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ABSTRACT 
We consider a European and American put option defined on pure 
endowment insurance and risk insurance contracts, respectively.  These 
exotic options give the holder of the option or the beneficiary of said holder 
the opportunity to exercise the options and earn the difference between the 
future value of the insurance benefit discounted by a fixed interest rate- the 
strike price of the option, which defined in the option contract, and the 
future value of the insurance benefit discounted by the real interest rates 
which the option writer achieves on the investments through the exercise 
date.  The randomness of the interest rate is modulated by two stochastic 
processes: the Ornstein-Uhlenbeck (OU) process and the Vasicek process.  
In each case considered, an explicit expression of the value of the option 
contract is given, as are numerical examples. 

 
 
INTRODUCTION  
We propose an exotic option defined on life insurance contracts, whereby insured 
parties can buy European and American put options on their insurance benefit.  The 
kind of options proposed here is a type of gamble between the option writer and the 
insured parties who purchase the options, on the interest rate the option writer will 
achieve by the exercise date of the options.  We first consider a European put option 
defined on a pure endowment insurance contract.  In a pure endowment insurance 
contract, the insured will have the insurance benefit only by surviving through the 
maturity date of the policy contract.  In a European option contract, the option can be 
exercised only on the exercise date of the option contract.  We suggest a combination 
of these two types of contracts to form an exotic-European option, meaning that 
option holders can exercise the option only if they survive through the exercise date.  
In this option, an investor interested in buying this contract has a subjective view on 
the interest rate that he thinks the option writer will achieve on his investments, and 
he is willing to gamble on it.  On the other hand, the option writer thinks that he could 
achieve a higher interest rate than is written in the option contract, so he sells a put 
option in which he has a commitment to pay the option holder at the exercise date (if 
the option holder survives until this date) an amount of money B, which is the benefit 
insurance defined in the option contract, discounted by the difference between the 
fixed interest rates (the subjective interest rate of the option buyer) and the real 
interest rates achieved on the investment.  If the option writer achieves a higher 
interest rate than the one written in the option contract, the value of the option 
contract is zero.  Thus, option holders gain from holding this option only if two 
conditions are met:  they need to survive through the exercise date, plus the option 
writer has to achieve a lower interest rate than the one defined in the option contract. 
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Note that this type of option is a put option, because when exercising the option 
contract the option holder can “sell” to the option writer for a strike price―namely 
that the future value of the defined insurance benefit discounted by a fixed 
(subjective) interest rate―and gain the difference between the strike price of the 
option and the future value of the insurance benefit discounted by the real interest rate 
achieved by the option writer at the exercise date.  Also, note that it is not particularly 
difficult to monitor the interest rates the option writer achieves by the exercise date of 
the option: in Israel.  For example, insurance companies are obligated to report each 
month to the government insurance supervisor the interest rate achieved for each type 
of life insurance contract.  The result is full transparency of the interest rates achieved.  
Moreover, note that the fixed interest rate defined in the option contract should be 
higher than the interest rate of the long-term government or corporate bonds; 
otherwise no one will purchase this type of option contract.  Given the 
aforementioned circumstances, the option writers need to invest in the stock market or 
in other derivatives, in order to achieve a higher interest rate than the one defined in 
the option contract, to ensure that it is not exercised. 
 
Next, we consider an American put option defined on a risk insurance contract.  In a 
risk insurance contract, if the insured does not survive through the maturity date of the 
policy contract, the beneficiary receives the sum assured from the insurance company 
as defined in the insurance contract after death occurrence.  In an American put 
option, the option can be exercised at any point during the life of the option.  We 
suggest that a combination of these two contracts constitutes an exotic option.  This 
means that if the option holder dies prior to the maturity date, the beneficiary could 
exercise the option contract and receive the difference between the commitment of the 
option writer, which is the future value of the benefit insurance discounted by a fixed 
interest rate- the strike price of the option contract, and the future value of the 
insurance benefit discounted by the real interest rates which the option writer achieves 
on his investments.  Thus, the beneficiary of the option holder only gains from 
exercising this option if the option writer achieves a lower interest rate than the one 
defined in the option contract.  Note that this type of American put option is not a 
typical one in the sense that the owner of the option contract does not choose when to 
exercise the option, since the exercise date depends on the death of the option holder 
which is supposed to be random (unless we allowed suicide - which in our case, we 
do not).  But such an American option can be viewed in the sense that the exercise 
date could be any day until the end of the term of the option contract 
 
For both types of option contracts considered here, we use two kinds of stochastic 
processes to modulate the randomness of the interest rates:  The Ornstein-Uhlenbeck 
(OU) process and the Vasicek process.  In each one of these stochastic processes, we 
evaluate the prices of these exotic options. 
 
