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Abstract

Generalized linear models (GLMs) are gaining popularity as a sta-
tistical analysis method for insurance data. For segmented portfolios,
as in car insurance, the question of credibility arises naturally; how
many observations are needed in a risk class before the GLM estima-
tors can be considered credible? In this paper we study the limited
fluctuations credibility of the GLM estimators as well as in the ex-
tended case of generalized linear mixed model (GLMMs). We show
how credibility depends on the sample size, the distribution of co-
variates and the link function. This provides a mechanism to obtain
confidence intervals for the GLM and GLMM estimators.

Keywords: GLMs, GLMMs, limited fluctuations credibility, confidence in-
tervals

1 Introduction

Generalized linear models (GLMs) are becoming the premier statistical ana-
lysis method for insurance data. We consider the question of credibility: how

∗This research is funded by the Natural Sciences and Engineering Research Council of
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many observations are needed in a risk class of a segmented portfolio before
the GLM estimator can be considered credible? Schmitter (2004) provides
an excellent simple method to estimate the number of claims that will be
needed for a tariff calculation depending on the number of risk factors and
number of levels for each factor. In this paper we study the limited fluc-
tuations credibility of GLM estimators as well as in the extended case of
generalized linear mixed models (GLMMs). Here credibility depends on the
sample size and the distribution of covariates. This provides a mechanism to
obtain confidence intervals for the estimates in GLMs and GLMMs.

The paper is organized as follows. Section 2 briefly recalls the basic
concepts of GLMs and GLMMs. Section 3 gives the limited fluctuations
credibility results for GLMs and GLMMs. Section 4 is devoted to the choice
of the link function and its effect on credibility. Section 5 illustrates with some
numerical examples the main results of the paper. Details on calculations
and applications (in SAS) are provided.

2 GLMs and GLMMs

This section provides a short summary of the main characteristics of GLMs
and GLMMs. McCullagh and Nelder (1989) provide a detailed introduction
to GLMs. The books by Aitkin et al. (1989) and Dobson (1990) are also
excellent references with many examples of applications of GLMs. Haberman
and Renshaw (1996) give a comprehensive review of the applications of GLMs
to actuarial problems. McCulloch and Searle (2001) and Demindenko (2004)
are useful references for details on GLMMs. Antonio and Beirlant (2006)
give an application of GLMMs in actuarial statistics.

2.1 Generalized linear models (GLMs)

GLMs are a natural generalization of classical linear models that allow the
mean of a population to depend on a linear predictor through a (possibly
nonlinear) link function. This allows the response probability distribution
to be any member of the exponential family (EF) of distributions. A GLM
consists of the following components:

1. The response Y has a distribution in the EF, taking the form

f(y; θ, φ) = exp
{ ∫ [

y − µ(θ)
]

φV (µ)
dµ(θ) + c(y, φ)

}
, (2.1)
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where θ is called the natural parameter, φ is a known dispersion pa-
rameter, µ = µ(θ) = E(Y ) and V(Y ) = φV (µ), for a given variance
function V and known bivariate function c. The EF is very flexible and
can model continuous, binary, or count data.

2. For a random sample Y1, . . . , Yn, the linear component is defined as

ηi = X ′
iβ, i = 1, . . . , n, (2.2)

for some vector of parameters β = (β1, . . . , βp)
′ and covariates X i =

(xi1, . . . , xip)
′.

3. A monotonic differentiable link function g describes how the expected
response µi = E(Yi) is related to the linear predictor ηi

g(µi) = ηi, i = 1, . . . , n. (2.3)

Example 2.1 GLMs commonly used in credibility

The table below gives the different model components of the GLMs most
commonly used in credibility for observed claim counts or claim severities.

