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Abstract

Recursive  moments, moments  generating  functions,
distributions functions and risk measures have been found for
the compound renewal sums with discounted claims, for a
constant force of real interest.

In this talk we present several results on the (joint) moments,
on the (joint) moments generating functions and on regression
aspects of these discounted renewal sums, in a context that
may involve a stochastic force of real interest. Examples will be
given for the counting Poisson process and for the
Ho-Lee-Merton interest rate model.
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Qur risk model

(i) The claims counting processes {N(z),t =0} and {N,(¢),r =0}
form respectively an ordinary and a delayed renewal process,
and for keN={1,2 3, ..}

e the positive claim occurrence times are given by {Tk ,keN},
* the positive claim inter-arrival times are givenby 7, =7 -7,

with T =0.

(i) The corresponding deflated claim severities {Xk,keN} are
such that

o {Xk ,keN} are i.i.d. .
o {Xk,rk ;keN} are mutually independent.

e The m.qg.f. of X, exists in a neighourhood Q c R containing zero.
g 1 g g

3



(iii) The aggregate discounted value at time O of the inflated
claims recorded over the period [O,t] are given respectively, for

the ordinary and the delayed renewal case, by

20=30(r)x, . 7,()= 3 D),

where

Z(t)=z,(t)=0 if N(¢t)=N,(¢t)=0, D(T,)= exp{—fa(x)dx} ,

and 6(x) is the force of real interest, which can be a deterministic
function or a random variable.

Remark : We will note Z (¢) for the risk process generated by an
embedded ordinary renewal process.



A reminder

Moments of compound renewal sums with discounted claims have
been considered for the first time by Léveillé and Garrido (2001),
for a positive constant force of real interest. Using essentially
renewal arguments, these recursives formulas have been
obtained :

e for the ordinary renewal case

n—1

e[z 0]=% [} )eLx ] Jerr o2 =) Jan(s) . )= E(N(0)

k=0

e for the delayed renewal case

e[Z0]=F (7oL e e[ 2 =) ]am () . m, () =EL, ()

k=0



Recursive joint moments for a constant §

We need first a lemma in order to get these recursive joint
moments.

Lemma 1 : Consider an ordinary or a delayed renewal counting
process, such as defined previously. Then, for any r>0, 2>0, §>0
and (u,v)eQxQ, the joint m.g.f. of our risk process satisfies

respectively the following integral equations:

(1) For the ordinary renewal case :

t+h



(2) For the delayed renewal case :

t+h

where F, (t)=1-F, (t).

Proof of (1): We condition first on N(¢), N(t+h), T,...T

127257 N(t+n)?

which yields

N() N(t+h)
MZ(t), Z(1+h) (u’v) = E|:H My ((u +v)eh ) H M, (ve 3 ):| ,
k=1

k=N(t)+1

and thereafter we condition on 7, to get the result.



Theorem 1 : According to the hypotheses of lemma 1, the joint
moments of our risk process are given respectively, for n,meN,
by :

(1) For the ordinary renewal case :

ntm min(k, n) n m
ez zen-Sex) 3 (1))

X Je_(“m)s”E[Z”_" (t—u) zm-tk=d) (t+h-— u):| dm(u) .
0

(2) For the delayed renewal case :

ARACKAGIIE ZE[X]Z( ]( ]

X je_(”m)&‘E[Z(’f_i (t—u) Z"(t+ h— u)] dm, (u).
0



Proof : The preceding equations follow directly by taking the
appropriate partial derivatives of the integral equations of
lemma 1, a number of times with respect to » and with respect
to v, then each time evaluating these expressions at (u,v)=1(0,0)
and thereafter using induction. O

Remark 1 : (1) If we set 2=0 in the equations of theorem 1, then
we retrieve the preceding recursive expressions for the moments.