Actuaries and finance researchers have long been aware of the random nature of 
interest rates, particularly when dealing with long-term contracts.  Recent studies also 
integrate the mathematics of finance as a part of the mathematics of insurance.  
Starting with unit-linked life insurance, Bernnan and Schwartz (1976) recognized the 
option structure of a unit-linked life insurance contract with a guarantee.  Briys and de 
Varenne (1994) deal with the bonus option of the policy-holder and the bankruptcy 
option of the (owners of the) insurance company in terms of contingent claims 



analysis.  Other recent studies that deal with the bonus option are Miltersen and 
Persson (1998) or Grosen and Jørgensen (2000). 
 
Other contexts in which two or more stochastic processes govern the life of a put 
option that have been studied in the literature are the pricing of put options on 
defaultable bonds or swaps, and the pricing of Asian exchange rate options under 
stochastic interest rates.  The study of options in other contexts, in which two or more 
stochastic processes govern the life of defaultable bonds or swaps has a long history, 
but the seminal paper in this field is most likely the one written by Duffy and 
Singleton (1997).  There, the riskless, instantaneous interest rate is adjusted by the 
firm issuing the bond or swap default hazard, to yield a model that formally resembles 
the default-free case, and that can be resolved in a similar manner.  The adjustment, 
however, involves the sum of two hazard-like terms that imply independence, despite 
the fact that some type of relationship probably exists between the default hazard and 
instantaneous interest rate.  Similarly, Asian options are written on the exchange rate 
in a two-currency economy.  In valuing these options, both the stochastic nature of the 
foreign and domestic zero-coupon bond prices and the exchange rate process are 
modeled.  A recent treatment of the problem is given by Nielsen and Sandmann 
(2001), in which the two countries' zero-coupon bond price processes are assumed to 
be independent geometric-Brownian motions, but the exchange rate process is 
modeled by a stochastic differential equation that is a geometric Brownian motion 
based on the difference of the short-term interest rate processes in the two countries. 
 
Both discrete and continuous-time stochastic models for interest rate processes have 
been presented in the actuarial literature, primarily Gaussian autoregressive processes.  
Panjer and Bellhouse (1980) provide a thorough review of autoregressive processes of 
order 1, AR(1), and of order 2, AR(2), with constant volatility (variance). They show 
how the force of interest may be modeled according to an AR(1) or AR(2) process, 
leading to formulae for the moments of the cumulative force of interest and the 
annuity certain function, which is the present value of $1, n years hence.  (1994), and 
references therein, discusses modeling the force of interest, versus modeling the 
accumulated force of interest, using a continuous-time autoregressive process of order 
1: the OU process with a superimposed linear trend, and the Weiner process with 
linear trend.  More recently, Milevsky and Promislow (2001) modeled the short-rate 
process itself as a Cox-Ingersoll-Ross (CIR) process.  The CIR process is an AR(1) 
process in continuous time, with random volatility that is proportional to the square 
root of the instantaneous interest rate just prior to time t.  Additionally, the actuarial 
literature has also considered put options defined on pension insurance.  Historically, 
the study of put options on pension plans could be regarded as an extension of the 
''pension put option'' approach of Sharpe (1976) and Bicksler and Chen (1985) - to a 
''pension call'' model that describes the general phenomenon of the unwillingness of 
fund sponsors to terminate over-funded plans. Note that in our case of the European 
put option, defined on pure endowment insurance, instead of receiving the sum 
assured as a lump sum, it can be received as an annuity.  In this case, it can be 
considered as a European put option defined on a pension annuity.  A pension put 
option, as described by Sharpe (1976), is the sponsor's right to abandon an under-
funded pension plan.  If the sponsor exercises the pension put option, it leaves the 
responsibility of the shortfall to either the beneficiaries, or to the PBGC (Pension 
Benefit Guarantee Corporation) in the short term.  Sharpe (1976) argues that to 
preserve the value of the pension put option; the sponsor would not be motivated to 



terminate an under-funded plan.  Consequently, the value of early termination of a 
defined benefit plan to the sponsor is similar to the exercise value of a call option on 
the pension asset portfolio to the insured.  The exercise price of the call option is 
equal to the vested benefit at the time plan termination.  Other recent studies 
combining call options on pension annuity insurance plans, were conducted by 
Ballotta and Haberman (2003) and Yosef, Benzion, and Gross (2004). 
 
