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  An Alternative Approach to Calculation of IBNR 
   Reserve in Health Insurance 
 
 
Recent decades have brought about an increased use of statistical methodologies in 
property/casualty reserving, as an alternative to the deterministic approach of the 
completion factor method. This has also resulted in increased interest in statistical 
methodologies for the purpose of health insurance reserving. For the calculation of the 
incurred but not reported (IBNR) reserves in health insurance, practicing health actuaries 
often rely on a two-step process: first, they calculate completion factors or some other 
deterministic measure of IBNR, and then they complete the IBNR reserve calculation 
with a regression analysis or actuarial judgment on the most recent experience. In this 
work, we investigate the use of a statistical approach to the calculation of IBNR reserve 
directly, and in an integrated fashion, without an intermediate step of deriving the 
completion factors. Our approach allows for an integrated confidence interval estimate 
for IBNR, as well. We illustrate the methodology with a use of a realistic, but 
hypothetical data set, and derive confidence bounds for the IBNR estimate (with the use 
of a Taylor series approximation). 



Introduction 
 
Practicing health actuaries often rely on a traditional completion factor method for the 
calculation of the incurred but not reported (IBNR) reserves in health insurance. This 
traditional methodology, deterministic in nature, uses estimates of completion factors 
derived from historical data, to calculate IBNR reserve as the sum of all ultimate amounts 
to be paid for yet uncompleted claims, minus amounts already paid on those claims. 
Claims are generally grouped by months, and estimates are made on per-month-per-
member (PMPM) basis. This methodology is presented and explained, for example, by 
Bornhuetter and Ferguson (1972), Fearrington and Lynch (2004), Lloyd (2005), and 
Sutton and Sorbo (1987) (this paper provides an excellent review of the most commonly 
used practical approach). We should note that this methodology is also used in 
property/casualty reserving, commonly referred to as chain-ladder method, with 
completion factors replaced by development factors.  
 
The deterministic completion factor method has come under some criticism, for example 
by Barnett and Zehnwirth (2000), but especially Lynch (2004). Such criticism points out 
that the approach of using some form of weighted-average of historical completion 
factors as the current completion factor is not grounded in any statistical or scientific 
methodology, but rather in convenient approximation. Any problems with the 
approximation are often believed to be alleviated by the necessary process of adjustment 
over time, as claims are paid and completed. The passage of the Sarbanes-Oxley Act of 
2002 made this issue even more significant, as the objections to the traditional approach 
often originate in observed volatility of estimates of completion factors, and such 
volatility may lead to wide swings in reported reserves, resulting in an appearance of 
non-compliance with the provisions of the Sarbanes-Oxley Act, which require 
certification of the financial statement by a firm’s management.  
 
Over the recent decades, there have been significant inroads made into the possible 
applications of statistical methodologies in IBNR reserving. They have been, generally, 
limited to property/casualty insurance. Zehnwirth (1994, 1996) and Mosley (2004) are 
notable entries in the body of actuarial literature on this subject. In this work, we 
investigate a possible new approach to statistical estimation of IBNR, and its practical 
implications. 
 
IBNR reserves are the largest item in the liability portion of a health insurance company 
financial statement, and their estimation is a key task of the valuation actuary. IBNR 
reserve equals the difference between the projected total amounts of claims to be paid 
(often referred to as incurred claims), for claims not yet paid in full, and the total of all 
payments already made on those claims. In the completion factor method, an actuary 
estimates the percentage of the projected total amount to be paid that the amount already 
paid represents, and uses that estimate to derive IBNR. The estimate is done for each 
claim month, in aggregate, on a PMPM basis. In this work, we propose instead to 
estimate the entire amount yet unpaid (i.e., the entire IBNR reserve) in one combined 
process. Let us present the underlying statistical methodology proposed. 
 



1. Statistical approach to IBNR 
 
One of the drawbacks of the traditional chain ladder method of calculating IBNR is that it 
is not possible to invoke statistical arguments directly to estimate the errors in the 
calculated IBNR values. We consider a method of estimating IBNR using a parametric 
statistical model building approach. We use monthly claim PMPM values, and not the 
cumulative paid values. Let ( ),Y i t be the PMPM amount for the claim incurred in the 
month i  and reported in the month t,  with 1,2, ,i n= …  and 1,2, , .t n= …  If all the data 
values are available then this produces a square array of data. But in actuarial practice, 
only the upper triangle of the data is available to the actuary, and the IBNR estimate is 
the sum of the values in the yet unknown triangle. The available set of data, also forming 
a triangle, will be called the claim triangle. The task of the actuary is to estimate the 
missing values in the square array using the values in the claim triangle, and report the 
cumulative IBNR. 
 
