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For the calculation of the incurred but not reported (IBNR) reserves in health insurance, 
practicing health actuaries often rely on a two-step process: first, they calculate IBNR 
using completion factors or some other deterministic measure of IBNR, and then they 
complete the IBNR reserve calculation with a regression analysis or actuarial judgment, 
or both, on the most recent experience. In this work, we discuss areas where actuarial 
judgment needs to be used, even with the application of statistical methods for the 
calculation of IBNR.  Actuarial judgment needs to be used since the prediction of IBNR 
for months with the most unpaid claims has the most uncertainty.  We give a detailed 
example of combining statistical analysis and actuarial judgment in the calculation of 
IBNR. 
 
 
Introduction 
 
This document is based on research of the authors for the Society of Actuaries on 
statistical methods for health actuaries.  It is also based on a Case Study for the Society of 
Actuaries’ Course 7. 
 
Estimates of unknown values that actuaries make include: 
 

• unpaid claims liability; 
• premiums. 

 
In this document, we show how to use statistical methods to estimate unknown values 
and create prediction intervals in the context of setting reserves for health (other than 
disability) insurance claims that have been incurred but not reported (IBNR). 
  
Two general approaches used in developing estimates and prediction intervals are: 
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• Statistical methods - For instance, a regression analysis might be applied to 
estimate a range for the value of claims liability. 

 
• Additional knowledge of factors exogenous to the statistical method - For 

instance, the range calculated statistically might be adjusted to reflect a known 
change in benefit plan design. 

 
It is possible to use both approaches on the same problem.  It is important that an actuary 
have a framework for combining both approaches – calculating the statistically “best” 
estimate under a given set of circumstances and recognizing the limitations to the 
statistical method selected, and adjusting the estimate accordingly based upon specific 
knowledge of elements outside the scope of the statistical methods.  
 
This document is organized into the following sections: 

• Section 1: Overview of Health Care Liabilities and Introduction to the 
Completion Factor Method 

• Section 2: The Completion Factor Method Using Medical Insurance Data 
• Section 3: Regression Analysis for Recent Months 
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Section 1 - Overview of Health Care Liabilities and Introduction to the Completion 
Factor Method 
 
In this section, we give an overview of health care liabilities and a description of one of 
the well-known methods for computing the health plan liability, the completion factor 
method. 
 
This section is organized as follows: 
 

1. Overview of health care liabilities 
2. Introduction to the completion factor method 

 
1.1 Overview of Health Care Liabilities 
 
1.1.1 Definitions 
 
We will refer to the insured under a health insurance contract under consideration as the 
member of the health insurance plan.  Members seeking medical care incur a cost that 
may be reimbursable by the insurance company (a claim).  The month in which a member 
sees a provider for medical care is called the incurred month. 
 
The amount ultimately paid for claims incurred in a given month is modeled by a process 
called development.  One common method of modeling the development process is called 
the chain ladder method.  This method is parameterized by estimating the ratios of 
amounts paid in consecutive months (development factors) or percentages of ultimate 
cost paid up to a given date (completion factors).  These factors are related to one another 
in a way that will be illustrated in the examples below. 
 
After a claim is incurred, it is submitted to the insurance company.  The month during 
which the claim is reported to the insurance company is called the reported month, and 
the month in which the insurance company pays the claim is called the paid month.  In 
this document, we are only concerned with the incurred and paid months. 
 
The paid month comes after the incurred month, and it can, of course, occur no earlier 
than the incurred month.  (In this document, we are not considering the issue of pre-paid 
medical care, or capitation.)  In a report of paid claims by incurred month, each incurred 
month is given a row and each paid month is given a column.  Only cells in which the 
paid month is equal to or later than the incurred month are non-zero.  Since the non-zero 
values form a triangle, this report is typically called a triangle report. 
 
Lag is the measure of the difference between incurred month and paid month.  For 
instance, a claim that is incurred in July 2005 and paid in July 2005 is defined as being 
paid at lag 0.  A claim that is incurred in July 2005 and paid in August 2005 has a lag of 
1. 
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The process of calculating insurance liabilities is referred to as valuation.  Unless stated 
otherwise, when we are using a month as a valuation date, we are referring to the last day 
of the month, which is the date as of which valuations are usually performed. 
 
1.1.2 Types of Health Reserves 
 
Health (other than disability) insurance reserves may be classified broadly into the 
following categories: 
 
- Policy reserves: amounts necessary for contract obligations created by future claims. 
 
- Expense liabilities: amounts needed to pay loss adjustment expenses, taxes and other 
expenses related to liabilities incurred by the insurer from operations prior to the 
statement date. 
 
- Claims reserves: amounts needed to pay claims already incurred but not yet reported or 
paid. 
 
In this document, we will be concerned with claims reserves only. 
 
U.S. statutory reserving practices for health insurance in general are governed by the 
National Association of Insurance Commissioners’ (NAIC) Model Minimum Reserve 
Standards for Individual and Group Health Insurance.  
 