The remainder of this paper is structured as follows:  In Section 2, we present a 
European put option defined on a pure endowment insurance contract and find an 
explicit expression for the value of this option contract in case of the OU and the 
Vasicek processes, which modulate the randomness of the interest rate process.  
Furthermore, some important features of these processes are provided.  In Section 3, 
we solve the case of an American option contract, defined on risk insurance contracts 
in the two cases of the stochastic processes presented above.  Numerics and 
conclusions are given in Section 4.  Note that we make no attempt to factor in 
expenses, profits and other administrative charges, but rather assume that everything 
is presented on a net basis. 
 
EXOTIC EUROPEAN PUT OPTION ON PURE ENDOWMENT INSURANCE  
 
The main purpose of this section is to evaluate the exotic European put option defined 
on pure endowment insurance, as presented above, under the stochastic structure of 
the interest rates. As aforementioned in this option, an investor interested in buying 
this contract has a subjective view on the interest rate that he thinks the option writer 
will achieve on his investments, and he is willing to gamble on it. On the other hand, 
the option writer thinks that he could achieve a higher interest rate than is written in 
the option contract, so he sells a put option in which he has a commitment to pay to 
the option holder at the exercise date (in case that the option holder survives until this 
date) an amount of money B, which is the benefit insurance defined in the option 
contract, discounted by the difference between the fixed interest rates and the real 
interest rates achieved on the investment. If the option writer will achieve a higher 
interest rate than the one written in the option contract the value of the option contract 
is zero. 
 
We can write this exotic European put option contract where the mortality and the 
interest rate are stochastic by: 
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where 
 

0t - the time from 0 to the end of the policy contract. 
 
T - random variable that describes the total lifetime of an individual. 
 
δ - constant risk-free interest intensity. 
 
β - the fixed (subjective) interest rate defined in the option. 



 
θ - constant factor. 
 

0)( ≥ttX  - the random interest process. 
 
B - benefit insurance defined in the option contract. 
 
 
Ppe(0) -  denotes the present value of this exotic put option defined on pure 

endowment insurance - at time 0. 
 
Note that formula (1) based on the assumption that the time-at-death random variable 
is stochastically independent of market rates some measure.  Also note that the strike 
price of this option contract is the future value of the benefit insurance discounted by 

the fixed interest rate: .  In contrast is the real interest rate that the option 
writer achieves on his market investments through the exercise date.  This interest rate 
changes randomly according to the stochastic structure of the interest rate process. 
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As aforementioned, we assume that the stochastic structure of the interest rate follows 
two types of stochastic processes:  the OU process and the Vasicek process.  These 
two processes have interesting behaviors. The OU process has an advantage in that its 
sample functions tend to revert to the initial position, a property that seems 
appropriate for many interest rate scenarios.  The finite dimensional distributions are 
normal, and the process has a Markovian property (see Beekaman and Fuelling, 1990, 
1991).  The Vasicek model has a tendency to fluctuate around a fixed interest rate, δ > 
0, with an eventually stabilizing volatility.  The connection between these two 
processes and more about OU and the Vasicek processes will be described in the 
following subsections. 
 
THE ORNSTEIN-UHLENBECK PROCESS 
 
Let B(t) be a standard Brownian motion, and let X(t) be the unique solution of the 
stochastic differential equation: 
 

,)0(),()()( xXtdBtXtXd =+−= σα     (2) 
 
where 0,0 >> σα .  X(t) is termed the Ornstein-Uhlenbeck (OU) process.  It is well 
known that the solution of (2) is a Markov process with continuous sample paths and 
Gaussian increments.  By Karlin and Taylor (1981, p. 332),  

where .  Denote by 
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Transform (LT) of X(t); it can then be written by 
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Note that the OU process has the following properties, assuming X(0) is a random 
variable:  
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If the initial random variable X(0) has a normal distribution with mean zero and 

variance 
α

σ
2

2
, then X(t) is a stationary, zero-mean Gaussian process with covariance 

function 
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see Beekman and Fuelling(1990). 
 