Y ∼ Normal(µ, σ2) Gamma(α, β) Poisson(λ) Bin.(m, q)/m

E(Y ) = µ(θ) θ = µ −θ−1 = α
β

eθ = λ eθ

1+eθ = q

V(Y ) = V (µ)φ σ2 1
θ2 α

= α
β2 eθ = λ q (1−q)

m

V (µ) 1 θ−2 eθ = λ q(1 − q)

φ σ2 α−1 1 1/m

c(y, φ) − 1
2
[ y2

σ2 + ln(2πσ2)] α lnαy + lny − lnΓ(α) − ln(y!) ln
(

m
m y

)

Link g identity reciprocal log logit

Table 1: GLM Examples

Additional examples include inverse Gaussian and negative binomial ob-
servations, as well as multinomial proportions (for details see McCullagh and
Nelder, 1989).
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For an observed random sample y1, . . . , yn, consider the log–likelihood of
β:

l(β) = lnL(β) =

n∑

i=1

{∫ [
yi − µi(θ)

]

φV (µi)
dµi(θ) + c(yi, φ)

}
, (2.4)

and its derivative:

dl(β)

dβ
=

n∑

i=1

dl(β)

dµi

dµi

dβ
=

n∑

i=1

(yi − µi)

φV (µi)

dµi

dX ′
iβ

dX ′
iβ

dβ
,

where
dµi

dX ′
iβ

=
dg−1(X ′

iβ)

dX ′
iβ

=
1

g′(µi)
.

Hence
dl(β)

dβ
=

n∑

i=1

(yi − µi)

φV (µi)

1

g′(µi)
X ′

i. (2.5)

Note that if Yi has a normal distribution, then g′(µi) = 1, and V (µi) = 1

for all i. Setting
dl(β)

dβ
= 0 yields

∑n
i=1 X i(yi − X ′

iβ) = 0. In other EF cases,

no closed form solution is available to this system of p equations. Instead,
to obtain the maximum likelihood estimator (MLE), we must resort to an
iterative algorithm, such as Newton–Raphson or Fisher scoring methods to
obtain the MLE numerically.

The MLE β̂ for the GLM parameters has some nice properties.

Lemma 2.1 For the MLE, β̂, solution of (2.5), we have:

1. β̂ is an asymptotically unbiased and consistent estimator of β.

2. V(β̂) → (X′WX)−1φ consistently, as the iteratively estimated β̂ con-
verges to the true β, where W = diag(wi, . . . , wn) with weights wi =[
φ g′(µi)V (µi)

]−1
, and matrix X = (X1, . . . ,Xn)

′.

3. β̂
d→ N

(
β, (X′WX)−1 φ

)
, i.e. it converges in distribution with the iter-

ative algorithm.

For a proof see McCullagh and Nelder (1989). The bias of β̂ is affected by the
choice of link function g (see Cordeiro and McCullagh, 1991). This problem
is further discussed in Section 4.
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2.2 Generalized linear mixed models (GLMMs)

The generalized linear mixed model is an extension of the generalized linear
model, complicated by random effects. It has gained significant popularity
in recent years for modeling binary/count, clustered and longitudinal data.
A GLMM consists of the following components:

1. For cluster data Yij , i = 1, . . . , n and j = 1, . . . , ni, assumed condition-
ally independent, given the random effects U1, . . . , Un, consider the
following EF distribution:

f(yij|ui, θ, φ) = exp
{[

yijθij − b(θij)
]

φ
+ c(yij, φ)

}
, (2.6)

where ui = (ui1, . . . , uik) are variates from normally distributed k-
dimensional random vectors U i ∼ N(0,D), where D is the variance–
covariance matrix and µij = E[Yij|U i].

2. The linear mixed effects model is defined as:

ηij = X ′
ijβ + T ′

ijui, i = 1, . . . , n, j = 1, . . . , ni, (2.7)

for the fixed effects parameter vector β = (β1, . . . , βp)
′ and random

effects vector ui = (ui1, . . . , uik)
′. Here X ij = (xij1, . . . , xijp)

′ and T ij =
(tij1, . . . , tijk)

′ are both covariates.

3. A link function g,

g(µij) = ηij , i = 1, . . . , n, j = 1, . . . , ni, (2.8)

completes the model.