The method we propose uses the historical data in the near history as well as the claim 
triangle for the present year to estimate the IBNR values. We illustrate our methodology 
with a specific data set created for this research, but based on a realistic data. Table 1 
presents the data. The rows in Table 1 show the process of completion (also called 
development in property-casualty reserving) of the claims originating in the month, for 
which the row is created, while the columns represent subsequent months of completion. 
The process of completion is done in the first two years (2001 and 2002), and the data is 
shaped into a triangle for the last year (2003). The amounts given are actual amounts paid 
in a given month of completion for a specified claim month, not the cumulative amounts. 
In particular, there are some months where the amounts paid are negative – these 
represent adjustments, or third party recoveries for claims where previous payments have 
turned out to be excessive.  
 
The methodology we propose is general in nature, and applicable even in the case when 
no completed claims are available and one has to work only with an incomplete data 
triangle. 
 

Table 1 
 0 1 2 3 4 5 6 7 8 9 10 11 12

0 180 436082 933353 116978 42681 41458.5 5088 22566 4750.5 3280.5 -187.5 1464 1696.5
1 5161.68 940722 561967 21694.4 171659 11007.8 19088 5212.94 4337.08 7843.52 2972.79 4061.21 10235.9
2 42263.5 844293 720302 94633.8 182077 32215.8 12936.9 22815 1754.41 4695.1 1325.66 757.52 2177.11
3 20780.6 762302 394625 78043 157950 46173.2 126254 4838.86 336.5 1572.86 9572.67 1947.42 5936.67
4 20345.9 772404 392330 315888 39196.7 21360.4 8720.76 5452.19 16627.4 2117.83 4119.37 5666.43 -1977.1
5 20490.7 831793 738087 65525.9 27767.9 12184.6 1493.28 11265 1805.47 29278.1 13019.7 2966.56 -83.05
6 37954.5 1126675 360514 89316.7 40126 16576.2 16701.4 2443.54 8265.69 11310.5 8006.03 1403.37 3123.59
7 138558 806362 589304 273117 36912.5 16831.5 19941.2 13310.2 8619.23 4678.52 3094.16 4608.62 236.1
8 28331.7 954543 246571 205528 60060.2 15198.5 42208 17568.2 1685.95 9897.12 3367.21 2062.16 421.49
9 104160 704796 565939 323789 45307.3 32517.9 26226.7 7976.11 3363.65 991.52 33962.8 2199.55 1292.75

10 40746.9 927158 425794 146145 66663.3 31214.1 12807.6 15858.6 373.68 3079.32 411.52 936.57 1874.71
11 10860.8 847338 272165 134798 71804.3 27800.1 17917 3929.79 2793.64 846.17 1961.73 1879.33 16059.9