1.1.3 Claims Reserves 
 
Claims reserves represent the amounts that the insurer expects to pay in the future on 
claims that have been incurred prior to the end of the reporting period.  Claims reserves 
are estimates of the amounts yet to be paid.  Three major types of claims reserves are: 
claims due and unpaid, claims in the course of settlement, and claims that have been 
incurred but not reported.  Claims due and unpaid are usually small and known with 
reasonable precision.  The two other types of claims reserves, either because the amount 
due to the provider of medical care (or policyholder) has not been determined, or because 
the insurance company has no knowledge of the claims yet, produce a significant level of 
uncertainty requiring actuarial analysis.  The classic methodology for estimating health 
claims reserves is similar to the methodology used in property/casualty insurance loss 
reserving.  There are, however, notable differences in the data.  Key differences include 
the following: 
 

• In property/casualty insurance, the policyholder rarely makes a claim.  In 
many types of health insurance, there is a high probability that an individual 
policyholder will make a claim.  Consequently, the number of data points that 
a health insurer must process and manage is staggering compared to the 
number processed and managed by a property/casualty insurer. 
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• Due to the enormous volume of claims, specific details, helpful in determining 
the expected amount of individual claims, are usually not known by the health 
valuation actuary.  The exception to this may be large catastrophic claims, 
such as claims for severe burns and for low weight premature infants. 

 
• An actuary sometimes has knowledge of hospital contracts, which would help 

him/her derive expected payment rates for specific known claims. 
 

• Health insurance claims develop much more quickly than many types of 
casualty claims, such as liability and workers’ compensation.  The 
development of health claims from unknown to known (to the insurer) and 
paid is measured in months.  For some casualty products, the development 
from unknown to known takes years. 

 
1.2 Introduction to the Completion Factor Method 
 
Suppose we know the following about claims incurred in August 2005: 
 

Exhibit 1.1 
Claims Incurred, August 2005 

 
Paid Month Lag Amount Paid

August 2005 0 $2,000 
September 2005 1 1,000 
October 2005 2 1,000 
November 2005 3 400 
December 2005 4 1,100 
Total Incurred  $5,500 

 
In addition, we know that all claims incurred in August 2005 have been paid by the end 
of December 2005.  Based on this information, we can derive development factors and 
completion factors for the month of August 2005 as follows: 
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Exhibit 1.2 
Derivation of Development and Completion Factors 

August 2005 
 

(1) 
 

Lag 

(2) 
Amount 

Paid 

(3) 
Cumulative 

Paid 

(4) 
Development 

Factor 

(5) 
Derivation 

of (4) 

(6) 
Completion 

Factor 

(7) 
Derivation of 

(6) 
0 2,000 2,000   36.4% (1) (3)  Lag 

(0)/(3) Lag 
(4)  

1 1,000 3,000 1.50 (2) (3) Lag 1 ÷ 
(3) Lag 0 

54.5% (3)  Lag 
(1)/(3) Lag 

(4)  
2 1,000 4,000 1.33 (3) Lag 2 ÷ 

(3) Lag 1 
72.7% (3)  Lag 

(2)/(3) Lag 
(4)  

3 400 4,400 1.10 (3) Lag 3 ÷ 
(3) Lag 2 

80.0% (3)  Lag 
(3)/(3) Lag 

(4) 
4 $1,100 $5,500 1.25 (3) Lag 4 ÷ 

(3) Lag 3 
100.0% Assumed 

 
(1) 36.4% = $2,000 / $5,500 
(2) 1.50 = $3,000/$2,000 

 
 
Exhibit 1.2 shows the relationship between development factors and completion factors.  
In short, given an assumption about when claims are complete and a set of development 
factors, one can easily calculate the related completion factors. 
 
Now suppose we have the following information about claims incurred between August 
and December 2005 and paid through the end of December 2005. 
 

Exhibit 1.3a 
Claims Incurred August – December 2005, Paid Through December 2005 

 
Paid Month Incurred 

Month Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 
 

Total 
Aug-05 $2,000 $1,000 $1,000 $400 $1,100 $5,500 
Sep-05  $2,000 1,800 1,400 800 $6,000 
Oct-05  $3,000 3,000 2,000 $8,000 
Nov-05  900 600 $1,500 
Dec-05  $5,000 $5,000 
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Rather than use the row to indicate the incurred month and the column to indicate the 
paid month, it is possible to do the opposite, as in Exhibit 1.3b.  The particular choice 
between the two depends on which seems more intuitive and on the further calculations 
to be performed. 
 

Exhibit 1.3b 
Claims Incurred August – December 2005, Paid Through December 2005 

 
Incurred Month Paid 

Month Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 
Aug-05 $2,000  
Sep-05 1,000 $2,000  
Oct-05 1,000 1,800 $3,000  
Nov-05 400 1,400 3,000 $   900  
Dec-05 1,100 800 2,000 600 $5,000 

Total $5,500 $6,000 $8,000 $1,500 $5,000 
 
Exhibit 1.4 below shows how we can apply the completion factors from Exhibit 1.2 to the 
claims paid to date in Exhibit 1.3a in order to estimate claims reserves for IBNR as of the 
end of December 2005. 
 

Exhibit 1.4 
IBNR Claims Reserves 
As of December 2005 

 
(1) 

Incurred 
Month 

(2) 
Lag Through 

Dec-05 

(3) 
Claims Paid 

Through Dec-05 

(4) 
Completion 

Factor 

(5) = (3) ÷ (4) 
Estimated 
Incurred 

(6) = (5) – (3) 
 

IBNR 
Aug-05 4 $  5,500 100.0% $  5,500 $         - 
Sep-05 3 6,000 80.0% 7,500 1,500 
Oct-05 2 8,000 72.7% 11,000 3,000 
Nov-05 1 1,500 54.5% 2,750 1,250 
Dec-05 0 5,000 36.4% 13,750 8,750 
Total  $26,000  $40,500 $14,500 

 
The completion factors used to calculate IBNR in Exhibit 1.4 are based solely on claims 
incurred in August 2005.  It is clear, however, that every month does not develop in the 
same way.  For example, the lag 1 development factor based on September 2005 data is 
1.90, not 1.50 as we derived for August 2005. 
 