Now for the evaluation of (1), we first prove the following lemma: 
 
Lemma 1  Let X(t) follow the OU process as described in (2), then for 0>θ  the size 
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can be written by: 
 

( )

( ) ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−−

Φ−Γ−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛
−

Φ−

−−
−

−−
−

0

0)(
)(

)(

0

)(

))((
1

1

00

0

0

00

0

th

thxe
e

th

xe
e

tt

tX
t

tt
t

θα
θ
δβ

θδ

α
θ
δβ

β

 

 
where )  is the cumulative distribution function of the normal distribution,  

is the LT of the OU process which is given in (3) at t
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Proof.  Denote by  the cumulative distribution function of the OU process at 
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Now since , we can solve these two integrals and get  ))(,(~)( 00 0
thxeNtX tα−
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Denote by  the price of this exotic European put option defined on pure 
endowment insurance under the OU process.  Thus, we can rewrite the price of the 
exotic European put option presented in (1) by: 
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where  is the LT of the OU process given in (3) at point t)(
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THE VASICEK MODEL 
 
We are now interested in valuating (1), where the interest rate is modulated by the 
Vasicek process.  Denote by )(~ tX  the Vasicek process that is defined as a diffusion 
process satisfying the stochastic differential equation: 
 

)())(~())(~( tdBdttXtXd σγα +−= ,    (5) 
 
where 0),,( >σγα  and  is the standard Brownian motion with drift 0 and 
variance 1 per unit time (see Baxter and Rennie (1996, p.153)).  In terms of a 
stochastic integral, the solution of (5) is given by  
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According to (6), X~  has a drift towards γ of (state-dependent) size ))(~( tX−γα , 
which is thus proportional to the distance from γ.  Note that we can represent the 
Vasicek process by  
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where X(t) is the OU process given in (2).  Thus from (7) and (3), we can write the LT 
of the Vasicek process, , by:   )(
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Lemma 2  Let )(~ tX  follow the Vasicek process as described in (5).  We can then 
write the size 
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where )  is the cumulative distribution function of the normal distribution,  

is the LT of the Vasicek process given in (8) at t
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Proof.  Since  and using (7), ))(,(~)( 00 0
thxeNtX tα− 0(~ tX ) has a normal 

distribution with mean  and variance h(t))1((
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proof of Lemma 2, the result is as follows.  ▪ 
 
The price at time zero of these exotic European put options defined on pure 
endowment insurance under the Vasicek process, , can be written by )0(Vasicek

peP
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where  is the LT of the Vasicek process given in (8) at point t)(
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EXOTIC AMERICAN PUT OPTION ON RISK INSURANCE 
 
This section examines pricing the value of a put option defined on risk insurance 
under the stochastic structure of the interest rates.  As previously mentioned, this type 
of option gives the beneficiary of the option holder the opportunity to exercise this 
option for a strike price defined in the option contract, only in case of death of the 
option holder prior to the exercise date of the option.  Should the option holder 
survive through the exercise date, the worth of this option is zero.  Note that the death 
of the option holder can occur at any time prior to the exercise date, meaning that the 
option could be exercised by the beneficiaries of the option holder any time prior to 
the exercise date. 
 
Now the value of this American put option can be written by:  
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where t0, T, B,,, θβδ , X(t) as defined in the above subsection and where Pri(0) 
denotes the present value of this put option at time 0. 
 
We now turn our attention to calculating the value of the option contract presented in 
(10) under the OU process, denoted by , and under the Vasicek process, 

denoted by .  We begin with the Vasicek process. 

)0(OU
riP

)0(Vasicek
riP

 
Lemma 3  Let )(~ tX  follow the Vasicek process as described in (5).  Then for 0>θ , 
we can write (10) by: 
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where  is the cumulative distribution function of  T, ))(t

TdF (⋅Φ  is the cumulative 

distribution function of the normal distribution, and  is the LT of the Vasicek 
process given in (5). 
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Proof.  Let ],min[ 0tT=τ .  Then for 0>θ , 
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Now the size of the conditional expectation with respect to )(~ τX , could be written 
by: 
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thus following Lemma 2 we get  
 

( )

( )
.