 
We also present a scatterplot of the data in Figure 1. 
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12 77938.2 896195 544372 173606 41595.4 4209.16 16473.3 756000 -65.62 -1880.5 -4053.9 84232.7 4920.96
13 38041.4 1035439 438153 115587 12488.7 22260.1 13203.1 6394.65 2056.12 -3323.4 33397.4 3478.9 -1624.7
14 39409.5 1022024 255002 169881 35230.1 40307.5 21067.2 5377.81 5508.42 17606.1 -24320 1298.16 1362.02
15 68252.7 1414379 317110 91880.3 53969.6 10887.9 3170.9 11659.6 20860.7 1033.06 -21670 2633.57 148.7
16 124824 1053972 516876 145954 25171.2 12608.9 7704.25 29632.9 4555.18 6203.3 3872.11 1115.66 665.74
17 49725.3 1119099 533444 80181.9 32202.9 23204.7 18806.7 7944.07 4151.88 -910.3 3663.86 608.33 528
18 44317.5 1297335 385789 141155 150726 35075.2 16176.1 8070.24 67.03 14216.6 2325.84 7090.56 687.22
19 134152 1111151 493175 101439 46656.6 22824.1 12818.3 3780.94 1265.42 2466.91 -62165 246.82 -8689.3
20 29968.2 1382043 178587 71030.3 25708.1 15068.3 3145.03 -4058.2 -1919.6 4984.06 -1523 -3538.9 -477.91
21 210377 999963 528880 201410 58003 26174.1 -9371.4 2016.79 9794.64 6688.15 -40.13 453.36 -73.44
22 56654.4 1206370 376504 56321.8 19590.5 12054.8 21076.9 11572.8 4038.96 821.64 6611.88 -9677.9 714.96
23 89180.6 1240938 279553 57163.5 75343.9 12665 71741.4 9048.55 1297.94 12164.4 19615.6 -4603.9 -3183.9
24 131568 1301927 716180 150253 110031 78147.5 4609.85 19855 18447.7 14432.4 118.97 2747.78  
25 76262 1130312 692736 174283 38890.6 41810.9 8834.16 18122.5 4268.11 -290.76 2119.3   
26 159575 1313809 704116 68411.5 30184.6 64401.6 19228.7 -3020.5 3220.03 1994.04    
27 76312.7 1505842 437084 50872.4 116723 18159.6 10974.7 12663.7 8804.83     
28 104028 1667823 360676 153274 37529.2 34840 17479.1 9373.82      
29 79687.9 1235573 776240 65302.8 18722.7 10778.6 10614.6       
30 76394.6 1689354 442965 234171 36806.5 22351.3        
31 110460 1492980 589184 93366.4 180095         
32 196687 2011979 313416 166839          
33 268365 1027925 897097           
34 58510.1 1225307            
35 96378.3             



This plot indicates an outlier (marked with an arrow) in the data set. We have identified 
this to the observation corresponding to the claim month i = 13 and the month of 
development t = 8. The plot also indicates that the variable i  has almost no effect on the 
response (dependent) variable Y, and the relationship between Y and t suggests an 
exponential function. However, fitting an exponential model poses a difficulty because 
some of the observations on the response variable are negative, and that is an 
impossibility if Y is a result of applying an exponential function to a real number. In order 
to make an exponential model feasible, we have decided to add an appropriately large 
positive number to all observations. At the end we will subtract this value form the 
estimates so that the estimates are not inflated. The largest negative value of Y is –62,165, 
and we have added 62,170 to all the observations. After this transformation, we conclude 
that the lowest observation of the response variable is a clear outlier in the data. In the 
Figure 2 below, we indicate this outlier with an arrow, although the small value of the 
response variable, i.e., 5, makes the point somewhat difficult to notice. 
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Figure 3 represents another view of the data, to indicate the second outlier, which we had 
noted earlier. 
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We have decided to remove these two clearly visible outliers from further analysis. The 
initial model we tested was: 

  lnY = β0 + β1i + β2t + ε ,  
i.e., a basic exponential model. But we also considered several refinements of this model, 
and after analyzing their fit, and the residuals and finally we found that the following 
model is satisfactory in describing the data:  

  lnY = β0 + β1i + β2t + β3t
2 + β4 ln t + ε.  

We have obtained the following specific results with this model. The regression equation 
is 
   lnY = 14.2 + 0.00431i + 2.33t + 0.0918t2 + 4.19ln t.    (1) 
We have used 388 data points, with two outliers removed. 
 

 Coefficient  Standard Error  t-value       p-value 
Constant     14.2018     0.1076    132.05   0.000 
i   0.004310   0.002728      1.58    0.115 
t            –2.2330     0.1062    –21.02   0.000 
  t2   0.091842   0.004712     19.49    0.000 
  ln t     4.1909     0.2299     18.23    0.000 
 
For the whole model, we get the following values: 



S = 0.476721  
R-Square = 74.70%    
Adjusted R-Square = 74.50% 
 
Analysis of Variance 
 
Source             DF       SS        MS        F-value       p-value 
Regression        4   257.235   64.309   282.97   0.000 
Residual Error   383    87.042    0.227 
Total             387   344.277 
 
As we have guessed by observing the 3-D scatter-plot, the independent variable i  is not 
significant and all the variables t,  t 2 ,  and ln t  are statistically significant. Given this 
situation, even though the variable i  is not statistically significant, for practical reasons 
we decided to keep this variable in the model. 
 