 
As an additional example, if we were to calculate the development factors using data 
from September 2005 only, we would obtain the following development factors, based on 
the data from Exhibit 1.3b: 
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Lag 1 Development Factor = ($2,000 + $1,800) ÷$2,000 = 1.90 
Lag 2 Development Factor = ($2,000 + $1,800 + $1,400) ÷$3,800 = 1.37 
Lag 3 Development Factor = $6,000÷$5,200 = 1.15 

 
Moreover, there is a great deal of information about the development process implicit in 
the development observed through December 2005 of claims incurred during September, 
October November, and December 2005.  The chain ladder method enables us to take 
advantage of this additional information. 
 
Exhibit 1.5 rearranges and calculates the cumulative claims by incurred month and lag 
from the information found in Exhibit 1.3b above. 
 

Exhibit 1.5 
Cumulative Paid Claims by Incurred Month and Lag 

August – December 2005 
 

Incurred Month  
Lag Aug-05 Sep-05 Oct-05 Nov-05 Dec-05 

0 $2,000 $2,000 $3,000 $   900 $5,000 
1 3,000 3,800 6,000 1,500  
2 4,000 5,200 8,000   
3 4,400 6,000    
4 5,500     

 
Exhibit 1.6 below shows an intermediate step in the chain ladder method.  It calculates 
cumulative sums across different combinations of lags and incurred months. 
 

Exhibit 1.6 
Chain Ladder Method 

Intermediate Cumulative Sums 
 

Incurred Months  
Lag Aug-05 Aug-05 - Sep-05 Aug-05 - Oct-05 Aug-05 - Nov-05 

0    $  7,900 
1   $12,800 $14,300 
2  $  9,200 (1) $17,200  
3 $4,400 $10,400 (2)   
4 $5,500    

 
(1) $9,200 = $4,000 + $5,200 
(2) $10,400 = $4,400 + $6,000 

 
Exhibit 1.7 uses the intermediate sums found in Exhibit 1.6 to calculate estimates of the 
development factors based upon the development observed through December 2005 of 
claims incurred between August and December 2005. 
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Exhibit 1.7 

Development Factor Estimates 
Claims Incurred August – December 2005, Paid Through December 2005 

 
Development Factors Based on Incurred Months  

Lag Aug-05 Aug-05 - Sep-05 Aug-05 - Oct-05 Aug-05 - Nov-05 
 

Derivation 
1  1.81 Lag 1 ÷ Lag 0 
2   1.34  Lag 2 ÷ Lag 1 
3  1.13   Lag 3 ÷ Lag 2 
4 1.25    Lag 4 ÷ Lag 3 

 
Finally, Exhibit 1.8 translates the estimated development factors from Exhibit 1.7 into 
estimated completion factors using the method shown in Exhibit 1.2 above. 
 

Exhibit 1.8 
Estimated Completion Factors 

 
(1) 

 
Lag 

(2) 
Development 

Factor 

(3) 
Completion 

Factor 

(4) 
 

Derivation of 
Column (3) 

0  29.1% (3) for Lag 1 ÷ (2) 
for Lag 1 

1 1.81 52.7% (3) for Lag 2 ÷ (2) 
for Lag 2 

2 1.34 70.8% (3) for Lag 3 ÷ (2) 
for Lag 3 

3 1.13 80.0% (3) for Lag 4 ÷ (2) 
for Lag 4 

4 1.25 100.0% Assumed 
 

Based on the completion factors we just derived and our calculation method in Exhibit 
1.8, we estimate claim reserves (IBNR) as follows: 



 10

 
Exhibit 1.9 

Estimated IBNR 
 

Incurred 
Month 

Lag Through 
Dec-05 

Claims Paid 
Through Dec-05 

Completion 
Factor 

Estimated 
Incurred 

 
IBNR 

Aug-05 4 $  5,500 100.0% $  5,500 $  -   
Sep-05 3 6,000 80.0% 7,500 1,500 
Oct-05 2 8,000 70.8% 11,304 3,304 
Nov-05 1 1,500 52.7% 2,848 1,348 
Dec-05 0 5,000 29.1% 17,185 12,185 
Total  $26,000  $44,338 $  18,338 

 
 
We have derived one value for the completion factor for each lag.  This method is 
deterministic because it provides a single IBNR value for each month as opposed to a 
probability distribution of possible values.  In addition, there is no probability model 
underlying the development of these factors.  The completion factor method, which is a 
chain ladder method, does not lend itself to the derivation of statistical measures such as 
confidence intervals.  While we can take completion factors from individual months to 
derive means and variances, this method is not recommended since we are not deriving 
an underlying distribution.  This is referred to as descriptive statistics.  The preferred 
method is inferential statistics, where we derive the underlying distribution. 
 
For business and regulatory reasons, an actuary would like to set an IBNR that is 
sufficient with high probability.  A sufficient IBNR is a liability calculated such that, 
once all of the claims are paid, the IBNR was greater than the actual outstanding claims 
paid.  Therefore, the actuary needs to derive a confidence interval or a prediction interval. 
The following are ways to calculate confidence intervals for IBNR: 
 

• As we show in Section 2, the completion factor method, when applied to actual 
medical insurance data, often produces IBNR estimates for the two most recent 
months (lags 0 and 1) with relatively large variance.  In addition, often over 70% 
of the liabilities are in lags 0 and 1.  Therefore, as we show in Section 3, 
regression methods can be applied to derive estimates for lags 0 and 1, after 
deriving estimates for lags greater than 1 using the completion factor method.  
The regression methods rely on underlying distributions from which we derive 
our confidence intervals. We go from the more specific problem of deriving a 
statistical model for deriving IBNR estimates for lags 0 and 1 to using a 
parametric statistical model to derive estimates for all lags.  Using such a model 
is discussed in Section 4. 

