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Abstract

What types of households own life insurance? Who owns term life and who owns
whole life insurance? To answer these questions, we examine the Survey of Consumer
Finances, a probability sample of the U.S. population. Household demand of two
types of insurance, term and whole life insurance, is examined jointly. We model
both the frequency and the severity of demand for insurance, building on the work
of Lin and Grace (2007) by using explanatory variables that they developed. For the
frequency portion, the household decisions about whether to own term and whole life
insurance are modeled simultaneously with a bivariate probit regression model. Given
ownership of life insurance by a household, the amounts of insurance are analyzed using
generalized linear models with a normal copula. The copula permits the bivariate
modeling of insurance amounts for households who own both term and whole life
insurance, about 20% of our sample. These models allow analysts to predict who buys
life insurance and how much they buy, an important input to the marketing process.

Moreover, our findings suggest that household demand for term and whole life
insurance is jointly determined. After controlling for explanatory variables, there exists
a negative relationship for a household’s decision to own both whole and term life
insurance (the frequency part) and a positive relationship for the amount of insurance
purchased (the severity part). This mixed effect extends prior work which established
a negative relationship, suggesting that term life insurance and whole life insurance are
substitutes for one another. In contrast, our findings reveal that the ownership decision
involves substitution but, for households owning both types of insurance, amounts are
positively related. Therefore, term and whole life insurance are substitutes in the
frequency yet complements in the severity.

∗Keywords: Copulas, bivariate probit regression, generalized linear models.

1



1 Introduction

There is a large market for life insurance. For example, the direct premium written for life

insurance in the U.S. reached about $184 billion in year 2007 (Insurance Information Institute

(2009)). Life insurance can be decomposed into two major categories, term life insurance

which offers pure insurance protection, and whole life insurance which incorporates a savings

component. In 2007, approximately 2.3 million term life insurance policies were sold by the

top ten life insurers (by number of term life policies) with about $442 billion insurance issued.

Similarly, the top ten life insurers (by number of whole life policies) issued approximately 2.8

million whole life policies with about $183 billion insurance written. Thus, life insurance is

a significant insurance market. Understanding the characteristics of a household that drive

life insurance demand can help insurers target their markets effectively and efficiently.

We use the Survey of Consumer Finances (SCF) to examine a household’s demand for

term and whole life insurance. In the insurance and consumer science literatures, much

research has addressed how much life insurance protection households seek given their eco-

nomic and demographic structure (see Goldsmith (1983), Burnett and Palmer (1984) and

Lin and Grace (2007)). These literatures have focused primarily on middle-aged married

couples and have provided solid economic justification underpinning life insurance demand.

We therefore work with middle-aged married couples using the explanatory variables sug-

gested by the recent work of Lin and Grace (2007). The objective of our analysis is to explore

the complicated relationship between the two types of life insurance using advanced analytic

techniques.

In contrast to the traditional ordinary and censored (tobit) regression models that are

widely applied in the life insurance demand literature, we propose a two-part model to an-

alyze household demand for life insurance. In a two-part model, the frequency component

(whether the household owns life insurance) and the severity component (how much life

insurance is owned given the household owns life insurance) are modeled separately. Com-

pared with ordinary regression which ignores the special pattern of a large portion of zeros in

the dependent variable, a two-part model can provide an unbiased estimation. Though the

tobit model takes the zeros into consideration, a drawback is that the same set of covariates

are applied to both the frequency and severity components. Cragg (1971) presented several

instances in which each part of the model can be explained by different sets of covariates.

Therefore, a model that has the flexibility to allow for different covariates for the censoring

(frequency) and the magnitude (severity) process is preferred. Many actuarial data sets

come in two parts naturally; it is common to utilize a two-part model in such cases. See

Frees (2010, Chapter 16) for further discussion.
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We study a household’s demand for insurance in a multivariate framework, examining

term life and whole life ownership jointly. Lin and Grace (2007) hypothesized that term life

insurance is a substitute for whole life insurance and they incorporated the term life insurance

face value linearly into the demand function of the whole life insurance. The method of Lin

and Grace implies that household demand of whole life insurance depends on the demand

of term life. In contrast, we treat these two demands as being jointly determined. When

a household makes decisions about life insurance ownership, they consider both term and

whole life insurance simultaneously.

Through our joint model, we shed light on whether term and whole life insurance are

complements or substitutes. Recall that two economic goods are substitutes if one can serve

as a replacement for the other. They are complements if they “go together,” that is, an

increase in the demand for one good is aligned with an increase in the demand for the other

good. Our proposed two-part, as well as multivariate, models allow us to expand the exam-

ination of the complement/substitutes effect between term and whole life insurance. When

a household considers owning life insurance, how does the purchase decision on these two

types of life insurance impact each other after controlling all the observable characteristics

of the households? For households who own both types of life insurance, does the amount

they choose to purchase on each type affect one another? Are term and whole life insurance

substitutes or complements in this two-stage decision making process? About 20% of our

sample are households who own both types of life insurance. Our model helps to understand

the behavior of this group of households.

The intuition to explore the complement/substitutes relationship is that unobserved in-

formation about households may cause the relationship to differ between the frequency and

severity components, a feature that our multivariate model allows. For example, consider

a group of income-constrained, risk-adverse households. After taking into account all ob-

servable information, there may be a negative relationship in ownership of term and whole

life insurance due to income constraints. Yet, for the subgroup who decide to purchase both

types of insurance, a positive relationship in purchase amounts might exist due to households’

conservative attitudes toward risk. Modeling the demand for these two types of insurances

in a joint framework with all these considerations about unobservable characteristics of a

household will provide more insight into the substitute or complement relationship of these

two types of insurance.

This paper focuses on the analytical techniques to analyze household demand for life

insurance. Section 2 describes the data. Section 3 describes the statistical models used and

provides the empirical results of our analysis. Section 4 contains some concluding remarks.
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2 Survey of Consumer Finance Data

2.1 Data Description

We use the 2004 Survey of Consumer Finances (SCF) data to conduct the analysis. The

SCF is a triennial survey of U.S. families conducted by the Federal Reserve. The dataset

is from a probability sample of the U.S. population with wealthy households over-sampled.

