years to Return to Expected” being the slowest. While the structure of each 
scenario is the same for all cohorts, the starting point is determined by the observed deviation from the expected 
rates in the last data point (deaths and exposures that occurred in 2023). 
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Figure 5 
SCENARIOS OF FUTURE EVOLUTION OF AGE-SPECIFIC MORTALITY RATES FOR COHORTS AFFECTED BY THE COVID-
19 PANDEMIC 

 

Notes: The dotted horizontal lines represent the expected age-specific mortality rates. The solid, colored line represents the expected 
mortality rates under each of the scenarios. Dots reflect observed rates up to 2023, with color indicating observations unaffected by the 
pandemic (black) and those affected (red). 

Panel A in Figure 6 and Table 1 show the scenario/baseline mortality rate-ratios for each of the cohorts included in 
the study. The ratios are computed by averaging mortality rates for all ages potentially affected by the pandemic 
under each scenario and under the baseline, with age 95 as the last age included. For the oldest cohort in the study 
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(1935), this means looking at the ratio of average rates between ages 85 and 95. For the youngest cohort (1949), 
this means looking at the ratio of average rates between ages 70 and 95. All rate-ratios are above 100, indicating 
higher-than-expected mortality and are generally larger for older cohorts. The ratios increase with movement from 
the best-case to the worst-case scenario. In the best-case scenario, which mostly reflects losses in longevity that 
have already materialized, the rate-ratios expressed as percentages (baseline is 100) range from 101.1 to 110.6 for 
females and from 101.1 to 108.3 for males, with average rate ratios of 104.2 for females and 103.2 for males. In the 
worst-case scenario, the ratios range from 105.1 to 116.1 for females and from 103.4 to 111.9 for males, with 
average rate ratios of 109.5 for females and 106.8 for males. The difference between the two extreme scenarios 
provides a measure of how much of the additional decline in longevity could be averted by a faster return to pre-
pandemic trends. 

Table 1 
MORTALITY RATE RATIOS UNDER DIFFERENT FUTURE SCENARIOS RELATIVE TO BASELINE RATES BY COHORT AND 
SEX  

Scenario Average Mortality Rate Ratios Relative to Pre-Pandemic Baseline 
Average Maximum 80th Percentile 20th Percentile Minimum 

Female 
5 Years to Return to Expected 104.2 110.6 106.6 102.0 101.1 

10 Years to Return to Expected 105.4 113.2 108.7 102.6 101.4 
30 Years to Return to Expected 107.9 115.1 111.6 105.1 103.3 

Permanent Deviation 109.5 116.1 113.0 106.6 105.1 
Male 
5 Years to Return to Expected 103.2 108.3 104.4 101.5 101.0 

10 Years to Return to Expected 104.0 110.0 105.6 101.9 101.2 
30 Years to Return to Expected 105.7 111.3 107.1 103.9 102.3 

Permanent Deviation 106.8 111.9 107.9 105.4 103.4 
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Figure 6  
MORTALITY RATE RATIOS (PANEL A) AND PERCENTAGE DECLINES IN PROBABILITY OF SURVIVAL TO AGE 95 (PANEL 
B) UNDER DIFFERENT FUTURE SCENARIOS RELATIVE TO BASELINE RATES BY COHORT AND SEX 
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Panel B in Figure 6 and Table 2 translate rate-ratios into proportional reductions in the probability of reaching age 
95 for those surviving to the beginning of the pandemic. The patterns are similar to those in Panel A, but this 
alternative metric offers a more interpretable measure of the individual-level impact of the pandemic. In the best-
case scenario, the reduction in the probability to reach age 95 ranges from 1.4% to 11.7% for females and 1.7% to 
12.3% for males, with an average decline of 4.8% for females and 5.2% for males. In the worst-case scenario, the 
decline ranges from 6.1% to 17.2% for females and 5.7% to 7.2% for males, with an average decline of 10.8% for 
both sexes. For each cohort, these declines correspond to additional deaths among its members before reaching 
age 95 (Table 3). There would be an additional 206,253 deaths among females and 113,083 among males under the 
best-case scenario. Under the worst-case scenario, they would grow more than two-fold among both females 
(505,208 deaths) and males (259,840 deaths). 