 
In this section, we analyzed 5 months of data.  In Sections 2 and 3, we will develop IBNR 
with 36 months of data. 
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Section 2 – The Completion Factor Method Using Medical Insurance Data 
 
In Section 1, we gave a simplified example of a deterministic completion factor method.  
In this section, we expand that example to a 36 month data set. 
 
This section is organized as follows: 
 

1. We describe the data set. 
2. We discuss the determination of outliers. 
3. We derive completion factors using the completion factor method. 

 
2.1 The Data Set 
 
Our data set is expanded from the example in Section 1 in the following ways: 
 

• Instead of having 5 months of data, we have 36 months of data. 
• In addition to paid claims, we have membership data by incurred month. 

 
Our data set consists of claims for medical coverage for the time period January 2001 
through December 2003.  The claims data: 
 

• Is summarized in a paid vs. incurred month grid. 
• Represents medical coverage with no deductibles and coinsurance and relatively 

low copayments such as $10 per office visit.  Thus we assume that the same 
percentage of claims is paid by the insurer in each month. 

• Is exclusive of prescription drug coverage.  Prescription drug claims usually have 
a shorter lag pattern than other medical claims. 

 
The data set can be found in the Appendix. 
 
The observation in each cell of the paid by incurred month grid is the sum of many 
individual transactions.  Each transaction can be thought of as arising from one of at least 
three processes: 
 

• Non-Catastrophic Initial Claims – Claims of smaller amounts as they are first paid 
by the claims department.  Such claims are often auto-adjudicated (that is, no 
human intervention), so there is relatively little lag between the report date and 
the paid date.  (This relatively quick administrative process, though, is offset by 
the so-called “shoe-box” effect, which is the tendency for people to accumulate 
claims before reporting them to the insurer.) 

• Catastrophic Initial Claims – Larger amount claims reported that have on average 
longer lag and may cause significant changes in total IBNR. 

• Adjustments – Claims as they are adjusted for any new information or 
administrative errors. 
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With sufficient data, each of these processes could be modeled separately.  Because we 
cannot observe this level of detail, we will treat the claims as though they come from a 
single distribution.  Our inability to model at this level of detail may limit to some extent 
the usefulness of our model of the claims development process. 
 
The lag at which initial claims are paid is dependent on: 

• how quickly providers (e.g. hospitals, physicians) submit claims; and 
• how fast the insurer processes and pays claims. 

 
An adjustment occurs when a claim is paid and later the insurance company learns that it 
should have paid a different amount.  Two of the key reasons for adjustments are: 
 

• Claims paid in error – For instance, a claim was paid twice. 
• Third party liability – For instance, Leslie is in an automobile accident caused by 

Cory.  Leslie seeks medical care, and Leslie’s medical insurance company pays 
for the care Leslie receives.  Later, Leslie’s insurance company recovers the cost 
of the care from Cory’s automobile insurance company. 

 
Because it is possible for the absolute value of negative adjustments to exceed positive 
adjustments and initial claims, it is possible that an incurred/paid month cell will show a 
negative amount. 
 
As the processes underlying initial claims and adjustments differ, their underlying 
statistical distributions are different; thus we are adding some additional variation to the 
process we will model by combining these processes.  This is particularly true at the 
longer lags, such as lags 9, 10, and 11 in our sample data. 
 
The variation in adjustments is more important at later durations because: 
 

• adjustments cannot be made until after initial claims are paid 
 

 and  
 

• initial claims payments become significantly less frequent at later 
durations. 

 
For each month, we have corresponding membership information.  We truncated the data 
set to assume that all claims are paid within 12 months (e.g., all claims incurred in 
January 2001 are paid by January 31, 2002).  We truncated the data set because the vast 
majority of medical claims are paid within the first 12 months following incurral; thus, 
the applicability of our models to real life IBNR calculations is not significantly impacted 
by this truncation. 
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2.2 Outliers 
 
An outlier is an observation that is far removed from the general pattern of the data.  
Before analyzing the data and selecting our method for evaluating IBNR, we do not start 
with rules such as all claims over $x are to be considered outliers.  The determination of 
an outlier depends on the model used to estimate IBNR.  An outlier with respect to one 
model may not be an outlier relative to another model.  We can determine outliers as 
follows: 
 
First we graphically view the data to see which points may be considered as candidates 
for outliers.  Then, as our next step, we do one of the following for each potential outlier: 
 

• Use a statistical test such as the six-sigma rule to determine outliers.  This rule 
states that if a point is within three standard deviations of the mean, it is not 
considered an outlier.  Statistical computing packages routinely produce 
diagnostic measures for determining outliers.  Such diagnostics are not available 
in Excel. 
 

• Remove the point from the data if we are sure, based on your knowledge of 
claims history, that the point is an outlier – one needs to be careful in removing 
data points as outliers based on observation without further analysis. 
 

• To understand the impact of the outlier, determine IBNR with and without the 
outlier included to determine the total effect of the outlier on IBNR.  If we take 
out claims as outliers, we may need to make an adjustment at the end of the IBNR 
calculation to adjust for the claims taken out. 