The households participating in the survey were randomly selected to represent all economic

strata of the country. Because of this, the sample survey results can be extrapolated to

the national population. Unlike many insurance experience study datasets, we need not be

concerned that our findings are limited by the underwriting or other practices of a limited

group of insurers. The dataset includes extensive demographic and economic characteristics

of the households as well as behavioral aspects such as “the motive to leave a bequest.” The

respondent was designated as the head of the household (see Federal Reserve (2004)).

The SCF data files impute missing information by five methods for each household,

providing five “implicates” data sets. Following Bernheim et al. (2001) and Lin and Grace

(2007), we use the first implicate in this study.

The 2004 SCF data set has 4,492 household level (“primary economic unit”) observations

after we cleaned data errors. Among these households, 2,683 are married couples (or living

with partner) while 921 are single-person households (never married, separated, divorced or

widowed). About 77% of married couple households have some type of life insurance and

for single person households, this rate is about 53%.

Following the insurance and consumer science literatures, we focus our analysis on mar-

ried couples in the 20 to 64 age range (sample size reduces to 2,160). Similar to Lin and

Grace (2007), we exclude two households where the respondent or the spouse had irregular

labor income. In addition, we delete a few observations with missing or implausible values,

such as negative salary. The final number of observations used for the analysis is n = 2, 150.

There are two important limitations of the SCF data for our work. First, the SCF data

are based on the whole household. Specific information about the policyholder of the life

insurance and the face value for each policy is not available. This is an obstacle to under-

standing individual demand for life insurance (except for those single-person households).

For married couples, we consider the whole household as a decision-making unit. It is ap-

propriate to draw conclusions about the household’s total life insurance demand based on

the household’s characteristics. However, when we make inference, we should be cautious of

the generalization of the results.

Second, we do not know when the insurance was purchased. Compared with term life

insurance, a short-term product, whole life insurance is a long-term commitment. The
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characteristics of the household may have been changed since the time that the whole life

insurance was purchased. Using the current characteristics of the household to estimate

a decision made in the past may introduce measurement error. Therefore, we define the

demand for whole life insurance as the amount of whole life insurance that a household is

willing to retain at the time of the survey.

2.2 Variables of interest

2.2.1 Dependent Variables

The dependent variables in our analysis measure two types of life insurance, term and whole

life. For term life insurance, Table 1 shows that 1,416 of our 2,150 households, or 65.86%,

own term life insurance. To measure the amount of demand, we examine the face amount

of the policy (FACETerm). As is seen in Table 1 and Figure 1, the distribution is skewed to

the right and heavy-tailed.

For the whole life component, Table 1 shows that 718 households, or 33.40%, purchased

whole life insurance. For this amount, one could use the face value to measure the demand.

Instead, we follow the insurance literature (e.g., Lin and Grace (2007)) and used the “net

amount at risk” (NAR). The NAR is the difference between the face value and the saving

component (cash value) of the whole life insurance. It can be interpreted as the amount of

protection for unforeseen risk that a household has at the time of the survey.

Table 1: Life Insurance Summary Statistics

Distribution of Positive Values
25th 75th

Variable Number Percent Minimum Percentile Median Percentile Maximum
FACETerm 1,416 65.86 0.8 100 270 1,000 150,000
NAR 718 33.40 0.66 60.25 202.5 900 45,000
Note: Monetary variables are in thousands of dollars.

To assess the relationship between term and whole life ownership in the frequency com-

ponent, we look to joint ownership, that is, households who own both term and whole life

insurance. There are 424 households, or 19.72%, who own both term and whole life in-

surance. If we assume the decisions of owning term life insurance and whole life insurance

are independent, the probability of owning both types of life insurance should be 21.99%

(= 0.6586×0.3340). The empirical 19.72% sample probability of owning both types suggests

a slight negative association. Of course, this calculation does not control for the effects of

explanatory variables nor does it establish statistical significance.
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To assess the relationship between term and whole life ownership in the amount com-

ponent, we calculated the Spearman correlation between FACETerm and NAR for the 424

households who own both types of life insurance. The correlation of 0.467 suggests that

when a household decides to own both types of life insurance, the amounts they choose are

positively related (without controlling for explanatory variables). This interesting finding

encourages us to investigate the bivariate attributes of the data set.
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Figure 1: Histograms of Life Insurance Amounts (in thousands). The left-hand panel is for face
amount of term life insurance, the right-hand panel is for NAR of whole life insurance. Both
distributions are right-skewed and heavy-tailed.

2.2.2 Explanatory Variables

We build on the work of Lin and Grace (2007) by using explanatory variables they devel-

oped with some minor modifications. Their explanatory variables can be grouped into the

following categories:

∙ Assets. The role of assets in the demand for life insurance is unclear. One theory,

based on the widely accepted decreasing absolute risk aversion (DARA), suggests that

an increase in wealth will reduce the individual’s willingness to insure (e.g., Chavas

(2004)). Another theory, increasing relative risk aversion (IRRA), is that individuals’

risk aversion increases with wealth, if the risk they are subject to is a given percent of

their wealth. This theory implies that an increase in wealth may increase an individ-

ual’s willingness to insure. Some studies, including Halek and Eisenhauer (2001), have

examined the existence of IRRA. The mixture of these two effects makes the relation

between household assets and life insurance demand ambiguous.
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Lin and Grace (2007) split assets into eight categories: cash and cash equivalents,

mutual funds, stocks, bonds, annuities, individual retirement accounts, real estate,

and other assets. We follow this practice.

∙ Debt. The total debt of a household (DEBT) includes credit card, mortgage, line of

credit, loan for home improvement, land contract loan, other real estate mortgage, car

loan, education loan, consumer loans, other debt and margin loan. Life insurance on

the one hand can protect the survivor from the financial burden of debt. On the other

hand, debt might make insurance unaffordable for households under financial pressure.