The derivation of the likelihood function is also straightforward for GLMMs.
However, numerical methods are needed in most cases to obtain the MLEs.
Antonio and Beirlant (2006) give a brief review of some numerical techniques,
such as a restricted pseudo–likelihood, the Gauss–Hermite quadrature, and
Bayesian methods. Demidenko (2004) gives a detailed Monte Carlo method.
Most of these techniques are available in SAS.
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3 Credibility Theory for GLMs

Developed in the early part of the 20th century, limited fluctuations credibility
gives formulas to assign full or partial credibility to a policyholder’s, or group
of policyholders’ experience. Bühlmann (1967, 1969), Bühlmann and Straub
(1970), Hachemeister (1975), Jewell (1975) and Frees (2003) give several
credibility formulas. Goulet et al. (2006) gives a review of four different
formulas. Nelder and Verrall (1997) shows how credibility theory can be
encompassed within the theory of GLMs.

If the probability of a small difference between the estimator µ̂i and the
parameter it estimates, say mi, is large, then the insurer may find µ̂i credible.
If this difference is small “enough”, we say that “full credibility” is achieved.
Statistically, this can be defined as

P
{
|µ̂i − mi| ≤ rmi

}
≥ πi, (3.1)

for a chosen estimation–error tolerance level 0 < r < 1 and probability πi.

Proposition 3.1 For any generalized linear model, as defined in (2.1)–(2.3),
let g be a monotonic increasing link function. Then

πi = P
{
|µ̂i − mi| ≤ rmi

}
= P

{
(1 − r)mi ≤ µ̂i ≤ (1 + r)mi

}

= P
{
g[(1 − r)mi] − g(mi) ≤ g(µ̂i) − g(mi) ≤ g[(1 + r)mi]− g(mi)

}

= P
{
g[(1 − r)mi] −X ′

iβ ≤ X ′
iβ̂ −X ′

iβ ≤ g[(1 + r)mi]− X ′
iβ

}
. (3.2)

It is reasonable to restrict g to increasing link functions. Similar results
follow for decreasing link functions.

Proposition 3.1 gives some expressions equivalent to (3.1) and transfers
the confidence interval from the space of the GLM estimators µ̂i, to the space
of the linear components, through the link function g. If the latter satisfies
the condition g(cmi) = g(mi) + c′ for any mi, where c and c′ are constants
with respect to mi, then (3.2) admits a simpler form as follows.

Proposition 3.2 For any given error tolerance level r and any mi,

P
{
|µ̂i − mi| ≤ rmi

}
= P

{
c1 ≤ X ′

iβ̂ − X ′
iβ ≤ c2

}
, (3.3)

where c1 and c2 are constants given by (3.6), if and only if a log–link function
g(x) = c ln(x) + τ in used in (3.2), where c is a scale- and τ is a shift–
parameter.
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Proof: (⇒)
If g(x) = c ln(x) + τ , by (3.2), it is clear to see that

g[(1 − r)mi] − g(mi) = c ln[(1 − r)mi] − c ln(mi) = c ln(1 − r), (3.4)

and

g[(1 + r)mi] − g(mi) = c ln[(1 + r)mi]− c ln(mi) = c ln(1 + r). (3.5)

(⇐)
If P

{
|µ̂i − mi| ≤ rmi

}
= P

{
c1 ≤ X ′

iβ̂ − X ′
iβ ≤ c2

}
, then from (3.2), for

any mi,

c1 = g[(1 − r)mi]− g(mi) and c2 = g[(1 + r)mi] − g(mi). (3.6)

Assuming that g is differentiable, then for any mi

g′(mi) = lim
r→0

g[(1 − r)mi]− g(mi)

−rmi
= lim

r→0

c1

−rmi
, (3.7)

but also,

g′(mi) = lim
r→0

g[(1 + r)mi]− g(mi)

rmi
= lim

r→0

c2

rmi
. (3.8)

Hence limr→0
c1
−r

= limr→0
c2
r

= c, say. Then g′(mi) = c
mi

, which indicates
that g(x) = c ln(x) + τ . 2

The above proposition shows that for the log–link function, the upper and
lower bounds of the full credibility rule do not depend on the estimated value
mi. These only depend on the chosen error tolerance level r. The following
example gives a concrete illustration.