 
Two key issues to keep in mind in determining outliers are the following: 
 

• As mentioned above, an outlier in one model may not be an outlier in another 
model.  When using a test like the six sigma test, a given point may be within 
three standard deviations of the mean in one model and more than three standard 
deviations from the mean in another model. 

 
• You should be able to explain why a point is an outlier.  For instance, if the paid 

claims for each of 23 of the last 24 months amount to between $180 and $200 per 
member per month (PMPM) and, for one of the 24 months, they amount to $250 
PMPM, that highest month may be an outlier.  As a check of the reasonableness 
of the $180 to $200 PMPM range, the pricing actuary who set the premium rates 
may be able to verify expected claims levels. 

 
2.2.1 Screening Our Data for Outliers 
 
In analyzing our data for potential outliers, we plot our data as in Exhibit 2.1 (found on 
next page). 
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In that graph, t is the lag and i is the incurred month.  “Original Y” is the claims amount 
incurred in month i, 0 ≤ i ≤ 35, and paid at lag t, 0 ≤ t ≤ 12.  This plot shows that there is 
a potential outlier (see the arrow) in the middle of the data set. We have identified this as 
the observation corresponding to i = 12 and t = 7.  This point corresponds to the $756,000 
that was incurred in January 2002 and paid in August 2002.   
 
The graph in Exhibit 2.1 helps us identify positive outliers, whereas we show all of the 
negative values in the graph in Exhibit 2.2, also on next page. 
 

Exhibit 2.1 
Initial Scatter Plot of the Data 
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Exhibit 2.2 

Data Points with Negative Values 
Amount <0

-70000

-60000

-50000

-40000

-30000

-20000

-10000

0
0 2 4 6 8 10 12 14

Lag

C
la

im
s

Amount <0

 
 
The graph in Exhibit 2.2 shows negative data points by lag.  The graph shows no negative 
data points in lags 0 through 5. 
 
Exhibit 2.2 shows a potential outlier at lag 10.  The actual value is -$62,165, which 
occurs at i = 19 (month).  This point is the sum of all claims transactions that were 
incurred in August 2002 and paid in June 2003. 
 
From the claims processing department, the actuary learns about the following two 
claims: 
 

• There was a $750,000 severe burn case that was incurred in January 2002 and 
paid in August 2002. 

• The medical insurance company paid $60,000 for an auto accident claim that was 
incurred in August 2002.  An auto insurance company reimbursed the medical 
insurance company $60,000 for this claim in June 2003. 

 
Based on this knowledge, if we remove these claims as outliers, the new values in the 
triangle would be the following: 
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Exhibit 2.3 

Potential Outliers 
 

   (1) (2) (3) = (1) – 
(2) 

 

Incurred 
Month 

Paid 
Month 

Lag Current Value 
in Claims 
Triangle 

Potential 
Outlier 
Claim 

New Value 
in Claims 
Triangle 

Cause of 
Claim 

Jan-02 Aug-
02 

7 $756,000 $750,000 $6,000 Severe Burn 
Case 

Aug-02 Jun-03 10 ($62,165) ($60,000) ($2,165) Auto Accident 
– Third party 
payment 
received after 
claim paid 

 
 
When we use the completion factor method, these are the two data points we will assess 
to determine whether or not they are outliers. 
 
2.3 The Completion Factor Method 
 
In Exhibit 2.4, we calculate the completion factors as we did in Exhibit 1.8 for the 
example in Section 1.  Note that we still work with total claims, not claims per member 
per month.  The calculation is as follows: 
 

Exhibit 2.4 
Calculation of Deterministic Completion Factors 

36 Month Sample Data 
 

Completion Factor – Lag12 1.00000 (1) Due to data truncation 
as discussed above 

Lag 12 claims (January 2001 through 
December 2002 – 24 months) 

$43,464,941 (2) 

Lag 11 claims (January 2001 through 
December 2002 – 24 months) 

$43,428,968 (3) 

Completion Factor – Lag 11 0.99917 (4) = (3) ÷ (2) 
Lag 11 claims (January 2001 through 
January 2003 – 25 months) 

$45,977,288 (5) 

Lag 10 claims (January 2001 through 
January 2003 – 25 months) 

$45,861,250 (6) 

Lag 10 claims divided by Lag 11 
Claims 

0.99748 (7) = (6) ÷ (5) 

Completion Factor – Lag 10 0.99665 (8) = (4) × (7) 
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In a manner similar to Exhibit 1.4 in Section 1, we calculate IBNR by lag as follows: 
 

Exhibit 2.5 
Calculation of IBNR – Sample Data 

Lags 2 Through 12 
 

(1) (2) (3)=(1)÷(2) (4)=(3)-(1)  
 
 

Month 

 
 
 

Lag 

Cumulative 
Paid Through 
December '03 

 
Completion 

Factor 

 
Incurred 
Claims 

 
 

IBNR 
      

Dec-03 0 $     96,378 0.03936 $2,448,572 $2,352,193 
Nov-03 1 1,283,817 0.59821 2,146,086 862,269 
Oct-03 2 2,193,388 0.84701 2,589,571 396,184 
Sep-03 3 2,688,921 0.91445 2,940,472 251,551 
Aug-03 4 2,466,086 0.94775 2,602,055 135,969 
Jul-03 5 2,502,042 0.96126 2,602,876 100,834 
Jun-03 6 2,196,919 0.97130 2,261,842 64,923 
May-03 7 2,385,024 0.99008 2,408,921 23,897 
Apr-03 8 2,237,437 0.99275 2,253,778 16,341 
Mar-03 9 2,361,919 0.99583 2,371,810 9,891 
Feb-03 10 2,187,349 0.99665 2,194,699 7,351 
Jan-03 11 2,548,319 0.99917 2,550,430 2,111 
Dec-02 12 1,860,925 1.00000 1,860,925 0 

      
Total – Lags 0 Through 12 $27,008,524  $31,232,037 $4,223,513 
Total – Lags 2 Through 12 25,628,328  26,637,379 1,009,051 

 
 
All of the incurred estimates for lags 2 through 11 are between $2 million and $3 million.  
The incurred claims estimates for lags 0 and 1, $2,448,572 and $2,146,085, respectively, 
seem to be reasonable estimates at first glance.  However, as we shall see shortly, the 
variation in these estimates is relatively large. 
 