Therefore, the relationship between debt and life insurance demand is unclear.

∙ Income. The effect of the household income on the life insurance demand is similar to

the wealth (asset) effect. As Lin and Grace (2007) hypothesized, a DARA individual

will purchase less insurance at higher income level. However, their other hypothesis

is that a higher income may generate more risk for the individual and therefore it

increases an individual’s life insurance demand. Numerous studies (e.g., Goldsmith

(1983), Burnett and Palmer (1984)) have shown evidence for the latter hypothesis. We

use the regular salary and wage before taxes of the respondent (SALARY1) and the

spouse (SALARY2) as measures of household income.

∙ Bequests, Obligations, and Inheritance. In the SCF data, there is a behavioral

question about whether the household has a motive to leave a bequest. Other ques-

tions that can influence the life insurance demand include the estimated amount of

expected inheritance and the existence of foreseeable major financial obligation. To

control for these factors we include two binary variables indicating the desire to leave

a bequest (BEQUEST) and the existence of financial obligation (OBLIGATION) and

a continuous variable for the size of the inheritance expected (INHERITANCE).

∙ Age. In general, life insurance demand increases up to an age and then decreases

as an individual ages. This is because at first an individual needs more life cycle

protection when he/she is married or has children. But when he/she is getting old, the

accumulated wealth can reach the level that mostly meets the needs of the survivor.

Another hypothesis is that since term life insurance is more affordable than whole

life insurance, in the early stage of the life cycle when individuals earn relatively low

income, they are more likely to purchase term life insurance than whole life insurance.

From a convention employed in many similar investigations (Lin and Grace (2007)),

we use the average age of the household to show the age effect and in addition, we add
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a quadratic term of the average age of the household to investigate the changing effect

in age.

∙ Education. Education gives individuals opportunities to understand the importance

of risk management, especially in the context of insurance purchases. Burnett and

Palmer (1984) show that life insurance demand is positively related to education level of

an individual. The number of years in school for the respondent (EDUCATION1) and

the spouse (EDUCATION2) respectively measure the education level of the household.

∙ Financial Vulnerability Index. The financial vulnerability index (IMPACT), de-

veloped by Lin and Grace (2007) measures the adverse financial impact on a household

in terms of living standard decline upon the death of one household member. It is a

lifecycle measure that depends on the household’s current living standard, the expected

reduction in living standard, and the expected mortality. For detailed calculations, see

Appendix A. The hypothesis is that the higher the financial vulnerability index, the

more life insurance is demanded.

Compared with the Lin and Grace (2007) study, our IMPACT variable has approxi-

mately 5% values that are far above the maximum reported in Lin and Grace (2007).

One explanation is that Lin and Grace (2007) excluded about one percent of their data

deemed to be outliers for their four-period analysis (1992, 1995, 1998, and 2001). An-

other possible explanation is that several households in the 2004 data are very wealthy.

To improve the utility of this measure, we cap the value of IMPACT at 4, at its ap-

proximate 95th percentile. We add a binary variable (INDIMPACT) to indicate when

the IMPACT value exceeds 4. That is, for those households whose original IMPACT

value is greater than 4, we adjust their IMPACT value to be 4 and set the binary

variable INDIMPACT value to be 1. About 5 % households have 1 for INDIMPACT;

they are usually households in which one person has an extremely high income while

the other person has zero or low income.

Although we build on the work of Lin and Grace (2007) by using the explanatory variables

that they developed, our reported models feature two main differences in the selection of ex-

planatory variables. First, we included binary variables to indicate zero values for monetary

variables. The motivation is similar to the intuition of the two-part model for dependent

variables; we supplement the explanatory variable for the amount with a binary variable

that indicates its presence or absence. For example, we have a variable to indicate whether

a household invests in stocks (INDSTOCK) as well as a variable to indicate the amount of

stock investment (STOCK). The indicator variable INDSTOCK equals 1 when a household

does not have any stock investments.
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Second, Lin and Grace (2007) hypothesized that a household’s life insurance demand

depends on asset variables and that dependence varies by three age groups (20-34, 35-49,

and 50-64). From a preliminary investigation, we did not see any significant results support-

ing this hypothesis. Instead of using the interaction terms between age groups and assets

covariates, we use the average age of the household as well as the quadratic form of the age

to control the nonlinear effects of age. It turns out that our main results in Section 3.3 for

the associations are not qualitatively impacted by these choices of explanatory variables.

2.3 Summary Statistics

Table 2 summarizes the continuous explanatory variables and Table 3 provides means for

the binary variables.

For our married couple sample, Table 2 shows that the median age is 47.5, with 16 years

of education for the respondent and 15 years for the spouse. The median salary was $60,000

for the respondent and $13,000 for the spouse. Due to the skewed nature of the monetary

covariates, we incorporate transformed monetary covariates in the model. The logarithmic

transform is a natural choice given the log-link that we will introduce in Section 3.2. In order

to handle zero values, we use a modified logarithm transformation (for example, LNSTOCK

= Log(1+ Stock)).

Table 2 also emphasizes the preponderance of zeros for many of the asset and income

variables. Because of this feature, we created binary variables to indicate the presence of

zero values in these categories. These binary variables appear in Table 3. For example, this

table shows that 58.7% of households do not have any stock investments.

Compared with Lin and Grace (2007) who used 1992, 1995, 1998, and 2001 SCF data,

households surveyed in 2004 owned more life insurance. Our sample consists of couples who

are older, better educated, have more children and wealth, and rely more on debt. The

average financial vulnerability measured by the median is similar.