Example 3.1 Poisson distribution with a log–link function

Let Yi be independent Poisson distributed random variables representing the
number of claims for risk i = 1, . . . , n. Here E(Yi) = mi = exi1β1+···+xipβip.
With the log–link function, g[E(Yi)] = g(mi) = xi1β1 + · · ·+xipβip. By (3.2),

|µ̂i −mi| ≤ rmi ⇔ ln(1− r) ≤ X ′
iβ̂−X ′

iβ ≤ ln(1+ r). Since 0 < r < 1, then
| ln(1 + r)| < | ln(1 − r)| and hence

P
{
|µ̂i −mi| ≤ rmi

}
= P

{
ln(1 − r) ≤ X ′

iβ̂ −X ′
iβ ≤ ln(1 + r)

}

≤ P
{
|X ′

iβ̂ − X ′
iβ| ≤ | ln(1 − r)|

}
. (3.9)
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Let s2 = V(β̂1 + · · · + β̂p) and X i = (1, 1, . . . , 1), then (3.9) becomes

P
{
|X ′

iβ̂ −X ′
iβ| ≤ | ln(1 − r)|

}

= P
{
|(β̂1 + · · · + β̂r) − (β1 + · · · + βr)| ≤ | ln(1 − r)|

}

= P
{∣∣(β̂1 + · · · + β̂r) − (β1 + · · · + βr)

s

∣∣ ≤ | ln(1 − r)|
s

}
. (3.10)

Approximating by a normal distribution, (3.10) yields | ln(1−r)|
s

≥ Zπ
2
, where

Zπ
2

is the 100π
2
-percentile of a standard normal distribution. Hence the fol-

lowing full–credibility criteria is obtained:

s ≤
[ ln(1 − r)

Zπ
2

]2
= s∗ ,

which says that the sample size n must be sufficiently large to ensure that
the standard deviation of the (sum of the) estimators β̂1, . . . , β̂p be at most
s∗. This result is consistent with the result given by Schmitter (2004).

Proposition 3.3 Let Σ = (σij)i,j = (X′WX)−1 φ and s2
i = V(X ′

iβ̂), then

s2
i → X ′

iΣX i, (3.11)

consistently, for X i, W and X as in Lemma 2.1.

Proof: Since V(β̂) → (X′WX)−1φ consistently, as the iterative β̂ converges
to the true β, then

s2
i = V(X ′

iβ̂) = V(xi1β̂1 + · · · + xipβ̂p)

=

p∑

j=1

p∑

k=1

xijxikCov(β̂j, β̂k) →
p∑

j=1

p∑

k=1

xijxikσjk = X ′
iΣX i .

consistently. 2

As stated in Lemma 2.1, β̂ converges to N
(
β, (X′WX)−1 φ

)
in distribu-

tion. Then, the following corollary to Proposition 3.3 holds.

Corollary 3.1
(
X ′

iβ̂ − X ′
iβ

)
/si converges to N(0, 1) in distribution.
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Theorem 3.1 For the log–link function, an approximation with the normal
distribution gives

πi
.
= Φ

( ln(1 + r)

si

)
−Φ

( ln(1 − r)

si

)
, (3.12)

where Φ is the cumulative distribution function (cdf) of the standard normal
distribution.

Proof: From Propositions 3.1 and 3.2,

πi = P
{

ln(1 − r) ≤ X ′
iβ̂ − X ′

iβ ≤ ln(1 + r)
}

= P
{ ln(1 − r)

si
≤

X ′
iβ̂ − X ′

iβ

si
≤ ln(1 + r)

si

}
.

Hence, by the normal approximation, πi
.
= Φ( ln(1+r)

si
) −Φ( ln(1−r)

si
). 2

For any confidence coefficient πi, Theorem 3.1 gives a 100(1 − r)% con-
fidence interval for µ̂i, the regression estimate from the GLM. The theorem
also shows that the confidence interval varies with the value of the covariates
since si is a function of X i. The examples in Section 5 illustrate the above
results.