])()1([
1

))1((
1

)(
)(

)(~

)(

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−+−
Φ−Γ−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −+−
Φ−

−−−
−

−−−
−

τ

θτγ

τ

γ

τατα
θ

τδβ
θ
τ

τδ

αττα
θ

τδβ
τβ

h

hexe
e    

h

exe
e

X

 

 
Now given that τ  = T for T < t0, and that the value of this option is 0 for T > t0, 
taking expectation with respect to τ = T, we get the required result of (10) which is 
provided in (11).  ▪ 
 
We are now interested in evaluating  which is the value of this option under the 
OU process. 
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Lemma 4  Let )  follow the OU process as described in (2).  Then for (tX 0>θ , we 
can write (10) by: 
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where  is the cumulative distribution function of T, ))(t

TdF (⋅Φ  is the cumulative 

distribution function of the normal distribution, and  is the LT of the OU 

process given in (3). 
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Proof.  Following the proof of Lemma 3 and letting 0=γ , we obtain the required 
result.    ▪ 
 
NUMERICS AND CONCLUSIONS 
 
We now consider two cases of the random variable of the total lifetime of an 

individual, T.  The first case is an exponential lifetime, where  for 

positive constants .  The second case is Gompertz’s low:  for 
positive constants w and c.  In this case, we can write the survival lifetime as: 

0*0 )Pr( tetT τ−=>
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age wc=μ
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c
w cc

etT , where the parameter “age” refers to the present age 

of the insured.  In each case, we will find the prices of the put options , 

 and , , i.e. formulas (4), (9) and formulas (11), (12) 
respectively, under several assumptions of the parameters.  We compare these results 
to the prices, where the probability of the insured to survive through the exercise date 
is 1, i.e. . 
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Now suppose the constant parameters of the processes are: ,01.0,05.0 == σδ  

05.0,7.0,1.0,02.0 0 ==== xγθα  and that the benefit insurance is B = $1.  The 

results will be given for a scenario of the fixed interest rate β, for some positive , 
and for the age parameter in the following tables (t

τ,0t
0 is given in years).  Also, suppose 

that the constant parameters of Gompertz’s low are:  w = 10-4, c = 1.1.  Table 1 
presents the results for the European put option defined on pure endowment 
insurance, i.e. formulas (4), (9) and Table 2 presents the results for the American put 
option defined on risk insurance, i.e. formulas (11), (12). 
 
Table 1 outlines the prices of the European put option defined on pure endowment 
insurance and the sensitivity to the constant parameters.  As mentioned in Section 2, 

the strike price for this option on the exercise date is , meaning that the present 

value of the gain from exercising is 

0tBeβ
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⎡ − )( 000 tXtt eeBE θδβ .  We can look, for 

example, at the first case, where the constants are ,01.0,03.0 == τβ  t0 = 5.  Note 
that assuming 03.0=β  is equal to assuming a fixed interest rate of 3.0455% per 
year.  The prices of this option contract in case of the OU process, where the survival 
lifetime is Pr(T > 5) = 1 is $0.0823 and in case of the Vasicek process is $0.0828.  
The price of this option in the exponential case is $0.0782 in the OU process and 
$0.0787 in the Vasicek process.  This means a decline of about 5% of the price of the 
option from the certain lifetime case, and a decline of about 2.2% comparing 
Gompertz’s case with the insured age 30 and 3% to the insured age 40.  Further, note 
that the option holder pays at time zero $0.0782 in the OU process and will receive an 
amount of money with a present value of $0.0823.  This means that the interest rate 
on the investments is 5.24% in case of survival through the exercise date. 
 



 
TABLE 1 
Prices of the European put options on pure endowment insurance: Formulas (4), (9). 
 