9



Table 2: Continuous Explanatory Variable Summary Statistics

25th 75th
Variable Minimum Percentile Median Percentile Maximum
Cash and cash equivalent 0 3 17 98 32,628
Mutual fund 0 0 0 20 57,500
Stock 0 0 0 50 200,000
Bond 0 0 0 1 100,000
Individual annuity not including job pension 0 0 0 0 200,000
Retirement account 0 0 52 272 35,000
Real estate 0 127 350 1,294 194,380
Other assets 0 15 31 66 97,203
Debt 0 13 110 286 121,686
Salary and wages of respondent before taxes 0 29 60 163 80,112
Salary and wages of spouse before taxes 0 0 13 40 2,700
Sizable inheritance expected 0 0 0 0 906,060
Average age of the couple 21 39.5 47.5 54.5 64
Education of respondent 1 12 16 17 17
Education of spouse 0 12 15 16 17
Financial vulnerability index (IMPACT) 0 0.049 0.113 0.340 1265.02
Note: Monetary variables are in thousands of dollars.

Table 3: Binary Explanatory Variable Means

Variable INDCASH INDFUND INDSTOCK INDBOND INDANNUITY
Mean 0.033 0.700 0.587 0.675 0.886

Variable INDRETIREMENT INDREALESTATE INDOTHASSETS INDDEBT INDINHERITANCE
Mean 0.250 0.123 0.044 0.156 0.798

Variable BEQUEST OBLIGATION INDIMPACT
Mean 0.488 0.589 0.048

Notes:
1. Indicator variables for assets/monetary covariates indicate the absence of the assets.
For example, INDCASH = 1 means zero cash and cash equivalent holding.
2. INDIMPACT = 1 if financial vulnerability index (IMPACT) ⩾ 4.
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3 Statistical Models

For notation, let ri1 and ri2 be binary variables that indicate whether household i purchases

term life insurance and whole life insurance, respectively. Similarly, let yi1 and yi2 denote

the amounts, if available. We decompose the joint distribution of the dependent variables

into frequency and severity components by

f(ri1, ri2, yi1, yi2) = fF (ri1, ri2)× fS(yi1, yi2∣ri1, ri2).

For the frequency component fF (ri1, ri2), we employ a bivariate probit regression model in

Section 3.1. For the conditional severity component fS(yi1, yi2∣ri1, ri2) in Section 3.2, we use

generalized linear models with a copula.

3.1 Frequency Models

A bivariate probit regression model extends the probit regression model to a two-dimensional

vector of binary responses (e.g., Greene (2008)). This distribution can be easily computed

using a standard bivariate normal distribution.

To assess the frequency distribution fF , we note that there are four possible outcomes for

the ith observation. These are:

Pr(ri1 = 1, ri2 = 1) = Φ2(x
′
i¯1,x

′
i¯2; ½)

Pr(ri1 = 1, ri2 = 0) = Pr(ri1 = 1)− Pr(ri1 = 1, ri2 = 1) = Φ(x′
i¯1)− Φ2(x

′
i¯1,x

′
i¯2; ½)

Pr(ri1 = 0, ri2 = 1) = Φ(x′
i¯2)− Φ2(x

′
i¯1,x

′
i¯2; ½)

Pr(ri1 = 0, ri2 = 0) = 1− Φ(x′
i¯1)− Φ(x′

i¯2) + Φ2(x
′
i¯1,x

′
i¯2; ½),

where Φ2(⋅, ⋅; ½) is the cumulative distribution function of the standard bivariate normal dis-

tribution with correlation parameter ½. With these expressions, the frequency log-likelihood

of the ith observation is

lFi = ri1ri2 lnΦ2(x
′
i¯1,x

′
i¯2; ½)

+ri1(1− ri2) ln[Φ(x
′
i¯1)− Φ2(x

′
i¯1,x

′
i¯2; ½)]

+(1− ri1)ri2 ln[Φ(x
′
i¯2)− Φ2(x

′
i¯1,x

′
i¯2; ½)]

+(1− ri1)(1− ri2) ln[1− Φ(x′
i¯1)− Φ(x′

i¯2) + Φ2(x
′
i¯1,x

′
i¯2; ½)].

The total frequency log-likelihood is
∑n

i=1 lFi. With this, it is straight-forward to determine

maximum likelihood estimators using readily available statistical software.
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3.2 Severity Model

This paper explores a copula framework for analyzing the joint distribution of life insurance

amounts. See Nelson (1999), Frees and Valdez (1998) and Genest and Favre (2007) for

introductions to copula modeling. One important advantage of this approach is that one is

not constrained to using (log) normal marginal distributions. Instead, any distributions can

be specified as the marginal distribution. Historically, one of the first studies of life insurance

coverage amounts, by Norwegian actuary Birger Meidell in 1912, used a Pareto distribution,

a long-tailed distribution (Kleiber and Kotz (2003), p. 62).

Another advantage of the copula approach is that “copulas preserve the marginals.” That

is, by specifying a copula to model the relationship, marginal distribution are maintained

when only a single amount is examined. This is important for our data where 59.8% (=

0.6586 + 0.3340− 2× 0.1972) own only one type of life insurance.

Using copulas for the generalized linear model has been widely applied in biomedical

and financial risk management literatures. Our work is most closely related to Frees and

Wang (2005) who used Gaussian and t copulas with marginal gamma regression models to

fit aggregate automobile claims.

Beginning with the joint severity distribution function fS(yi1, yi2), we let fS1(yi1) =

fS(yi1, yi2∣ri1 = 1, ri2 = 0) be the marginal distribution for term and similarly define fS2(yi2)

for whole life. This sequence of definitions is viable because copulas preserve the marginals.

We assume that each distribution is parameterized by a location parameter ¹ij and scale

parameter Áj, j = 1 for term and j = 2 for whole life. We use a generalized linear model

(GLM) framework with a logarithmic link so that ¹ij = exp(x′
ij¯j), j = 1, 2.

We use a copula to express the relationship between the marginal distributions. Thus,

we can write the bivariate distribution function as

fS(yi1, yi2) = fS(yi1, yi2∣ri1 = 1, ri2 = 1)

= fS1(yi1)fS2(yi2)c(FS1(yi1),FS2(yi2)), (1)

where FSj(yij) is the distribution function corresponding to fSj(yij), j = 1, 2. This function

c(⋅) is called a copula density function. Typically copulas are calibrated by one or two

parameters that describe the dependence and other features. In our empirical work, we

focus on the normal copula with correlation parameter ½S.