Now for a general link function g, let

Q1 = g[(1 − r)mi] − g(mi) and Q2 = g[(1 + r)mi] − g(mi) . (3.13)

Theorem 3.2 For any link function g,

πi
.
= Φ

(Q2

si

)
− Φ

(Q1

si

)
, (3.14)

where Φ is the cdf of the standard normal distribution, Q1 and Q2 are given
in (3.13) and si in Proposition 3.3.

Proof:

πi = P
{
|µ̂i −mi| ≤ rmi

}
= P

{
Q1 ≤ X ′

iβ̂ − X ′
iβ ≤ Q2

}

= P
{Q1

si
≤

X ′
iβ̂ − X ′

iβ

si
≤ Q2

si

}
.

Approximating by the normal distribution gives (3.14). 2
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Clearly, the smaller si the bigger πi (approximately), which differs for
different i. If g is the log–link function, then Proposition 3.2 gives closed
forms for Q1 and Q2. For other link functions, as the true parameter value
mi is unknown, we can approximate Q1, Q2 and πi as follows:

Q̂1 = g[(1 − r)µ̂i]− g(µ̂i) and Q̂2 = g[(1 + r)µ̂i]− g(µ̂i) , (3.15)

which implies that

π̂i
.
= Φ

(Q̂2

si

)
− Φ

(Q̂1

si

)
. (3.16)

Section 4 discusses further the effect of the choice of link function on the
above approximation.

Finally, similar results hold for the estimates credibility in GLMMs.

Proposition 3.4 For any generalized linear mixed model, as defined in (2.6)–
(2.8), let g be a monotonic increasing link function. Then

πi = P
{
|µ̂i − mi| ≤ rmi

}
= P

{
(1 − r)mi ≤ µ̂i ≤ (1 + r)mi

}

= P
{
g[(1 − r)mi] − g(mi) ≤ g(µ̂i) − g(mi) ≤ g[(1 + r)mi]− g(mi)

}

= P
{
g[(1 − r)mi] −X ′

ijβ − T ′
ijui ≤ X ′

ijβ̂ + T ′
ijûi − X ′

ijβ − T ′
ijui

≤ g[(1 + r)mi]− X ′
ijβ − T ′

ijui

}
. (3.17)

Using the same idea as in Theorem 3.2 we obtain the following result for
GLMMs.

Theorem 3.3 For any link function g, let s2
i = V(X ′

ijβ +T ′
ijui) and Q1, Q2

be defined as in (3.13), then

πi
.
= Φ

(Q2

si

)
− Φ

(Q1

si

)
, (3.18)

where Φ is the cdf of the standard normal distribution.

4 The Choice of Link Function

As shown in the above sections, the main idea here is to transfer the “full
credibility” condition (3.1) to an equivalent form easier to implement, as in
Proposition 3.1. Expression (3.14) gives the credibility of the GLM estimator
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as a function of Q1, Q2 and si, which also depend on the link function g.
Thus, it is natural to investigate the effect of the choice of link function.

The following lemma shows that rescaling or shifting the link function of
a given GLM has no effect on the credibility of the resulting GLM estimators.

Lemma 4.1 Rescaling or shifting a given link function g, such as in h(x) =
c g(x) + τ , does not affect the approximate πi in (3.14).

Proof: For a link function g, (2.3) can be rewritten as g(µi) = β
(g)
0 +X ′

iβ
(g),

where β
(g)
0 is the intercept. Let the new link function be h(x) = c g(x) + τ .

Then h(µi) = β
(h)
0 + X ′

iβ
(h), that is c g(x) + τ = β

(h)
0 + X ′

iβ
(h) and hence

g(x) =
β

(h)
0 −τ

c
+ X ′

i

β(h)

c
. It follows that β

(g)
0 =

β
(h)
0 −τ

c
and β(g) =

β(h)

c
.