Figure 4 shows the normal probability plot of residuals along with a p-value, for testing 
for normality of the residuals using the Shapero-Wilk test. 
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The p-value is 0.038 is not ideal, but we consider it acceptable. It is possible to achieve 
higher a p-value for testing for normality by removing other observations. We have 
decided that this level is satisfactory since the graph shows a very good linear pattern. 
 



Estimated total IBNR values for each yet incomplete month, using our model after 
subtracting 62,170, are as follows: 
 

         Table 2 
IBNR = sum of 
41692 1-estimate 
49998 2-estimates 
43686 3-estimates 
32832 4-estimates 
24823 5-estimates 
27641 6-estimates 
52977 7-estimates 
120543 8-estimates 
263819 9-estimates 
531469 10-estimates 
955589 11-estimates 
1421315 12-estimates 

 
Note that the last value is a sum of 12 estimates and the first value is just one observation. 
Note also that these estimates are maximum likelihood estimates and the underlying 
distribution is a log-normal distribution. More precisely  

( )2ˆln , ,T
iN lθ β σ⋅
G G

∼  

where 
ˆˆ ,T

ile βθ ⋅=
GG

 and β̂
G

 is the vector of regression parameter estimates from our 
model  
(1), while T

il
G

is a vector of appropriate constants that gives particular estimates. The 

vector T
il
G

 is calculated as follows: each of the IBNR estimates in Table-2 is a sum of two 
or more individual predicted values except the first, and any of the estimated predicted 

values from a multiple linear regression model can be written as ˆT
il β
GG

 for some known 

vector .T
il
G

 
 
In order to obtain an estimate of the entire IBNR, we suppose that the corresponding 
vectors are 1 2, kl l l

G G G
" and the sum of the estimates is 

1 2
ˆ ˆ ˆ ˆ,T T T T

kl l l uβ β β β⋅ + ⋅ + + ⋅ = ⋅
G G G GG G G G"  

where 

1 2 .ku l l l= + + +
G G GG "  

The variance of this sum is  

( ) ( ) 1 2ˆVar ,T T Tu u X X uβ σ
−

=
GG G G  

and any standard statistical computer package will produce the standard error of this 
estimate. But in our situation we have to estimate the variance of a quantity like  



1 2 ,kAA AW e e e= + + +"  

where each  Ai  is a predicted value from the regression model and is of the form ˆ.T
il β⋅
GG

 
To develop a variance estimate, we use the Taylor series expansion of W about the vector 
of the means of the random variables 1 2, , , kA A A…  to get the following: 
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 ( )
1

Var Var i

k

i
i

W e Aμ

=

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠
∑  

and if   μi 's  are known then  

1 1

ˆ ˆi

k k
T T

i i
i i

e A m mμ β β
= =

= ⋅ = ⋅∑ ∑
G GG G  

where i
i im e lμ=

GG  and 
1

.
k

i
i

m m
=

= ∑G G  We proceed to estimate the variance of W as follows. We 

begin by getting the estimates of ˆˆ T
i ilμ β= ⋅

GG
 for 1, 2, , .i k= …  Then we calculate the 

vector ˆ

1
.i

k

i
i

m e lμ

=

= ∑
GG  Finally, an estimate of Var W( ) is  

 ( )n ( ) 1
Var ,T TW m X X m MSE

−
= ⋅
G G  

where X is the design matrix and MSE is the mean square error of the regression model.  
 
In order to get an approximate confidence interval for IBNR, we use the critical values 
from the standard normal distribution. Since our estimates are maximum-likelihood 
estimates, and are asymptotically normal, the error in using standard normal critical 
values is minimal. Thus for each IBNR estimate W, an approximate 100(1−α )%  
confidence interval for IBNR is 

l ( )n
/ 2 Var .W z Wα±  

Table 3 below gives the estimates and approximate 95% confidence intervals for the total 
IBNR: 
 
 
 
 
 
 
 
 
 

 



Table 3 

IBNR 
Margin 
of Error

Lower 
Bound 

Upper 
Bound 

41692 6602.131 35089.87 48294.13
49998 7656.956 42341.04 57654.96
43686 7352.862 36333.14 51038.86
32832 7108.382 25723.62 39940.38
24823 6911.282 17911.72 31734.28
27641 7406.455 20234.54 35047.46
52977 8020.362 44956.64 60997.36
120543 13117.34 107425.7 133660.3
263819 28647.66 235171.3 292466.7
531469 61178.87 470290.1 592647.9
955589 116865 838724 1072454

1421315 178945.6 1242369 1600261
3566384 417530.3 3148854 3983914

 
The first column is the total IBNR estimate, the second one is an amount added or 
subtracted to reach the bounds of the confidence interval, and the lower and upper bounds 
are given in the last two columns. 
Note that the last row gives an estimate of the total IBNR and a confidence interval. 
 