The log-likelihood of the ith household’s life insurance demand given they own term and
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whole life insurance is

lS12i = ln fS1(yi1) + ln fS2(yi2) + ln c(FS1(yi1),FS2(yi2)).

Thus, the total severity log-likelihood for the ith household is

lSi = ri1(1− ri2) ln fS1(yi1) + (1− ri1)ri2 ln fS2(yi2) + ri1ri2 × lS12i.

The total severity likelihood is
∑n

i=1 lSi. With this, it is straight-forward to determine

maximum likelihood estimators using readily available statistical software.

When examining the distribution of insurance amounts, Figure 1 shows skewed distri-

butions, suggesting that a transformation such as a logarithm might be used to induce

approximate normality. This is a widely used approach in regression modeling, commonly

known as a “Box-Cox” transformation. Thus, to understand the joint distribution of the

insurance amounts, it is natural to consider logarithmic amounts and use a bivariate normal

distribution. Intuitively, one drawback of working in the logarithmic scale is that model

inference is based on optimizing “log dollars,” a measurement scale that is not of interest to

analysts. See, for example, Frees (2010, Chapter 17) for further discussions of this point.

Because taking logarithms and using a bivariate normal regression is a commonly used

approach, we did this analysis as a robustness check to our copula modeling framework;

more details about the robustness check can be found in Appendix B.2. We found that these

results are qualitatively similar to our more general approach.

3.3 Results

3.3.1 Frequency Model

The bivariate probit regression for the frequency model has 63 coefficients. Table 4 shows the

result when the dependent variable is a vector of two binary indicators for term life insurance

and whole life insurance. Of the assets variables, only stock, bond and real estate impact

both term and whole life insurance ownership decision and have negative coefficients. In

general, the more assets a household has, the less likely a household is to own life insurance.

However, for the real estate variable, it is negatively related to the probability of term life

insurance ownership although positively related to that of whole life. One explanation is that

when the household has more real estate, they prefer life insurance with saving component to

diversify their investment. Most indicator variables for zero assets have negative coefficients.

This means when a household does not have some type of assets, they are less likely to own

life insurance. It may be that life insurance is not affordable for them.
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The amount of debt a household owes positively affects the decision to hold term life

insurance. The more debt a household owes, the more likely that it is to hold term life

insurance protection, which is relatively inexpensive. The income level of the household

also positively relates to the decision to hold life insurance. This is consistent with previous

studies such as Lin and Grace (2007). The desire to leave a bequest only has positive impact

on the likelihood of demand of whole life insurance.

The quadratic term of the age variable has a negative coefficient while the original age

variable has a positive coefficient on term life insurance demand. This implies that as

members of the household age, they are more likely to demand life insurance. However,

the probability increases in a decreasing manner. The education level of the head of the

household positively relates to the decision to hold term life insurance. This confirms findings

of Burnett and Palmer (1984).

Surprisingly, the financial vulnerability variable proposed by Lin and Grace (2007) only

impacts the frequency of term life insurance demand, not the whole life insurance demand.

The larger the financial vulnerability index, the more likely is a household to own term life

insurance. However, when the financial vulnerability index is extremely large (i.e. indicator

for extremely high financial vulnerability index = 1), those households are less likely to own

term life insurance. In fact, in calculating the financial vulnerability index, we notice that

households with a very large financial vulnerability index are those households with extreme

high income on one person and low or zero income on the other. Intuitively, very wealthy

families do not demand much life insurance.

The association between term life and whole life insurance demand is significantly nega-

tive after controlling for the covariates. This indicates that term life insurance and whole life

insurance are substitutes in frequency. The greater the probability for one type, the smaller

is the probability of holding the other type of life insurance.

3.3.2 Severity model

For the severity model, the sample includes only those households that own at least one type

of life insurance. There are 65 coefficients in this model, including the scale parameters for

the GLM and the correlation parameter for the Gaussian copula. Table 5 shows the results.

Here the dependent variables are the face amount of the term life insurance and the net

amount at risk of whole life insurance.

Unlike the frequency model (as well as results in Lin and Grace (2007)), the coefficients

of almost all asset variables are positive. This suggests that the more assets a household

has, the more life insurance they demand when they decide to have life insurance. This is

consistent with the IRRA hypothesis. However, the indicators for all zero asset variables
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surprisingly show positive coefficients as well. It may be that less wealthy households with

zero assets have greater needs for life insurance protection.

The severity model coefficients of debt, age and squared age of the couple, education level

of the household, and salary of the household head have the same signs in the frequency

model. For the spouse salary, the coefficient is negative for the severity model, implying that

the more salary the spouse earns, the less is the need for higher amounts of life insurance.

The inheritance expected has a positive impact on the amount of the insurance demand.

This is inconsistent with the intuition. The desire to leave a bequest and the existence of

foreseeable major obligation also drive the household to demand more life insurance.

The financial vulnerability index and the indicator for extreme index value are both

statistically significant in the severity model. The higher the financial vulnerability index,

the more life insurance protection a household seeks. However, for those households with

extremely high index (i.e. indicator for extremely high financial vulnerability index = 1),

they demand less life insurance.

The main result of the severity part is that, for households who own both term and

whole life insurance, the correlation between the amount of term and whole life insurance is

positive and significant. This is directly opposite to the frequency model result. A positive

correlation in severity after controlling all covariates indicates higher demand for both types

of insurance when a household decides to own both. Therefore, term life and whole life

insurance demands are complements in severity.

As a robustness check, we also fit the data with a t copula and a marginal gamma

regression model. The fitted degrees of freedom for the t copula are 32.49, which implies that

the fitted t copula is approximately normal. The result from this model is very comparable

to the results with Gaussian copula, therefore not reported.