(2) For n=m=1, the joint moments of the risk process of theorem 1
can be written for the ordinary renewal case as follows

E[Z(t)z(t+h)]|=E|X,] fe‘zﬁu {E[Z(t—u) |+ E[Z(t+ h—u)]}dm(u)

0

+E[X12 ]J 2 dm(u)

0



which is equivalent to

E[Z(t)Z(t+h)]|=E|Z* (1) |+ E*[X,] j Hf_uef”“””) dm(v)dm(u) ,

—u

and similarly for the delayed renewal case
E[Z,(1)Z,(t+h)|=E[X,][ e {E[Z,(t-u)]+ E[Z,(t + h—u) ]} dm, (u)
0

+E[X12 ]J e dm, (u)

0

which yields

t t+h—u

E[Z,(1)Z,(t+h)]=E[Z2(1)]+E? [X” j 3020 am (v)dm, (1) .
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Example 1 : Consider a constant force of real interest § >0 and a
counting Poisson process with parameter A>0. Then formula (1)

of theorem 1 yields

E[Z(1)Z(t+h)]=hE[ X ](1‘2682& )+ RELS) o)1)

Thus

Cov| Z(t)Z(t+h)]= KE[X?](I_;;& ] :

which is independent of % (and then equal to ¥[Z(¢)]) and
almost constant for large ¢ .
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Furthermore, if p(t,4) is the correlation coefficient between Z(¢)
and Z(t+h), then

So p(t,h)—>|1-e" 2 when h— <, and p(¢,h) is almost O for a
p p
small ¢+ and a large % ... as normally expected.
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For our discounted compound Poisson process, if the correlation
is “strong enough” on the period [7,+4] then we can eventually

use a linear predictor to estimate the value of Z(t+h) from a
known value of Z(t).

Hence assume that the equation of the linear predictor is given by

V[Z(t+h)]

1/2
L(t,h):E[Z(t+h):|+p(t,h){ 2601 } 1Z(t)-E[Z(¢)]}

then, for our example, we get

L(t,h)=Z(t)+e™ {%E[Xl = e_ah)} =Z(t)+e E[Z(h)] .
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Joint moments for a stochastic 8(x)

If we now consider a stochastic force of real interest, the
preceding method (that use renewal arguments) does not work
anymore and, which more is, it is not possible to get recursive
formulas for the joint moments.

So we need a more general method that will help us to find explicit
formulas for the joint moments of our risk process for a stochastic
discount rate. This method will be based essentially on the
following lemma that gives the conditional joint distribution of the
claims arrival times knowing the number of claims, for any renewal
process. This lemma generalizes the well-known similar formulas
obtained for the Poisson process by using the order statistic

property.
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Lemma 2 : Consider an ordinary or a delayed renewal counting
process. Then, for 0=x <x <x,<..<x <t, i =0, 1<} <i <..<i <n

and 1<k <n, the conditional joint density probability functions of
T,.T,...T, |N(t)=nor T,,T,,...T,|N,(t)=n are given by :

(1) For the ordinary case :

P(N(r-x)= ’k)HfT =)

P(N(t) =n)

fT T ... T |N(t)(xl’x27'~,xk | n):

ip> g o Ly

(2) For the delayed case :

P(N, (1-x,)= ’k)HfT =)

P(Nd(t)—n)

fT- T, ., T; |Nd(t)(x1,x2,...,xk | n):

ll’ 127 9 k
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Proof : We only prove the ordinary renewal case. Thus, we have

P(N(t)=n)
JJ% .fP(N(t—uk)=n ik)ljfT 1(uj—u l)duk du,
) P(N(1)=n)

The result follows by taking the appropriate k partial derivatives of
the preceding expression. O
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Theorem 2 : According to the assumptions of our risk model, and
for a stochastic force of real interest, the first three joint
moments of Z(¢) and Z(¢+h) are given, for >0 and #>0, by :

(1) E[Z(r)Z(t+h)]=E[Z*(1)]

t t+h—u

+E2[Xl] ; J E[D(u)D(u+V):|dm(v)dm(u),

0 t-u

where

E[22(0]=E[x2] [ ELD* ()] dm ()

I—u

[ E[D(u)D(u-+v)]dm(v)dm(u) .

+ 2E2[X1]f
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) E[Z2*(1)z(t+h) |= E[ Z° (1) ]

+E[ X2 E[X,] j E[D () D+ v) ] dm(v)dm(u)

_VE[D(u)D(u +v)D(u+v+w):|dm(w)dm(v)dm(u) :

+2E°[ X, | j j

where

E[Z°(0]=E[x] _jE[D3(u)]dm(u)
SE[X2E[X,] j?E[DZ(u)D w+v)Jdm(v)dm(u)
SE[XTE[X,] H”E[D@,)D w+v)Jdm(v)dm(u)

+6E3[X1”J J E[D(u)D(u+v)D(u+v+w):|dm(w)dm(v)dm(u).
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3 E[2(1)2* (t+h) |=E[Z2° (1) ]
+3E[X12]E[Xl] j- HJ@_ME[D(M) (u+v :Idm )dm(u)

t t+h—u

BE[X]E[X,] [ | E[D*(u)D(u+v)]dm(u)dm(v)

+4E|:X13 :|j T HJ:M_VEI:D(M) D(u+v)D(u+v+ w):ldm(w)dm(v)dm(u)

t t+h—u t+h—u—v

+2E[X :U J J E[D(M)D u+v) (u+v+w)]dm(w)dm(v)dm(u).