When discussing outliers, we identified two potential outliers: 

• the $750,000 claim incurred in January 2002 and paid in August 2002; 
• the ($60,000) claim adjustment incurred in August 2002 and paid in June 

2003. 
 
We show how these potential outliers affect IBNR for lags 2 through 12. 
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Exhibit 2.6 

Effect of Potential Outliers on IBNR for Lags 2 through 12 
Completion Factor Method 

 
 With Both 

Outliers Included 
With $750,000 Claim 

Excluded 
With ($60,000) Claim 
Adjustment Excluded 

IBNR $1,009,051 $833,796 $1,033,963 
Change in IBNR 
Due to Outlier 

N/A (17.4%) 2.5% 

 
For this document, we assume that a change of 5% or more in IBNR is significant. 
 
Based on that criterion, in analyzing the IBNR for lags 2 through 12, we conclude that the 
$750,000 claim is an outlier and the ($60,000) claim adjustment is not an outlier when 
using the completion factor method.  In our software, we have removed the $750,000 
claim which we consider catastrophic. 
 
When excluding the $750,000 burn case, our IBNR by month is the following: 
 

Exhibit 2.7 
IBNR with Catastrophic Burn Case Excluded 

 
  (1) (2) (3) = (1) ÷ (2) (4) = (3) – (1) 
  Cumulative    
  Paid through Completion Incurred  

Month Lag December '03 Factor Claims IBNR 
Dec-03 0 $     96,378 0.03990 $2,415,373 $ 2,318,994 
Nov-03 1 1,283,817 0.60644 2,116,988 833,171 
Oct-03 2 2,193,388 0.85865 2,554,461 361,073 
Sep-03 3 2,688,921 0.92702 2,900,603 211,682 
Aug-03 4 2,466,086 0.96077 2,566,775 100,689 
Jul-03 5 2,502,042 0.97447 2,567,585 65,543 
Jun-03 6 2,196,919 0.98465 2,231,175 34,255 
May-03 7 2,385,024 0.98993 2,409,296 24,272 
Apr-03 8 2,237,437 0.99263 2,254,040 16,603 
Mar-03 9 2,361,919 0.99576 2,371,975 10,056 
Feb-03 10 2,187,349 0.99659 2,194,823 7,475 
Jan-03 11 2,548,319 0.99916 2,550,467 2,148 
Dec-02 12 1,860,925 1.00000 1,860,925 - 

   
  IBNR    
  Dec-02 – Oct-03 (Lags 2 through 12) $   833,796 
  Nov-03 – Dec-03 (Lags 0 and 1) 3,152,165 
  Total IBNR Dec-02 – Dec-03 $3,985,962 
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2.3.1 Analysis of the Completion Factor Method 
 
The completion factor method is deterministic since there are no probabilistic methods 
are used in the procedure.  
 
The method is also cumulative; thus if incurred month a has twice as many claims as 
incurred month b, then the claims payment pattern of month a will have twice the weight 
in determining the completion factors as the claims payment pattern of month b. 
 
As noted in Section 1, we are interested in setting confidence intervals for reserves, but 
because the completion factor method derives one point value for each completion factor, 
we cannot obtain error estimates from that method. 
 
To test the completion factors, we analyze the completion factors derived for each of the 
completed months, January 2001 through December 2002.  Thus we have 24 data points 
on which to analyze the 13 completion factors developed (for lags 0 through 12, 
inclusive). 
 
When comparing our cumulative completion factors with the mean unweighted monthly 
completion factors (after eliminating the $750,000 outlier, as described before), we obtain 
the following comparison: 
 

Exhibit 2.8 
Comparison of Completion Factors 

 
 

Lag 
Cumulative

Factors 
Mean of Unweighted 

Individual Months 
0 0.03990 0.03215 
1 0.60644 0.58789 
2 0.85865 0.84632 
3 0.92702 0.92366 
4 0.96077 0.95917 
5 0.97447 0.97211 
6 0.98465 0.98437 
7 0.98993 0.98975 
8 0.99263 0.99223 
9 0.99576 0.99551 

10 0.99659 0.99645 
11 0.99916 0.99904 
12 1.00000 1.00000 

 
The mean of unweighted individual months is derived by averaging the completion 
factors for each incurred month separately.  Because the completion factors in both 
columns above are relatively close, we conclude that we can use the data from individual 
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months to obtain some knowledge about our completion factors derived from using 
weighted averages. 
 
Note that it might not always be the case that the monthly unweighted completion factors 
give us good information about the weighted average completion factors.  We first need 
to compare the two sets of factors (as in Exhibit 2.8) before continuing with the analysis.  
We use actuarial judgment to determine if this comparison is acceptable. 
 