   Pr(T > t0)   
 0*te τ−  
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(0.03, 0.01, 5 ) 40
30 0.0782 0.0787 0.0823 0.0828 

0799.0
0813.0  0804.0

0819.0  

(0.03, 0.015, 5 ) 40
30 0.0763 0.0768 0.0823 0.0828 

0799.0
0813.0  0804.0

0819.0  

(0.03, 0.01, 15 ) 40
30 0.1424 0.1431 0.1654 0.1663 

1423.0
1561.0  1430.0

1569.0  

(0.03, 0.015, 15 ) 40
30 0.1321 0.1328 0.1654 0.1663 

1423.0
1561.0  1430.0

1569.0  

(0.03, 0.01, 30 ) 40
30 0.1359 0.1365 0.1835 0.1842 

0840.0
1358.0  0843.0

1363.0  

(0.03, 0.015, 30 ) 40
30 0.1170 0.1175 0.1835 0.1842 

0840.0
1358.0  0843.0

1363.0  

(0.05, 0.01, 5 ) 40
30 0.0008 0.0011 0.0009 0.0012 

0008.0
0008.0  0012.0

0012.0  

(0.05, 0.015, 5 ) 40
30 0.0008 0.0011 0.0009 0.0012 

0008.0
0008.0  0011.0

0012.0  

(0.05, 0.01, 15 ) 40
30 0.0006 0.0011 0.0007 0.0013 

0006.0
0007.0  0011.0

0012.0  

(0.05, 0.015, 15 ) 40
30 0.0006 0.0010 0.0007 0.0013 

0006.0
0007.0  0011.0

0012.0  

(0.05, 0.01, 30 ) 40
30 0.0003 0.0006 0.0004 0.0009 

0002.0
0003.0  0004.0

0006.0  

(0.05, 0.015, 30 ) 40
30 0.0003 0.0006 0.0004 0.0009 

0002.0
0003.0  0004.0

0006.0  

 
Table 2 indicates the prices of the American put option defined on risk insurance.  If 
we take, for example, these constant parameters ,015.0,03.0 == τβ  t0 = 30, we can 
see the prices of this option contract in the case of the OU process of a certain lifetime 
is $4.4297 and in the case of the Vasicek process is $4.2706.  The price of this option 
in the exponential case is $0.0356 in the OU process and $0.0358 in the case of the 
Vasicek process, constituting a tremendous difference between the prices.  This 
difference derives from the lifetime probability of over 30 years.  Additionally 
differences exist between the option prices under the Gomperz low of mortality and 
the exponential case, predominantly due to the lack of memory with regard to the age 
of the insured parties attributed to the exponential lifetime. 



TABLE 2 
Prices of the American put options on risk insurance: Formulas (11), (12). 
 

   Pr(T > t0)   
 0*te τ−  
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(0.03, 0.01, 5 ) 40
30 0.0021 0.0022 0.2211 0.2225 0.0004 

0.0010 
0.0004 
0.0010 

(0.03, 0.015, 5 ) 40
30 0.0032 0.0032 0.2211 0.2225 0.0004 

0.0010 
0.0004 
0.0010 

(0.03, 0.01, 15 ) 40
30 0.0139 0.0140 1.5309 1.5397 0.0026 

0.0064 
0.0026 
0.0065 

(0.03, 0.015, 15 ) 40
30   0.0200 0.0201    1.5309 1.5397 0.0026 

0.0064 
0.0026 
0.0065 

(0.03, 0.01, 30 ) 40
30 0.0356 0.0358 4.2497 4.2706 0.0067 

0.0148 
0.0067 
0.0149 

(0.03, 0.015, 30 ) 40
30 0.0491 0.0493 4.2497 4.2706 0.0067 

0.0148 
0.0067 
0.0149 

(0.05, 0.01, 5 ) 40
30 0.0000 0.0000 0.0037 0.0047 0.0000 

0.0000 
0.0000 
0.0000 

(0.05, 0.015, 5 ) 40
30 0.0001 0.0001 0.0037 0.0047 0.0000 

0.0000 
0.0000 
0.0000 

(0.05, 0.01, 15 ) 40
30 0.0001 0.0002 0.0118 0.0175 0.0000 

0.0001 
0.0000 
0.0001 

(0.05, 0.015, 15 ) 40
30 0.0002 0.0002 0.0118 0.0175 0.0000 

0.0001 
0.0000 
0.0001 

(0.05, 0.01, 30 ) 40
30 0.0002 0.0003 0.0202 0.0338 0.0000 

0.0001 
0.0001 
0.0001 

(0.05, 0.015, 30 ) 40
30 0.0002 0.0004 0.0202 0.0338 0.0000 

0.0001 
0.0001 
0.0001 

 
To conclude, we note that the suggestion of these exotic options could lead insurance 
companies, if we think of them as option writers, to be more involved in the capital 
market, an objective that is very important to all parties involved, particularly in a 
country as small as Israel. 
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