0 t-u

Proof : We illustrate the main ideas of the proof by solving the
first result of our theorem. Thus, let us first obtain an expression
for the joint moments generating function, for any integrable
function §(x) corresponding to a sample path of the force of real
interest on the period [0, ¢+ A].
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As in lemmal, by conditionning on N(¢), N(t+h), T,..,T we get

127297 N(t+n)?

E[ 09700 (), 2 e[ 0,64 4]]
[ N(¢) N(t+h)
=E([1M, ((x+y)D(T,)) ]'([) M, (yD(T,))|6(z),z€[0,+h]].
| k=1 k=N(t)+1

An evaluation of the appropriate partial derivatives at (x,y)=(0,0)
gives

N() 7]

E[Z@0)z(t+1n)|8(z),ze[0,e+n]]= ELX*1E| Y D*(T,)|6(z),z [ 0,¢+ ]
N@-1 N() ) -
2E {z > D(7,)D(T)|8(2). 2 <[0.1+1

N() N(+h)

+E’ [X]E[z Y D(T,)D(T,)|6(z).z ¢ [O,t+h]_ .

k=1 j=N(t)+1
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Now, if we condition first on N(¢) and thereafter use lemma 2, the
first term of the preceding summation gives

£ 3.0 <Tk>|a<z>,ze[o,r+h]}=E[E o <Tk>|N<r>,6<z>,ze[0,rlﬂ

k=1

I
S
[\
—~~
=
M
:"11*
by
—~~
E
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Similarly, it can be proved that

E[NﬁlNz([jD(Tk)D(Tj)w( ze[Ot+h]} [ ['D(u) D) (v}

k=1 j=k+1

and

E{z” 3 D(Tk)D(TJ.)|6(z),ZE[O,t+h]}: I D(w) D(u+v) dn() i)

k=1 j=N(t)+1 0 t—u

Finally, as each of the three preceding integrals are random
variables, the result follows by taking the expectation of each one
of them, which is equal to the integral of the expectation from a
well known theorem of stochastic processes theory. O
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Example 2: Let {§(¢),r>0} be an Itd process satisfying the
stochastic differential equation of Ho-Lee-Merton

dd(t)=rdt+cdB(t).

with constant drift » and constant diffusion coefficient o, and
where B(¢) is a standard Brownian motion.

Then we easily obtain

E[D2 (u)] = exp {_25(0) u—ru’+ %qu3} ,

and

E[D(M)D(u +v)] = exp{— [5(0)(v+ 2u)] —%[vz + 2uv+2u2]+ 622 {(v+2u)3 i }} :

6
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If we let G(t,h)=E[Z()Z(t+h)], T, ~exp(A=1), E[X,|=1, E[ X |=2,
5(0)=0.03, r=0.002 and 6=0.001, then the following tables could

be obtained from formula (1) of theorem 2

Table 1. G(#,10) --- Ho-Lee-Merton case

t 1 5 10 15 20
G(2,10)| 10.8372 | 60.6696 | 127.4541|188.2064 | 237.0777
t 30 40 50 60 70
G(t,10)| 297.3271|322.2795| 330.5541| 332.8062| 333.3136
Table 2. G(5,h) --- Ho-Lee-Merton case
h 5 10 15 20 25
G(5,h)| 47.1111, 60.6696, 70.7323| 77.8408| 82.6212
h 30 35 45 55 65
G(5,h)| 85.6819 87.5478| 89.2301| 89.7039| 89.8140
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Remarks : (1) The first moment of Z(¢), for the preceding force
of interest, is given by the following expression :

E[Z(t)] = E[Xl]

_ E[Xl]j.exp{

t
E|D

0

0

(v) Jdm(v)

2
V

—8(O)v—r?+02 %}dm(v) .