 
2. PMPM calculation 
We can use an analogous statistical approach for the paid PMPM data to calculate 
approximate 95% confidence interval for the total IBNR. Table 4 presents the paid 
PMPM data. 
 

Table 4 
        
-      

          1              2              3              
4    

          
5    

          
6    

          
7    

          
8    

          
9    

        
10    

        
11    

        
12    

0.02 39.10 83.68 10.49 3.83 3.72 0.46 2.02 0.43 0.29 -0.02 0.13 0.15 
0.46 84.61 50.55 1.95 15.44 0.99 1.72 0.47 0.39 0.71 0.27 0.37 0.92 
3.82 76.27 65.07 8.55 16.45 2.91 1.17 2.06 0.16 0.42 0.12 0.07 0.20 
1.88 68.87 35.65 7.05 14.27 4.17 11.41 0.44 0.03 0.14 0.86 0.18 0.54 
1.83 69.40 35.25 28.38 3.52 1.92 0.78 0.49 1.49 0.19 0.37 0.51 -0.18 
1.83 74.44 66.05 5.86 2.49 1.09 0.13 1.01 0.16 2.62 1.17 0.27 -0.01 
3.39 100.78 32.25 7.99 3.59 1.48 1.49 0.22 0.74 1.01 0.72 0.13 0.28 

12.13 70.61 51.60 23.92 3.23 1.47 1.75 1.17 0.75 0.41 0.27 0.40 0.02 
2.49 83.73 21.63 18.03 5.27 1.33 3.70 1.54 0.15 0.87 0.30 0.18 0.04 
9.09 61.52 49.40 28.26 3.95 2.84 2.29 0.70 0.29 0.09 2.96 0.19 0.11 
3.56 81.02 37.21 12.77 5.83 2.73 1.12 1.39 0.03 0.27 0.04 0.08 0.16 
0.94 73.33 23.55 11.67 6.21 2.41 1.55 0.34 0.24 0.07 0.17 0.16 1.39 
6.66 76.57 46.51 14.83 3.55 0.36 1.41 0.51 -0.01 -0.16 -0.35 7.20 0.42 
3.22 87.58 37.06 9.78 1.06 1.88 1.12 0.54 0.17 -0.28 2.82 0.29 -0.14 
3.35 86.96 21.70 14.45 3.00 3.43 1.79 0.46 0.47 1.50 -2.07 0.11 0.12 
5.86 121.36 27.21 7.88 4.63 0.93 0.27 1.00 1.79 0.09 -1.86 0.23 0.01 

10.67 90.06 44.17 12.47 2.15 1.08 0.66 2.53 0.39 0.53 0.33 0.10 0.06 
4.29 96.64 46.07 6.92 2.78 2.00 1.62 0.69 0.36 -0.08 0.32 0.05 0.05 



3.83 112.06 33.32 12.19 13.02 3.03 1.40 0.70 0.01 1.23 0.20 0.61 0.06 
11.51 95.34 42.31 8.70 4.00 1.96 1.10 0.32 0.11 0.21 -5.33 0.02 -0.75 

2.55 117.77 15.22 6.05 2.19 1.28 0.27 -0.35 -0.16 0.42 -0.13 -0.30 -0.04 
17.70 84.11 44.48 16.94 4.88 2.20 -0.79 0.17 0.82 0.56 0.00 0.04 -0.01 

4.74 100.94 31.50 4.71 1.64 1.01 1.76 0.97 0.34 0.07 0.55 -0.81 0.06 
7.35 102.29 23.04 4.71 6.21 1.04 5.91 0.75 0.11 1.00 1.62 -0.38 -0.26 

10.76 106.48 58.57 12.29 9.00 6.39 0.38 1.62 1.51 1.18 0.01 0.22 0.0891 
6.25 92.64 56.78 14.28 3.19 3.43 0.72 1.49 0.35 -0.02 0.17 0.1486 0.0895 