Table 2 
PERCENTAGE DECLINES IN PROBABILITY OF SURVIVAL TO AGE 95 UNDER DIFFERENT FUTURE SCENARIOS RELATIVE 
TO BASELINE RATES BY COHORT AND SEX  

Scenario Percentage Declines in the Probability of Reaching Age 95 
Average Maximum 80th Percentile 20th Percentile Minimum 

Female 
5 Years to Return to Expected -4.8 -11.7 -7.7 -2.3 -1.4 

10 Years to Return to Expected -6.2 -14.3 -10.1 -3.1 -1.8 
30 Years to Return to Expected -9.0 -16.2 -13.1 -6.3 -4.0 

Permanent Deviation -10.8 -17.2 -14.6 -8.0 -6.1 
Male 

5 Years to Return to Expected -5.2 -12.3 -7.4 -2.5 -1.7 
10 Years to Return to Expected -6.5 -14.6 -9.2 -3.2 -2.0 
30 Years to Return to Expected -9.1 -16.4 -11.6 -6.3 -3.9 

Permanent Deviation -10.8 -17.2 -12.8 -8.6 -5.7 
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Table 3 
EXPECTED AND EXCESS DEATHS BEFORE AGE 95 ASSOCIATED WITH EACH SCENARIO ON FUTURE MORTALITY  

Expected and Excess Deaths before Age 95 (reference: pre-pandemic trends) 

Scenario 1935-1939 1940-1944 1945-1949 All Cohorts 
Expected Excess Expected Excess Expected Excess Expected Excess 

Female 
5 Years to Return to Expected 2,693,256 99,638 3,967,261 59,755 5,472,171 46,860 12,132,688 206,253 

10 Years to Return to Expected 2,693,256 126,746 3,967,261 76,948 5,472,171 60,456 12,132,688 264,149 
30 Years to Return to Expected 2,693,256 157,205 3,967,261 125,430 5,472,171 125,725 12,132,688 408,360 

Permanent Deviation 2,693,256 172,550 3,967,261 153,682 5,472,171 178,976 12,132,688 505,208 
Male 
5 Years to Return to Expected 2,365,787 45,218 3,772,210 36,965 5,516,903 30,900 11,654,900 113,083 

10 Years to Return to Expected 2,365,787 55,442 3,772,210 45,891 5,516,903 38,022 11,654,900 139,355 
30 Years to Return to Expected 2,365,787 66,800 3,772,210 72,164 5,516,903 72,170 11,654,900 211,135 

Permanent Deviation 2,365,787 72,476 3,772,210 87,581 5,516,903 99,783 11,654,900 259,840 

Notes: Expected deaths refer to the number of deaths that would have occurred based on pre-pandemic trends as projected by 
statistical models. 

3.3 ASSOCIATION BETWEEN EXCESS MORTALITY IN 2020-2021 AND 2021-2022 
Table 4 reports the results from the regression analysis relating excess mortality in 2021-2022 to excess mortality in 
2020-2021. Looking at the intercepts for the sex-specific models, the average excess mortality ratios in 2021-2022 
were 5.7% [5.0, 6.4] lower than in 2020-2021 among females, and 8.2% [7.6, 8.8] lower among males. Looking at the 
slope associated with the excess mortality ratio in 2020-2021, and adjusting for the differences in the level, a 1% 
increase in excess mortality in 2020-2021 is associated with a 1% increase in excess mortality in 2020-2021 (0.9 
among males). Although the excess mortality ratios in 2020–2021 accurately predict the overall level, subtracting 
one from both slopes and analyzing the confidence intervals reveals that they do not predict the change in excess 
mortality between 2020–2021 and 2021–2022. This suggests that common factors explain the severity of excess 
mortality for a given cohort in consecutive ages (correlated environments) but that neither selection, acquired 
immunity, nor scarring played a large role or, if they played one, they offset each other perfectly. 