3

(2) For the values of the preceding example, the following table is
obtained for G(1,0)=E[Z°(1)] -

Table 3. G(#,0) --- Ho-Lee-Merton case

t 1 5 10 15 20
G(1,10)| 2.9098 | 29.7246 | 84.4707 |145.9729| 202.1786

t 30 40 50 60 70
G(2,10)| 280.0772|315.9861| 328.7406| 332.3814| 333.2318
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Regression formulas

Theorem 3 : Let />0, h>0, £, ={N(t)=nT =1, X,=x,;i=1,.,n}
and &(x) be a stochastic force of real interest. Then, according to

the assumptions of our risk model, we have the following
regression formula :

E[Z(t+h)|z,, ]|=2()

+E[X1]T{E[D(x)]+t+zxE[D(x+y)]dm(y)} ]1; (():;)) dx.

Proof : We have,

E[Z(t+ h)‘ z .6(z),z€[0,1+ hﬂ =Z(t)
N(t+h)

+E[X1]E{ D(T,)|=

k=n+1

,5(2),26[0,t+h]}.
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By conditionning on 7. and N(z+#4), the last factor yields

N(t+h)
E| 2. D(T,)

k=n+1

Zt’n,5(z),ze|:0,t+h:|}:

T{D(X)ﬂ“mjXD(x+y)dm(y)} filxt) o

t 0 F—:L'l(t_tn)

As the last integral is a random variable, we apply the expectation
as we did previously to get the result. O

Remarks : (1) If we set §(x)=8 (= D(x)=¢?") and 7, ~exp(4),

then our regression curve corresponds exactly to the linear
predictor of example 1.

(2) As that is well-known, the regression curve does not generally
correspond to the linear predictor.
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Theorem 4 : Let />0, h>0, £, ={N(t)=nT =1, X,=x,;i=1,.,n]
and &(x) be a stochastic force of real interest. Then, according to

the assumptions of our risk model, we have the following
regression formula :

E|Z(t+h)| 2, |=2°()

+ZZ(t)E|:Xl]t]t‘h{E[D(x)}LHZ[xE[D(x+y):|dm(y)\> ; (():;)) dx

+E[X5]T{ Hlij (x+y) | dm(y )} %1(();:;:))dx
R2E [XJTHIx{E[D(x)D(x+z)]

+t+1:xE|:D(x+y)D(x+y+Z):|dm(z)}dm(y) ]}% (();:tt:)) dx .
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onclusion

We have found recursive formulas for the joint moments of the
compound renewal sums with discounted claims, for a constant
force of real interest. These formulas have been obtained by using
essentially renewal arguments. Covariance and correlation
coefficient have been given for the discounted compound Poisson
process, thus providing an additional tool for the analysis of our
risk process.

We have also found explicit formulas for the first joint moments
when the discount factor is stochastic. These formulas have been
obtained by giving new expressions for the conditional (joint)
probability density function of the claims arrival times knowing
their number, for any renewal process, extending some well known
techniques using order statistics. A numerical example has also
been given, showing the calculability of our formulas. Finally a
regression formula has been obtained for our risk process.

29



Some References

DELBAEN, F. AND HAEZENDONCK, J. 1987. Classical risk theory in

an economic environment. /nsurance : Mathematics and Economics
b6:85-116.

GARRIDO, J. AND LEVEILLE, G. 2004. Inflation impact on aggragate
claims. Encyclopedia of Actuarial Science 2 : 875-878.

GERBER, H. U. 1971. Deir Einfluss von Zins auf
Ruinwarhrscheinlichkeit. Mitteilungen Vereinigungschweizerische
Versicherungsmathematiker 71 : 63-70.

LEVEILLE, G. AND ADEKAMBI, F. 2010. Covariance of discounted
compound renewal sums with a stochastic interest rate.
Scandinavian Actuarial Journal , 1-16, iFirst article.

30



LEVEILLE, G. AND GARRIDO, J. 2001a. Moments of compound
renewal sums with discounted claims. Insurance : Mathematics and
Economics 28 : 217-231.

LEVEILLE, G. AND GARRIDO, J. 2001b. Recursive Moments of
compound renewal sums with discounted claims. Scandinavian
Actuarial Journal 2 : 98-110.

LEVEILLE, G., GARRIDO, J. AND WANG, Y. F. 2009. Moments
generating functions of compound renewal sums with discounted
claims. Scandinavian Actuarial Journal , 1-20, iFirst article.

WILLMOT, G. E. 1989. The total claims distribution under
inflationary conditions. Scandinavian Actuarial Journal 10 : 1-12.

31