13.16 108.31 58.05 5.64 2.49 5.31 1.59 -0.25 0.27 0.16 0.2462 0.1492 0.0898 
6.37 125.63 36.47 4.24 9.74 1.52 0.92 1.06 0.73 0.4045 0.2472 0.1498 0.0902 
8.72 139.84 30.24 12.85 3.15 2.92 1.47 0.79 0.6582 0.4061 0.2482 0.1504 0.0906 
6.75 104.59 65.71 5.53 1.58 0.91 0.90 1.0584 0.6609 0.4078 0.2492 0.151 0.0909 
6.48 143.32 37.58 19.87 3.12 1.90 1.6763 1.0627 0.6636 0.4094 0.2502 0.1516 0.0913 
9.45 127.73 50.41 7.99 15.41 2.6025 1.6831 1.067 0.6663 0.4111 0.2512 0.1523 0.0917 

16.77 171.51 26.72 14.22 3.9322 2.6131 1.6899 1.0714 0.669 0.4128 0.2522 0.1529 0.092 
22.66 86.80 75.75 5.7121 3.9482 2.6236 1.6967 1.0757 0.6717 0.4144 0.2532 0.1535 0.0924 

4.92 102.95 77.1406 5.7352 3.9642 2.6343 1.7036 1.0801 0.6744 0.4161 0.2543 0.1541 0.0928 
8.14 40.3386 77.4531 5.7584 3.9802 2.6449 1.7105 1.0844 0.6771 0.4178 0.2553 0.1547 0.0932 

 
There are again negative values in the PMPM data. We present the data in a three-
dimensional scatterplot below. 
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This graph shows a gamma function pattern. But there are negative values in the data. 
The distribution of these values cannot be explained by a pattern of a gamma function. 
We have decided to analyze the positive values only and fit a gamma function to the data. 



Below we show a three-dimensional scatter plot of the natural logarithm of only positive 
values of PMPM values against i and t. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Regression analysis 
We use the following model, with the dependent variable LGYPOS defined as the natural 
logarithm of those values of PMPM that are positive (and only those historical values for 
which PMPM is positive are used to develop the model) 
 LGYPOS = 2.77 + 0.00375i − 0.719t +1.48 ln t + 3.03INDLGT . 
The variable IND3LGT is defined as the natural logarithm of if t is less than or equal to 
3, and 0 otherwise. We used 360 cases of data, with 30 cases involving missing values. 
Results are summarized below: 
 
Predictor       Coef     SE of Coef       t-statistic      p-value 
Constant      2.7725     0.1846    15.02   0.000 
i   0.003752   0.005861     0.64    0.523 
t         –0.71939    0.04305   –16.71   0.000 
lnt           1.4830     0.2062     7.19    0.000 
INDLGT        3.0311    0.2764    10.97    0.000 
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3D Scatterplot of LGYPOS vs i vs t



S = 0.989331    
R-Sq = 78.9%    
R-Sq(adj) = 78.7% 
 
Analysis of Variance 
Source             Degrees of Freedom   SS        MS       F-statistic       p-value 
Regression         4     1303.06   325.76  332.83   0.000 
Residual Error   355      347.47     0.98 
Total             359     1650.52 
 
Below we present the residual plot corresponding to the above regression calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Normal probability plot of the residuals is given below. 
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We present the PMPM table with projected values filled in below 
 
     0           1              2             3             4           5           6           7           8           9          10          11         12   

0.02 39.10 83.68 10.49 3.83 3.72 0.46 2.02 0.43 0.29 -0.02 0.13 0.15 
0.46 84.61 50.55 1.95 15.44 0.99 1.72 0.47 0.39 0.71 0.27 0.37 0.92 
3.82 76.27 65.07 8.55 16.45 2.91 1.17 2.06 0.16 0.42 0.12 0.07 0.20 
1.88 68.87 35.65 7.05 14.27 4.17 11.41 0.44 0.03 0.14 0.86 0.18 0.54 
1.83 69.40 35.25 28.38 3.52 1.92 0.78 0.49 1.49 0.19 0.37 0.51 -0.18 
1.83 74.44 66.05 5.86 2.49 1.09 0.13 1.01 0.16 2.62 1.17 0.27 -0.01 
3.39 100.78 32.25 7.99 3.59 1.48 1.49 0.22 0.74 1.01 0.72 0.13 0.28 