Now let (s
(g)
i )2 = V(X ′

iβ̂
(g)

), (s
(h)
i )2 = V(X ′

iβ̂
(h)

). Clearly (s
(g)
i )2 =

1
c2

(s
(h)
i )2, or equivalently, s

(h)
i = c s

(g)
i , while

Q
(h)
i = h[(1 ± r)mi] − h(mi) = c

{
g[(1 ± r)mi]− g(mi)

}
= cQ

(g)
i ,

for i = 1, 2. Refer to (3.14), to see that

π
(g)
i

.
= Φ

(Q
(g)
2

s
(g)
i

)
− Φ

(Q
(g)
1

s
(g)
i

)
= Φ

(cQ
(g)
2

c s
(g)
i

)
− Φ

(cQ
(g)
1

c s
(g)
i

)
.
= π

(h)
i ,

from the definitions of Q
(h)
i and s

(h)
i . 2

Example 5.3 gives a numerical illustration of Lemma 4.1. It shows how
the estimated probabilities πi, from (3.14) but with the estimated si given
by the GLM, also remain essentially unchanged under any rescaling of the
log–link function.

The choice of link function also affects the bias in GLM estimators, β̂,

µ̂i = g−1
(
X ′

iβ̂
)

and in our estimated Q̂1, Q̂2 in (3.15). This is explored in the
next result, but we first reproduce a version of Jensen’s inequality needed in
what follows.

Lemma 4.2 (Jensen Inequality) Let ϕ be a convex upward (respectively
concave) function on (−∞,∞) and f an integrable function on [0, 1]. Then

∫
ϕ
(
f(t)

)
dt ≥ (resp. ≤)ϕ

[ ∫
f(t) dt

]
. (4.1)
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The usual corollary of Jensen’s inequality is to let f be the density func-
tion of a random variable X. Then

E
[
ϕ(X)

]
≥ (resp. ≤)ϕ

(
E[X]

)
. (4.2)

Now we can explore how the link function affects the estimation bias in
our confidence intervals.

Theorem 4.1 Q̂1 and Q̂2 (3.15) are:

1. unbiased estimators if the link function g is linear,

2. asymptotically upward–biased if the link function g is convex and de-
creasing,

3. asymptotically downward–biased if the link function g is concave and
increasing.

Proof: Recall that Q̂1 = g[(1− r)µ̂i]− g(µ̂i) and Q1 = g[(1− r)mi]− g(mi),
where g(mi) = X ′

iβ and g(µ̂i) = X ′
iβ̂. Then

bias(Q̂1) = E(Q̂1) − Q1

= E
{
g[(1 − r)µ̂i]− g(µ̂i)

}
− g[(1 − r)mi] + g(mi)

= E
{
g[(1 − r)µ̂i]

}
− g[(1 − r)mi] + X ′

iβ − E[X ′
iβ̂]

= E
{
g[(1 − r)µ̂i]

}
− g[(1 − r)mi] − X ′

i bias(β̂) (4.3)

Three cases need to be distinguished:

1. If g is linear then E
{
g[(1− r)µ̂i]

}
− g[(1− r)mi] = 0 and β̂ is unbiased,

hence so is Q̂1.

2. If g is a convex decreasing function, then by Jensen’s inequality in (4.2)

E(µ̂i) = E
[
g−1(X ′

iβ̂)
]
≤ g−1

[
E(X ′

iβ̂)
]

= g−1(X ′
iβ) = mi ,

that is E[µ̂i] ≤ mi. Now since

E
{
g[(1 − r)µ̂i]

}
≥ g

{
E[(1 − r)µ̂i]

}
= g

{
(1 − r)E[µ̂i]

}
≥ g[(1 − r)mi] ,

and β̂ is asymtotically unbiased, then asymtotically E(Q̂1) − Q1 ≥ 0.

Hence Q̂1 is an asymtotically upward–biased estimator.
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3. If g is a concave increasing function, the proof is similar but with the
inverse inequalities. That is asymtotically E(Q̂1) − Q1 ≤ 0 and Q̂1 is
an asymtotically downward–biased estimator.

The proof is similar for the results on Q̂2. 2

In practice the choice a link function for a GLM is not a straightforward
problem. It solution heavily relies on experience and intuition. The following
theorem gives a choice criteria for the link function.

Theorem 4.2 For a GLM problem, π̂i given by (3.16) can be used as a

criteria to choose between two link functions g1 and g2. If π̂
(g1)
i < π̂

(g2)
i , we

say that the estimator given under the link function g1 is less credible than
the estimator given under g2, that is g2 is better than g1.