In comparing our monthly completion factors, a good measure of the stability of our 
monthly completion factors is the standard deviation of the observed completion factors 
by lag divided by their mean.  This ratio is analogous to a statistical measure known as 
the coefficient of variation.  We know that completion factors are not random data from 
the same probability distribution, so their descriptive statistics do not provide the 
information we would normally expect. 
 
Using the completion factor data from our 24 completed months, we obtain the results in 
Exhibit 2.9. 
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Exhibit 2.9 

Completion Factor Method 
Calculation of the Coefficient of Variation 

 
Completion Factor  

 
Lag 

Mean of 
Individual Months 

Standard 
Deviation 

Coefficient of variation 
(Std. Dev./Mean) 

0 0.03215 0.02548 0.79237 
1 0.58789 0.12032 0.20467 
2 0.84632 0.06114 0.07225 
3 0.92366 0.04414 0.04778 
4 0.95917 0.02483 0.02588 
5 0.97211 0.02271 0.02336 
6 0.98437 0.01471 0.01494 
7 0.98975 0.01410 0.01425 
8 0.99223 0.01444 0.01455 
9 0.99551 0.01460 0.01467 

10 0.99645 0.01025 0.01028 
11 0.99904 0.00293 0.00294 
12 1.00000 - - 

 
Note that the coefficient of variation at Lag 12 is zero since we assumed that all claims 
are paid by lag 12, which means that zero claims are paid after lag 12 with 100% 
probability.  Therefore, the standard deviation of the amount paid after lag 12 is zero. 
 
For this document, we define a relatively stable completion factor as one with a 
coefficient of variation less than 0.1.  This definition may seem arbitrary, but it is based 
on our objective for stability of the completion factor estimate.  The exhibit above 
indicates that, based on our definition, we need to look for other methods for lags 0 and 1.  
If we had selected 0.05, we would have concluded that we need to look for additional 
methods for lags 0, 1 and 2. 
 
Another way to see why lags 0 and 1 have relatively high coefficients of variation is to 
ask the following question:  For every $100 of claims already paid, how much is the 
corresponding IBNR? 
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If the completion factor is 0.75, the calculation of the IBNR is the following: 
 

Exhibit 2.10 
Example of How Claims Paid and 

Completion Factor Determine IBNR 
 

Claims Paid $100 (1) 
Completion Factor 0.75 (2) 
Incurred Claims $133.33 (3) = (1) ÷ (2) 
IBNR = Incurred Claims Minus Claims Paid 33.33 (4) = (3) –(1) 

 
For our completion factors by lag, the values are the following: 
 

Exhibit 2.11 
IBNR per $100 of Paid Claims 

for the Calculated Completion Factors 
 

(1) (2) = $100÷(1) - $100 (3)  
 

Lag
Completion

Factor* 
IBNR for 

$100 in Paid Claims 
Coefficient of 

Variation 
0 0.03990 $2,406.14 0.79237 
1 0.60644 64.90 0.20467 
2 0.85865 16.46 0.07225 
3 0.92702 7.87 0.04778 
4 0.96077 4.08 0.02588 
5 0.97447 2.62 0.02336 
6 0.98465 1.56 0.01494 
7 0.98993 1.02 0.01425 
8 0.99263 0.74 0.01455 
9 0.99576 0.43 0.01467 

10 0.99659 0.34 0.01028 
11 0.99916 0.08 0.00294 
12 1.00000 - - 

 
* With catastrophic case excluded 
 
As the exhibit above shows, as the “IBNR for $100 in Paid Claims” decreases, the 
coefficient of variation decreases.  Thus we have two measurements showing that the 
variation in the IBNR calculations is concentrated in lags 0 and 1. 
 
In summary, we have used descriptive statistics to show the reasonableness of the 
deterministic completion factor method for lags 2 through 12 in our example.  We 
recommend that, before running the completion factor method, an actuary check for 
outliers.  Any identified outliers should be removed from the data before applying the 
completion factor method.  After running the method, we recommend that descriptive 



 23

statistics, such as the coefficient of variation, be used to determine the reasonableness of 
the model. 
 
Going forward with the completion factor method, we recommend the following: 
 

• Use a different method to estimate IBNR for lags 0 and 1. 
• Use $833,796 as the estimate of IBNR using the completion factor method for 

lags 2 through 12. 
• Add an adjustment for unknown catastrophic claims after completing the 

calculation of IBNR. 
 
In Section 3, we will show how the deterministic completion factor method can be 
combined with another method in order to add an estimate of error.  There, we develop 
regression models for lags 0 and 1 (incurred months 34 and 35).  To develop these 
estimates, we will use the PMPM incurred claims estimates developed by the completion 
factor method for months 0 through 33.  Using PMPM incurred claim values is common 
industry practice since PMPM values remove the variation in claims due to changes in 
enrollment. 