12.13 70.61 51.60 23.92 3.23 1.47 1.75 1.17 0.75 0.41 0.27 0.40 0.02 
2.49 83.73 21.63 18.03 5.27 1.33 3.70 1.54 0.15 0.87 0.30 0.18 0.04 
9.09 61.52 49.40 28.26 3.95 2.84 2.29 0.70 0.29 0.09 2.96 0.19 0.11 
3.56 81.02 37.21 12.77 5.83 2.73 1.12 1.39 0.03 0.27 0.04 0.08 0.16 
0.94 73.33 23.55 11.67 6.21 2.41 1.55 0.34 0.24 0.07 0.17 0.16 1.39 
6.66 76.57 46.51 14.83 3.55 0.36 1.41 0.51 -0.01 -0.16 -0.35 7.20 0.42 
3.22 87.58 37.06 9.78 1.06 1.88 1.12 0.54 0.17 -0.28 2.82 0.29 -0.14 
3.35 86.96 21.70 14.45 3.00 3.43 1.79 0.46 0.47 1.50 -2.07 0.11 0.12 
5.86 121.36 27.21 7.88 4.63 0.93 0.27 1.00 1.79 0.09 -1.86 0.23 0.01 

10.67 90.06 44.17 12.47 2.15 1.08 0.66 2.53 0.39 0.53 0.33 0.10 0.06 
4.29 96.64 46.07 6.92 2.78 2.00 1.62 0.69 0.36 -0.08 0.32 0.05 0.05 
3.83 112.06 33.32 12.19 13.02 3.03 1.40 0.70 0.01 1.23 0.20 0.61 0.06 

11.51 95.34 42.31 8.70 4.00 1.96 1.10 0.32 0.11 0.21 -5.33 0.02 -0.75 
2.55 117.77 15.22 6.05 2.19 1.28 0.27 -0.35 -0.16 0.42 -0.13 -0.30 -0.04 

17.70 84.11 44.48 16.94 4.88 2.20 -0.79 0.17 0.82 0.56 0.00 0.04 -0.01 
4.74 100.94 31.50 4.71 1.64 1.01 1.76 0.97 0.34 0.07 0.55 -0.81 0.06 
7.35 102.29 23.04 4.71 6.21 1.04 5.91 0.75 0.11 1.00 1.62 -0.38 -0.26 

10.76 106.48 58.57 12.29 9.00 6.39 0.38 1.62 1.51 1.18 0.01 0.22 0.0891 
6.25 92.64 56.78 14.28 3.19 3.43 0.72 1.49 0.35 -0.02 0.17 0.1486 0.0895 

13.16 108.31 58.05 5.64 2.49 5.31 1.59 -0.25 0.27 0.16 0.2462 0.1492 0.0898 
6.37 125.63 36.47 4.24 9.74 1.52 0.92 1.06 0.73 0.4045 0.2472 0.1498 0.0902 
8.72 139.84 30.24 12.85 3.15 2.92 1.47 0.79 0.6582 0.4061 0.2482 0.1504 0.0906 
6.75 104.59 65.71 5.53 1.58 0.91 0.90 1.0584 0.6609 0.4078 0.2492 0.151 0.0909 
6.48 143.32 37.58 19.87 3.12 1.90 1.6763 1.0627 0.6636 0.4094 0.2502 0.1516 0.0913 
9.45 127.73 50.41 7.99 15.41 2.6025 1.6831 1.067 0.6663 0.4111 0.2512 0.1523 0.0917 

16.77 171.51 26.72 14.22 3.9322 2.6131 1.6899 1.0714 0.669 0.4128 0.2522 0.1529 0.092 
22.66 86.80 75.75 5.7121 3.9482 2.6236 1.6967 1.0757 0.6717 0.4144 0.2532 0.1535 0.0924 

4.92 102.95 77.1406 5.7352 3.9642 2.6343 1.7036 1.0801 0.6744 0.4161 0.2543 0.1541 0.0928 
8.14 40.3386 77.4531 5.7584 3.9802 2.6449 1.7105 1.0844 0.6771 0.4178 0.2553 0.1547 0.0932 

 
The following table shows the estimated yet unpaid PMPM values from the model, 
number of members and the estimated IBNR values. 