5 Some Numerical Examples

Example 5.1 Car Insurance Claims Data

The SAS Technical Report P-243 (1993) gives the following illustrative dataset
of a car insurance portfolio (also reproduced in Schmitter, 2004). For earlier
examples of nonlinear analysis of car insurance data see Aitkin et al. (1989).

risk claims car type age group
500 42 small 1
1200 37 medium 1
100 1 large 1
400 101 small 2
500 73 medium 2
300 14 large 2

Table 2: Car Insurance Data

Now let yi be Poisson and choose a log–link function. Furthermore, let
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the covariates X i = (xi1, . . . , xi4)
′, where

xi1 = 1,

xi2 =

{
1 if car type is small
0 otherwise,

xi3 =

{
1 if car type is medium
0 otherwise,

xi4 =

{
1 if age group is 1
0 otherwise.

The matrix of variance–covariance Σ is given by SAS as:

Σ =




0.008150 −0.007772 −0.006344 −0.004623
−0.007772 0.07418 0.006556 0.003113
−0.006344 0.006556 0.01645 −0.002592
−0.004623 0.003113 −0.002592 0.01847




Let the tolerance level r = 0.1 and X1 = (1, 1, 0, 1)′. Then s2
1 = X ′

1ΣX1 =

0.082236 and π1 = Φ( ln(1+r)
s1

) − Φ( ln(1−r)
s1

) = 0.273533. Clearly, the current
experience produces GLM estimators that are not credible.

By contrast, letting X2 = (1, 0, 1, 0)′ gives s2
2 = 0.011912 and π2 =

0.641557, which indicates a more credible GLM estimator for medium cars
in group 2 than for small cars in group 1.

Furthermore, if the claim experience increases proportionally 23 times,
i.e. the risk and claim counts for each car and age group increase 23 times,
then s2

1 = 0.003575 and π1 = 0.905492. This shows that as the portfolio size
increases the GLM tends to full credibility, as expected.

Example 5.2 Modified Car Insurance Data

This example shows that credibility also depends on the distribution of the
covariates. For instance, keep the total number of claims unchanged in Table
2 at 268, but rearrange the claim counts in each group as in Table 3. Then
for X1 = (1, 1, 0, 1)′ we get s2

1 = 0.038200 and π1 = 0.392182, which differs
from the value of 0.273533 obtained in Example 5.1. Clearly the credibility
of GLM estimates depends on the distribution of the covariates.

Example 5.3 Rescaled Car Insurance Data

14



risk claims car type age group
500 45 small 1
1200 108 medium 1
100 9 large 1
400 36 small 2
500 44 medium 2
300 26 large 2

Table 3: Modified Car Insurance Data

Let the link function g(x) = c ln(x)+ τ . Lemma 4.1 shows that c and τ have
no effect on the calculation of Q1, Q2 and si. The same is true when these
are estimated by a software implementation of the GLM, like SAS.

Choosing different rescaling parameters c, Table 4 shows that the es-
timated credibility values πi in (3.14) remain essentially the same. Hence

c s1 π1 s2 π2

0.1 0.028674 0.273559 0.012676 0.570980
0.5 0.143400 0.273504 0.063143 0.572737
1 0.286768 0.273533 0.126301 0.572679
2 0.573620 0.273495 0.252725 0.572455
5 1.433855 0.273531 0.631411 0.572749

Table 4: Rescaled Car Insurance Data

rescaling or shifting the link function does not affect the πi values.

6 Conclusion

This paper studies the credibility of the estimators obtained from GLM and
GLMM risk models. A closed form of the full credibility criteria is given
for the log–link function, usually paired to Poisson observations (i.e. claim
counts). For general link functions, we propose a credibility estimation based
on a normal approximation.

The proposed method should become useful to actuaries as it provides full
credibility criteria for GLM estimators, at a time when these are becoming
popular in the statistical analysis of insurance and risk data.
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[5] Bühlmann, H. and E. Straub, 1970. Glaubwürdigkeit für Schadensätze.
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