3.4 Tobit Model Comparison

Tobit regression is a well-known left-censored regression model first proposed by Tobin

(1958). In this model, an unobserved, or latent, variable is assumed to follow a linear

regression model. The observed outcomes are censored or “limited” in the sense that they

are bounded from below, typically by zero. One drawback of the tobit model is its reliance

on the normality assumption. A second, and more important, drawback is that a single

censoring mechanism dictates both the magnitude of the response as well as the probability

of being a zero. This can be an issue, for example, when studying healthcare expenditures,

where a zero can represent a person’s choice or decision not to utilize healthcare during a

period. For many studies, the amount of healthcare expenditure is strongly influenced by a
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healthcare provider (such as a physician) or the presence of health insurance; the decision

to utilize and the amount of healthcare can involve very different considerations. See, for

example, Frees, Gao and Rosenberg (2009) for further discussion.

In our study of term life insurance demand, the coefficient for the salary of the spouse is

positive in the frequency model yet negative in the severity model. A tobit model does not

have the flexibility to capture such reversal of signs that can be important for understanding

the problem. As a robustness check, we also fit a tobit model to our data set to compare

with our two-part model and Lin and Grace (2007)’s results. Table 6 displays the results.

Here, the dependent variables are the logged value of face amount of term life insurance and

logged value of net amount at risk of whole life insurance.

The results from tobit model reveal that the relationship between these two types of

life insurance is negative, which supports Lin and Grace (2007)’s finding that these two

insurances are substitutes. In contrast, in our more flexible two-part model, the frequency

part shows a negative relationship between term and whole life insurance ownership, while

the severity part shows a positive relationship after controlling all the explanatory vari-

ables. These inconsistent results imply that some important attributes of the data may be

overlooked when using the tobit model.
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Table 4: Bivariate Probit Regression

Term Life (=1 if own) Whole Life (=1 if own)
Parameter Estimate t-statistic Estimate t-statistic
Intercept 0.667 0.724 -0.939 -0.992
Log (1+ cash and cash equivalent) 0.030 1.593 0.042 2.164 **
Indicator for zero cash and cash equivalent -0.241 -1.036 0.290 1.069
Log (1+ fund) 0.031 1.227 -0.044 -1.795 *
Indicator for zero fund 0.344 1.133 -0.697 -2.381 **
Log (1+stock) -0.052 -2.544 ** -0.037 -1.855 *
Indicator for zero stock -0.425 -1.854 * -0.477 -2.160 **
Log (1+ bond) -0.040 -2.405 ** -0.037 -2.335 **
Indicator for zero bond -0.440 -2.657 *** -0.547 -3.525 ***
Log (1+ annuity) -0.072 -1.853 * 0.023 0.620
Indicator for zero annuity -0.872 -1.788 * 0.049 0.107
Log (1+ retirement) 0.024 1.072 -0.032 -1.433
Indicator for zero retirement -0.122 -0.481 -0.388 -1.523
Log (1+ real estate) -0.209 -5.336 *** 0.090 2.257 **
Indicator for zero real estate -2.581 -5.684 *** 0.818 1.739 *
Log (1+ other assets) 0.038 1.384 0.011 0.421
Indicator for zero other assets 0.372 1.179 -0.339 -1.014
Log (1 + debt) 0.056 2.307 ** 0.005 0.182
Indicator for zero debt 0.195 0.656 -0.002 -0.006
Log (1+ salary of the respondent) 0.018 2.280 ** 0.004 0.490
Log (1+ salary of the spouse) 0.014 2.323 ** 0.015 2.443 **
Indicator for the desire to leave a bequest -0.003 -0.042 0.114 1.681 *
Indicator for foreseeable major financial obligation 0.075 1.201 -0.001 -0.008
Log (1+ sizable inheritance expected) -0.023 -0.641 -0.011 -0.294
Indicator for zero inheritance expected -0.323 -0.687 -0.172 -0.368
Average age of the couple 0.058 2.240 ** 0.003 0.123
Squared average age of the couple -0.001 -2.105 ** 0.000 0.670
Education level of the resondent 0.058 3.470 *** -0.017 -0.985
Education level of the spouse 0.021 1.387 0.014 0.866
Financial Vulnerability Index (IMPACT) 0.170 2.672 *** 0.056 0.969
Indicator for IMPACT ⩾4 -0.473 -1.933 * -0.162 -0.727

Rho (Correlation Parameter) -0.285 -7.668 ***
Notes: Number of observations: 2,150. Log-Likelihood value: -2417.

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level
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Table 5: Gaussian Copula with Gamma Marginals

Term Life (Face Amount) Whole Life (NAR)
Parameter Estimate t-statistic Estimate t-statistic
Intercept 0.669 0.903 0.130 0.118
Log (1+ cash and cash equivalent) 0.171 8.545 *** 0.024 0.855
Indicator for Izero cash and cash equivalent 1.196 3.859 *** -1.115 -2.078 **
Log (1+ fund) 0.030 1.218 0.056 1.542
Indicator for zero fund 0.396 1.356 0.935 2.156 **
Log (1+stock) 0.044 2.206 ** 0.075 2.531 **
Indicator for zero stock 0.415 1.882 * 1.001 2.994 ***
Log (1+ bond) 0.063 3.588 *** 0.074 3.279 ***
Indicator for zero bond 0.457 2.874 ** 0.625 2.795 ***
Log (1+ annuity) 0.016 0.458 0.067 1.176
Indicator for zero annuity 0.257 0.623 0.628 0.887
Log (1+ retirement) 0.023 1.080 0.091 2.858 ***
Indicator for zero retirement 0.175 0.713 0.753 1.954 *
Log (1+ real estate) 0.201 5.779 *** 0.326 5.428 ***
Indicator for zero real estate 2.195 5.435 *** 3.506 4.632 ***
Log (1+ other assets) 0.174 5.939 *** 0.196 4.957 ***
Indicator for zero other assets 1.825 5.220 *** 1.286 2.385 **
Log (1 + debt) 0.129 5.263 *** 0.040 0.990
Indicator for zero debt 1.054 3.386 *** 0.868 1.673 *
Log (1+ salary of the respondent) 0.017 1.994 * 0.012 0.976
Log (1+ salary of the spouse) -0.024 -3.951 *** -0.028 -2.908 ***
Indicator for the desire to leave a bequest 0.206 3.097 *** 0.635 5.758 ***
Indicator for foreseeable major financial obligation 0.087 1.391 0.163 1.710 *
Log (1+ sizable inheritance expected) 0.163 4.504 *** 0.041 0.696
Indicator for zero inheritance expected 1.963 4.261 *** 0.563 0.745
Average age of the couple 0.023 2.674 *** 0.022 1.832 *
Squared average age of the couple -0.001 -5.700 *** -0.001 -5.141 ***
Education level of the resondent 0.046 2.604 ** 0.006 0.203
Education level of the spouse 0.024 1.349 0.056 2.074 **
Financial Vulnerability Index (IMPACT) 0.105 1.791 * 0.253 2.733 ***
Indicator for IMPACT ⩾ 4 -0.464 -1.970 * -0.815 -2.384 **
Scale 0.913 0.032 $ 0.746 0.024 $

