Using expert opinion in actuarial science Why am I the last one?

Michel Jacques Mathieu Pigeon

École d'actuariat Université Laval

41st Actuarial Research Conference, Montréal 2006

Jacques, Pigeon Expert judgemen

Outline

Motivation

The big picture

Toy example

Quick review of multiple experts opinion models

Calibrated models

(ロ) (同) (三) (三)

Rehabilitation costs for mine tailings sites

- Regulators require a rehabilitation plan
- "No" data: 70 catastrophes since 1965, only 23 (non reliable) cost estimates

Motivation

Rehabilitation costs for mine tailings sites

- Regulators require a rehabilitation plan
- "No" data: 70 catastrophes since 1965, only 23 (non reliable) cost estimates
- Third party liability insurance for aviation
 - State airlines are allowed to self insure
 - Cases settled off court: confidentiality

Scarce Data

What can be done?

- Apply rules of thumb
- Do not consider: risk is noninsurable
- Use partial knowledge hidden in someone's head

How to access experts opinion?

- Choice of questions, formulation of questions
- Choice of experts
- Psychological assessment of probabilities
- Multiple experts: aggregation or consensus?

What is the probability that I speak during time slot *i* at ARC 2006?

Time slots {1, ...,67}
Experts: 1 and 2

(二)、(四)、(三)、(三)

Simple models Bayesian models

Simple models

Linear combination of experts' data with

- equal weights
- weights linked to the experts quality
- Caveat
 - Arbitrariness
 - No dependence between experts

Bayesian models

- Error between true value and expert assessment modelled by a (multidimensional) distribution
- Choose a priori distribution for true value
- Use Bayes Theorem

Caveat

Arbitrariness in choice of parameters

//hy? Mendel-Sheridan Model Back to toy example

Why calibration?

- Actuaries would use experts in domains outside their field of knowledge
- How to assess their quality?

Idea

- Ask experts opinion on things you know, but they don't
- Use their answers to assess quality

//hy? Mendel-Sheridan Model Back to toy example

What is the probability that I speak during time slot *i* at ARC 2006?

- ▶ Time slots {1, ...,67}
- Experts: 1 and 2
- Calibrating variables:

//hy? Mendel-Sheridan Model Back to toy example

<

What is the probability that I speak during time slot *i* at ARC 2006?

- ▶ Time slots {1, ...,67}
- Experts: 1 and 2
- Calibrating variables:
 - Number of stays in Montréal last year

//hy? Mendel-Sheridan Model Back to toy example

What is the probability that I speak during time slot *i* at ARC 2006?

- ▶ Time slots {1, ...,67}
- Experts: 1 and 2
- Calibrating variables:
 - Number of stays in Montréal last year
 - Number of emails with Louis Doray last 2 months

Vhy? <mark>/endel-Sheridan Model</mark> 3ack to toy example

Mendel-Sheridan setting

- Calibrating variables: X_j , j = 1, ..., n
- Objective variable: X_{n+1}
- k experts give R quantiles (the same for all experts)

(二)、(四)、(三)、(三)

Vhy? **/endel-Sheridan Model** Back to toy example

Example

Jacques, Pigeon Expert judgemen

Vhy? **/endel-Sheridan Model** Back to toy example

Example

Final True value of X_j is 3

Jacques, Pigeon Expert judgemen

Vhy? **lendel-Sheridan Model** lack to toy example

(a)

Example

$$k = 2, R = 3$$

Expert 1

10% 50% 90 90 10%

- Expert 1
 1
 2
 4

 Expert 2
 1
 2
 4
- True value of X_j is 3
- ► $X_j \in J_{2,3}$: Joint intersection of interquantile intervals

)%

Vhy? **lendel-Sheridan Model** lack to toy example

(a)

Example

$$k = 2, R = 3$$

	10%	50%	90%
Expert 1	1	4	7
Expert 2	1	2	4

- True value of X_j is 3
- ► $X_j \in J_{2,3}$: Joint intersection of interquantile intervals
- ▶ or S_{2,3} = 1

Vhy? **lendel-Sheridan Model** lack to toy example

Example

▶ k = 2, R = 3

	10%	50%	90%
Expert 1	1	4	7
Expert 2	1	2	4

- True value of X_j is 3
- ► $X_j \in J_{2,3}$: Joint intersection of interquantile intervals
- ▶ or S_{2,3} = 1
- Generalized to $J_{m_1,...,m_k}$ and $S_{m_1,...,m_k}$