Table 4 
SUMMARY OF REGRESSION MODELS RELATING EXCESS RATIOS IN 2021-2022 AND 2020-2021  

Characteristic Females Males 
Beta 95% CI1 p-value Beta 95% CI1 p-value 

(Intercept) -5.7 -6.4, -5.0 <0.001 -8.2 -8.8, -7.6 <0.001 
Excess Ratio 2020 1.0 0.81, 1.3 <0.001 0.89 0.65, 1.1 <0.001 

R² 0.880   0.836   
No. Obs. 15   15   

σ 1.26   1.02   
1CI = Confidence Interval 
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Section 4 Discussion 
This study demonstrates that the COVID-19 pandemic has already had a significant impact on the survival of 
individuals born between 1935 and 1949. Even under an optimistic scenario, the average decline in the probability 
of reaching age 95 will decline by 4.8% among female cohorts and by 5.2% among male cohorts. These losses are 
largely already realized. Further loss of life expectancy can be limited with a fast return to the pre-pandemic trends. 
However, the projected consequences of a slow return will be severe. In the case of a ten-year delay, the average 
decline in the probability of reaching age 95 will be 6.2% among female cohorts and 6.5% among male cohorts. In 
the case of a 30-year delay in the return to the baseline, the average decline among female cohorts will increase to 
9.0% and the one among male cohorts will rise to 9.1%. In the worst-case scenario, there will be a 10.8% decline for 
both females and males. Each further decline in the probability of reaching age 95 corresponds to additional deaths 
from 2020 to 2045. There will be 319,336 such deaths under the best-case scenario and 765,048 under the worst-
case scenario. 

Analyzing the relationship between excess mortality rates in 2020-2021 and 2021-2022, the level of excess mortality 
in 2020-2021 predicts almost perfectly the level in 2021-2022, net of average declines in excess mortality between 
2020-2021 and 2021-2022. This finding suggests that common factors explain differences in excess mortality across 
cohorts in both periods. These factors would encompass 1) prevalence of individual-level risk factors, including 
socioeconomic characteristics, health-related behaviors such as smoking and alcohol consumption, and pre-existing 
conditions such as hypertension, diabetes, or heart disease, and 2) area-level factors such as population density, age 
structure, and mobility. In contrast, the level of mortality in 2020-2021 does not predict changes in excess between 
2020-2021 and 2021-2022, suggesting that experiencing higher-than-average excess mortality in the first two years 
of the pandemic was unrelated to the probability of experiencing higher-than-average excess in the second and 
third years of the pandemic. This finding suggests the absence of both selection or acquired immunity – i.e., direct 
or indirect mechanisms linking higher mortality in one year to mortality declines in the subsequent year – and 
scarring – i.e., direct mechanisms such as increased risk of death from other causes following a COVID-19 infection, 
that would link higher mortality in one year to increases in mortality in the next one. It is also possible that these 
two mechanisms counteracted each other but the absence or small magnitude of strong selection/scarring effects 
would be predicted by both mathematical models,28 and an empirical investigation of mortality shocks in the 
past.5,29 These findings suggest that mortality compression or harvesting is unlikely to play a significant role in 
shaping temporal patterns of excess mortality.  

4.1 LIMITATIONS 
Limitations of the study include the uncertainty of long-term forecasts of mortality rates. While, as can be seen in 
Figure 3, within-model uncertainty is relatively small, different modeling choices can lead to a wider range of 
predictions. To reduce the sensitivity of conclusions to the use of different models, the cohorts included in the study 
were limited to those for which mortality can be observed up to age 69. A second limitation comes from the 
unavailability of data for more recent years, which required making assumptions about cohort mortality deviations 
from pre-pandemic trends in 2024. Mitigation of the arbitrariness of these assumptions was attempted by relying on 
previous reports, but it is possible that when the required data becomes available, it will show more or less severe 
excess mortality in 2024. 
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