Rho (Correlation parameter) 0.099 1.964 *
Notes: Number of observations: 1,710. Log-Likelihood value: -30277.
$ This is the standard error for the scale parameter.

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level
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Table 6: Tobit Models for Term and Whole Life

Term Life (Log Face Amount) Whole Life (Log NAR)
Parameter Estimate t-statistic Estimate t-statistic
Intercept -0.144 -0.026 -15.252 -1.375
Log (1+ cash and cash equivalent) 0.315 2.648 *** 0.642 2.796 ***
Indicator for zero cash and cash equivalent -1.554 -0.998 3.414 1.031
Log (1+ fund) 0.181 1.168 -0.408 -1.455
Indicator for zero fund 1.675 0.901 -6.981 -2.061 **
Log (1+stock) -0.428 -3.387 *** -0.538 -2.334 **
Indicator for zero stock -3.857 -2.786 *** -6.522 -2.531 **
Log (1+ bond) -0.251 -2.447 ** -0.468 -2.547 **
Indicator for zero bond -2.790 -2.873 *** -6.901 -3.820 ***
Log (1+ annuity) -0.393 -1.689 * 0.105 0.252
Indicator for zero annuity -4.877 -1.725 * -1.227 -0.237
Log (1+ retirement) 0.123 0.892 -0.288 -1.105
Indicator for zero retirement -1.220 -0.791 -4.563 -1.519
Log (1+ real estate) -1.010 -4.130 *** 0.879 1.864 *
Indicator for zero real estate -12.922 -4.552 *** 6.812 1.221
Log (1+ other assets) 0.309 1.805 * 0.283 0.906
Indicator for zero other assets 2.715 1.358 -2.985 -0.760
Log (1 + debt) 0.449 2.904 *** 0.202 0.672
Indicator for zero debt 1.534 0.806 0.490 0.130
Log (1 + salary of the respondent) 0.154 2.947 *** 0.086 0.893
Log (1 + salary of the spouse) 0.087 2.350 ** 0.184 2.602 ***
Indicator for the desire to leave a bequest 0.305 0.740 1.597 2.004 **
Indicator for foreseeable major financial obligation 0.620 1.627 0.258 0.354
Log (1+ sizable inheritance expected) -0.112 -0.500 -0.155 -0.363
Indicator for zero inheritance expected -1.739 -0.607 -2.572 -0.466
Average age of the couple 0.405 2.500 ** 0.251 0.746
Squared average age of the couple -0.004 -2.306 ** 0.000 0.020
Education level of the resondent 0.388 3.714 *** -0.064 -0.308
Education level of the spouse 0.196 2.019 ** 0.234 1.213
Financial Vulnerability Index (IMPACT) 1.337 3.653 *** 1.221 1.837 *
Indicator for IMPACT ⩾ 4 -3.703 -2.591 *** -3.276 -1.284
Log(1+Net amount at risk of whole life insurance) -0.263 -8.052 ***
Log(1+Face value of term life insurance) -0.450 -7.565 ***
Log-Likelihood value -5,587 -3,561
Notes: Number of observations: 2,150.

*** Significant at 1% level, ** Significant at 5% level, * Significant at 10% level
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4 Concluding Remarks

This paper explores a multivariate two-part framework for household ownership of life in-

surance. We use statistical models of multivariate binary data and multivariate severity

data. When joint insurance ownership or claims behavior are analyzed, these tools can be

of significant use. In our case, they help to improve our understanding of a household’s life

insurance demand.

We find that variables such as the amount of stock, bond, real estate and debt a household

owns and income earned can have a significant impact on life insurance demand. However,

the impact on the frequency and severity part as well as the type of life insurance can differ

even in terms of the signs of coefficients. For example, the greater the real estate holding

of a household, the less likely it is to own term life insurance and the more likely it is to

own whole life insurance. Further, if the household owns any life insurance, the greater the

real estate holdings, the higher life insurance amount it tends to demand on either term or

whole life insurance. Demographic characteristics, such as age and education level, may also

affect life insurance demand. In general, older and more educated households have a higher

demand for life insurance. Also, the financial vulnerability index proposed by Lin and Grace

(2007) proves to be a significant variable in explaining household life insurance demand.

One important contribution of our study is that we find that the demand of term and

whole life insurance are substitutes in frequency and complements in severity, after control-

ling for all the explanatory variables. This mixed effect extends prior work which established

that term life insurance and whole life insurance are substitutes for one another. Although

not included here, we also examined life insurance demand for single person households,

where the decision maker and policyholder is explicitly known. The results for this subpop-

ulation supports our findings for the married couples subpopulation.

This paper combines the use of advanced statistical techniques and detailed data on in-

surance ownership to get a better understanding of factors that drive life insurance demand.

Unlike other applications of predictive modeling that focus on risk segmentation, under-

writing and pricing, our work is primarily directed to the marketing process and associated

decisions. As described in Section 2.1, our data is a representative sample of the US and

is not restricted to experience from a single insurer or group of insurers. This means that

the inferences made in this paper can reasonably apply to new customers for an insurer.