► Let

$$p_{m_1,m_2,...,m_k} = \mathsf{P}[X_j \in J_{m_1,...,m_k}]$$

measure the (joint) quality of experts (identical for all calibrating variables)

(a)

Philosophy of model

Assume a priori distribution for $p_{m_1,m_2,...,m_k}$ (Dirichlet with parameters $(a_1,...,a_M)$ where $M = (R+1)^k$): f(p)

(二)、(四)、(三)、(三)

Philosophy of model

- ► Assume a priori distribution for $p_{m_1,m_2,...,m_k}$ (Dirichlet with parameters $(a_1,...,a_M)$ where $M = (R+1)^k$): f(p)
- Use Bayes Theorem to incorporate calibration: $f(\rho|S)$ (again Dirichlet, with parameters $(a_1 + S_1, ..., a_M + S_M)$)

Philosophy of model

- Assume a priori distribution for $p_{m_1,m_2,...,m_k}$ (Dirichlet with parameters $(a_1,...,a_M)$ where $M = (R+1)^k$): f(p)
- Use Bayes Theorem to incorporate calibration: f(p|S)(again Dirichlet, with parameters $(a_1 + S_1, ..., a_M + S_M)$)
- Get a predictive distribution for X_{n+1}, f(x_{n+1}|S) by conditioning on the p_{m1,m2},...,m_k:

$$\mathsf{P}[X_{n+1} \in J_{m_1,...,m_k} | S] = \frac{S_{m_1,...,m_k} + a_{m_1,...,m_k}}{n + \sum_j a_j}$$

*W*hy? <mark>Mendel-Sheridan Model</mark> Back to toy example

		10%	50%	90%
Example:	Expert 1	7	35	60
	Expert 2	20	45	63

 X_{n+1} can lie in J_{21} , but cannot lie in J_{23}

Jacques, Pigeon Expert judgement

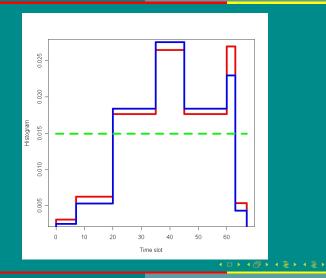
		10%	50%	90%
Example:	Expert 1	7	35	60
	Expert 2	20	45	63

 X_{n+1} can lie in J_{21} , but cannot lie in J_{23}

• Given the experts' quantiles for X_{n+1} , revise distribution to $f(x_{n+1}|S, q)$:

$$\mathsf{P}[X_{n+1} \in J_{m_1,...,m_k} | S,q] = \frac{\mathsf{P}[X_{n+1} \in J_{m_1,...,m_k} | S]}{\sum_{\text{possible } r's} \mathsf{P}[X_{n+1} \in J_{r_1,...,r_k} | S]}$$
if $\neq 0$

(a)


Why? Mendel-Sheridan Model Back to toy example

Results of toy example

Stays	10%	50%	90%
Expert 1	1	4	7
Expert 2	1	2	4
Emails	10%	50%	90%
Expert 1	2	4	10
Expert 2	1	3	5
Time slot	10%	50%	90%
Expert 1	7	35	60
Expert 2	20	45	63

True values: Stays: 3, Emails: 4 ($S_{2,3} = 2$)

Vhy? lendel-Sheridan Model lack to toy example

Jacques, Pigeon

Expert judgement

Summary	

Summary

- Expert opinion could (more or less) replace hard data
- Replace rules of thumb by more scientific approach
- Open new fields for insurers in domains where risks are considered noninsurable

Summary	

Summary

- Expert opinion could (more or less) replace hard data
- Replace rules of thumb by more scientific approach
- Open new fields for insurers in domains where risks are considered noninsurable

Outlook

- Do it for real for mining rehabilitation costs and aviation third party liability
- R package

(Very) Selected Readings

- Roger M. Cooke, *Experts in Uncertainty*, Oxford University Press, 1991.
- A. O'Hagan, "Eliciting expert beliefs in substantial practical applications", *The Statistician*, 47 (1): 21–35, 1998.
- P. H. Garthwaite et al., "Statistical Methods for Eliciting Probability Distributions", *Journal of the American Statistical Association*, 100 (470): 680–700, 2005.