 
Est. PMPM Members IBNR 

$0.09 12,227 1089.426
$0.24 12,201 2905.058
$0.49 12,130 5885.476
$0.89 11,986 10687.92
$1.55 11,927 18528.59
$2.62 11,814 30931.41
$4.31 11,787 50744.21
$6.93 11,689 80948.66

$10.89 11,731 127697.8
$16.64 11,843 197085.3
$93.85 11,902 1116999

$134.57 11,844 1593826
 
The estimated total IBNR is $3237329.00 and the standard error of the estimate is 
853191.7 and an approximate 95% confidence interval for the total IBNR is  
[$2384137.00, $4090520.00]. 
 
 
Conclusions 
The approach we propose in this work uses a multivariate regression model to calculate 
IBNR for a set of health insurance data. The approach proposed by us produces an 
integrated IBNR estimate, as well as a unified confidence interval for the entire IBNR. 
The approach makes it also possible to produce confidence intervals for each incomplete 
month separately. The statistical methodology proposed is a standard statistical 
procedure, but our approach in using it for an IBNR estimate is innovative. Let us also 
note that the model can be generalized to include additional factors, such as the number 
of days or working days in a month (by dividing the data by the number of effective work 
days in a month). 
 
 
References 
 
Barnett Glen, and Ben Zehnwirth, "Best Estimates for Reserves," Proceedings of the 
Casualty Actuarial Society 87, Part 2, No. 167, November 12-15, 2000, pp. 245-321. 
Available online at: http://www.casact.org/pubs/proceed/proceed00/00245.pdf   
 
Belsey, David A., Kuh Edwin, and Welsch, Regression Diagnostics; Identifying 
Influential Data and Sources of Collinearity, John Wiley, New York, 1980 
 
Bornhuetter, and Ferguson "The Actuary and IBNR" Proceedings of the Casualty 
Actuarial Society, vol. 59, No. 112, 1972. 
 
Fearrington, Doug and Robert Lynch, “Approaches to Determining Unpaid Claim 
Liabilities: Old and New,” The Records of the Society of Actuaries, Valuation Actuary 
Symposium, Boston, Massachusetts, September 20-21, 2004, Session 39TS. 



 
Little, R. J. A. and Rubin, D. B., Statistical Analysis with Missing Data, John Wiley, New 
York, 1987. 
 
Lloyd, John C., “Health Reserves”, Society of Actuaries Study Note 8GM-305-00, Society 
of Actuaries, Schaumburg, Illinois, 2005. 
 
Lynch, Robert G., “Gerbils on Espresso: A Better Way to Calculate IBNR Reserves with 
Low Variance,” Contingencies, January-February 2004, pp. 28-38. 
 
Mosley, Roosevelt C., “Estimating Claim Settlement Values Using GLM,” Casualty 
Actuarial Society, Discussion Paper Program - Applying and Evaluating Generalized 
Linear Models Including Research Papers on the Valuation of P&C Insurance 
Companies, 2004.  
Available online at: http://www.casact.org/pubs/dpp/dpp04/ 
 
Pindyck, R. S. and Rubinfeld, D. L., Econometric Models and Economic Forecasts, 
Fourth Edition, Irwin McGraw-Hill, New York, 1998. 
 
Rubin, D. B., Multiple Imputations for Non-Response in Surveys, John Wiley, New York, 
1986 
 
Sen Ashis and Srivastava Muni, Regression Analysis: Theory, Methods, and 
Applications, Springer-Verlag, New York, 1990. 
 
Sutton, Harry L. and Sorbo, Allen J., Actuarial Issues in the Fee-For-Service/Prepaid 
Medical Group, Center for Research in Ambulatory Health Care Administration, Denver, 
Colorado, 1987, pages 62-67. 
 
Zehnwirth, Ben, "Probabilistic Development Factor Models with Applications to Loss 
Reserve Variability, Prediction Intervals, and Risk Based Capital," Casualty Actuarial 
Society Forum 1994, pp. 510-605.  
Available online at: http://www.casact.org/pubs/forum/94spforum/94spf447.pdf  
 
Zehnwirth, Ben, "Three Powerful Diagnostic Models for Loss Reserving," University of 
Melbourne, Centre for Actuarial Studies, Australia, Working Paper Series, 1996. 
Available online at: http://www.economics.unimelb.edu.au/actwww/No34.pdf  
 