Moreover, due to the probability sampling basis of these data, a next step would be to ex-

trapolate our findings to the national population; such results would be useful for public

policy purposes.
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A Appendix: Financial Vulnerability Index

This section describes the financial vulnerability index defined by Lin and Grace (2007). For the
calculation, the SCF variables needed are:

1. Household total labor and nonlabor income before taxes and deductions, Tincomei

2. Salary of the respondent (yres,i) and spouse (yspouse,i).

3. Age of respondent (x) and spouse (y).

4. Number of children N

In addition to the SCF variables, the calculation requires mortality and consumption to income
information. We used the mortality data base available from the Society of Actuaries’ that can be
found at http://www.soa.org/professional-interests/technology/tech-table-manager.aspx.
The consumption to income information is available from the US Bureau of Labor Statistics at
http://www.bls.gov/cex/csxann04.pdf.

The financial vulnerability index (IMPACTi) measures the financial impact (living standard
decline) of the death of one member of the household on the rest. It is calculated according the
following steps.

1. The living standard (Ci) is the per person consumption level. It is based on the total income
of the household and the population consumption-to-income ratio for the household income
bracket, adjusted for number of household members and household scale economies,

Ci = ®i
Tincomei

(2 +
N

2
)0.678

.

Here, ®i is the consumption-to-income ratio for the general population in the Tincomei
income bracket. The “2” indicates there are two adults in the household and 0.678 measures
household scale economies. This suggests that in order to achieve the same living standard,
a two-adult household must spend 1.6 times (20.678) as much as an one-adult household.
(Bernheim et al. (2001))

2. When the respondent dies, the reduced living standard of the spouse becomes

Cspouse,i = ¯spouse,i
Tincomei − yres,i

(1 +
N

2
)0.678

.

Here, ¯spouse,i is the spouse’s consumption-to-income ratio if the respondent dies.

3. The relative impact on the household if the respondent dies can be expressed as a percentage
decline

IMPACTspouse,i =
Cspouse,i

Ci
− 1 =

¯spouse,i(Tincomei − yres,i)(2 +
N

2
)0.678

®iTincomei(1 +
N

2
)0.678

− 1.
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4. The absolute impact on the household if respondent dies is

IMPACTspouse,i ∗ yres,i

5. If the respondent dies at age x, the household will incur annual absolute living standard de-
cline for (65-x) years. The age effect of the death of the respondent at age x can be captured
by an annuity factor a65−x . This is an annuity certain.

6. The current life insurance holding reflects the household’s expectation of its potential risks
if one of the spouses dies in the foreseeable future, e.g., one year. The one-year death prob-
abilities qresx,i for the respondent reflects such concern.

7. The impact on the household if the spouse dies can be obtained by reversing res and spouse.

8. Taking into account all of the above factors, the index of financial vulnerability (IMPACTi)
of the household i is defined in a way similar to the definition of standard deviation,

IMPACTi=

√
qresx,i (IMPACTspouse,i ⋅ yres,i ⋅ a65−x )

2 + qspousey,i (IMPACTres,i ⋅ yspouse,i ⋅ a65−y )
2.
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B Appendix: Robustness Checks

B.1 Frequency Component

In order to check the robustness of our result, we fit an alternative multivariate frequency models
to our data, the multinomial logit regression model.

A multinomial logit regression model is a natural extension of the logistic regression model
(e.g., Frees (2010)). The multinomial logit regression model assumes the various categories of the
dependent variable response differently to the same set of explanatory variables. When we use
multinomial logit regression, we choose one category of the dependent variable as the reference
category. We can represent the linear combination of explanatory variables as the log odds ratio of
a certain category of the dependent variables relative to the reference category.

The variable of interest is ri, which can take values 1, 2, ..., c (c mutually exclusive categories in
total). We choose c as the reference category, then for a single observation ri,

ln
Pr(ri = j)

Pr(ri = c)
= x′

i¯j , j = 1, . . . , c− 1.

For each category of ri,

Pr(ri = j) =
exp(x′

i¯j)∑c
j=1 exp(x

′
i¯j)

, j = 1, . . . , c− 1

Pr(ri = c) =
1∑c

j=1 exp(x
′
i¯j)

.

With this, the log-likelihood of the ith observation is

li = 1(ri = c) ln
1∑c

j=1 x
′
i¯j

+
c−1∑

j=1

1(ri = j) ln
exp(x′

i¯j)∑c
j=1 x

′
i¯j

where 1(⋅) is an indicator function.
We can express the likelihood of all observations as

∑n
i=1 li. By maximizing the log-likelihood,

we can obtain reliable parameter estimates.
For our application, the multinomial logit regression model has a four-level dependent variable

INSURANCE: no life insurance purchase (INSURANCE=0), term life insurance only (INSUR-
ANCE=1), whole life insurance only (INSURANCE=2) and both term life insurance and whole
life insurance (INSURANCE=3). We choose no life insurance purchase as the reference level and
all the covariates estimated for level i are based on a comparison between level i and the reference
level.

Using multinomial logit regression in our case means estimating a system of three equations
simultaneously. There are 31 covariates for each level and therefore 93 coefficients are estimated.
Compared with single equation estimation, the joint estimation of a system of equations is more
efficient (e.g., Zellner and Lee (1965)). Though the dependent variables are not exactly the same,
Table 7 still reveals a similar results as Table 4 for the marginal distribution. Given a household’s
characteristics, one can examine the association between these two types of life insurance using
multinomial logit regression model.
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B.2 Severity Component

The robustness for our severity part result is checked by mimicking a bivariate lognormal distribu-
tion. The logged face value of term life insurance and the logged NAR of whole life insurance are
fitted by two OLS respectively. Then we calculated the Spearman correlation for the residuals from
each model, for those observations owning both types of life insurance. The Spearman correlation
is 0.09925. This results confirms that the relationship between the face value of term life insurance
and the NAR of whole life insurance is positive.
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