 
These PMPM values are the following: 
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Exhibit 2.12 
PMPM Incurred Claim Estimates from Completion Factor Method 

Data for Regression in Section 3 
 

(1) (2) (3) (4) (5) (6)=(4)÷(5) 
 

Lag 
 

Month 
Months in 
Regression 

Estimated 
Incurred Claims 

 
Membership 

PMPM 
Estimate 

2 Oct-03 33 $2,554,461 11,843 $215.69 
3 Sep-03 32 2,900,603 11,731 247.26 
4 Aug-03 31 2,566,775 11,689 219.59 
5 Jul-03 30 2,567,585 11,787 217.83 
6 Jun-03 29 2,231,175 11,814 188.86 
7 May-03 28 2,409,296 11,927 202.00 
8 Apr-03 27 2,254,040 11,986 188.06 
9 Mar-03 26 2,371,975 12,130 195.55 

10 Feb-03 25 2,194,823 12,201 179.89 
11 Jan-03 24 2,550,467 12,227 208.59 
12 Dec-02 23 1,860,925 12,132 153.39 
13 Nov-02 22 1,762,655 11,951 147.49 
14 Oct-02 21 2,034,275 11,889 171.11 
15 Sep-02 20 1,699,016 11,735 144.78 
16 Aug-02 19 1,859,121 11,655 159.51 
17 Jul-02 18 2,103,032 11,577 181.66 
18 Jun-02 17 1,872,651 11,580 161.71 
19 May-02 16 1,933,155 11,703 165.18 
20 Apr-02 15 1,974,315 11,654 169.41 
21 Mar-02 14 1,589,754 11,753 135.26 
22 Feb-02 13 1,715,552 11,823 145.10 
23 Jan-02 12 1,843,543 11,705 157.50 
24 Dec-01 11 1,410,154 11,555 122.04 
25 Nov-01 10 1,673,063 11,444 146.20 
26 Oct-01 9 1,852,522 11,456 161.71 
27 Sep-01 8 1,587,443 11,400 139.25 
28 Aug-01 7 1,915,574 11,420 167.74 
29 Jul-01 6 1,722,416 11,180 154.06 
30 Jun-01 5 1,755,594 11,174 157.11 
31 May-01 4 1,602,252 11,130 143.96 
32 Apr-01 3 1,610,332 11,069 145.48 
33 Mar-01 2 1,962,246 11,070 177.26 
34 Feb-01 1 1,765,964 11,118 158.84 
35 Jan-01 0 1,609,389 11,154 144.29 
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Section 3 – Regression Analysis for Recent Months and a Description of the 
Spreadsheet 
 
We ended Section 2 with per member per month incurred claims (point) estimates for 
lags 2 through 35.  In this section, we derive estimates for lags 0 and 1 and derive 
confidence intervals for those point estimates. 
 
This section is organized as follows: 
   

1. Description of the problem and variables. 
2. Discussion of key statistical concepts used. 
3. Description of the models we have in our spreadsheet which we use in analyzing 

our data. 
4. Derivation of IBNR using the spreadsheet. 
5. Explanation of how to calculate IBNR. 
6. Summary. 

 
3.1 Our Problem and Variables 
 
We have 34 points for months 0 through 33 (January 2001 through October 2003), which 
we derived in Section 2.  These points are shown in Exhibit 2.12 at the end of Section 2.  
Thus, our main independent (predictor) variable is time.  Usually, health care costs 
increase over time. 
 
Our dependent (response) variable is monthly incurred claims cost, measured on a per 
member per month (PMPM) basis.  Our problem is to find PMPM claims cost estimates 
for incurred months 34 and 35, which correspond to November 2003 and December 
2003, respectively.  For these two months, completion factors from lags 1 and 0, 
respectively, are needed. 
 
We also have two other independent variables which we analyze: 
 

• Weekday/weekend (Day Factor) - Many medical offices are closed (or have 
limited hours) on weekends and holidays while hospitals and other facilities 
remain open for emergency and urgent care.  We assume that an average 
weekend/holiday has 35% of the utilization of an average weekday.  We call this 
the “Day Factor”.  We model the weekday/weekend variable by dividing our 
independent variable y by wt.  Thus we are normalizing the number of weekdays 
per month.  

• Additional time variable (Time 2) – We have the capacity in our spreadsheet to 
add an additional variable to each month.  In this section of the spreadsheet, we 
assign values of 0 or 1 for this second variable in our search for appropriate 
models.  We would use this variable if we have knowledge about our data that we 
think could be modelled using this extra variable.  For instance, if we knew that 
all health care providers increased their rates by 10% on January 1, 2002, we 
could set this variable equal to 0 for months in 2001 and 1 for months in 2002 
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and 2003.  This is a one-time increase which is different from the continual 
increase in our main independent variable. 

 
 
3.2 Key Statistical Concepts 
 
Key statistical concepts we review here are the following: 
 

• R-square and adjusted R-square values; 
• Number of data points; 
• p-values in a regression output; 
• Interval estimation; 
• Interval estimates for simple linear regression. 
• Residuals 

 
3.2.1 R-Square and Adjusted R-Square Values 
 
When we run regression models, among the first results we review are the R-square and 
adjusted R-square values. 
 
We define R-square and adjusted R-square as follows: 
 
R-square is the coefficient of determination of the regression model.  This is also 
interpreted as the percentage of the variation in the observed values of the response that is 
explained by the regression model.  The larger the R-square value, the greater is the 
indication that the model is satisfactory.  R-square is defined as 

2 1SSR SSER
SST SST

= = − , 

where SSR is the sum of squares accounted for in the regression model, SST is the total 
sum of squares of the deviations of the response values from their mean, and SSE = SST -
 SSR.  One drawback of R-square is that adding more independent variables causes the R-
square value to increase even though there is no improvement to the model.  In order to 
correct for this anomaly, the adjusted R-square is defined to be 

2 /( 1)( ) 1
/( 1)

SSE n kR adj
SST n

− −
= −

−
, 

where k is the number of predictors in the regression model and n is the total number of 
observations on the response variable.  Larger adjusted R-square values indicate a better 
fit of the model. 
 
3.2.2 Number of Data Points 
 
We have 34 data points.  Let’s say that the best model we can derive with 34 points has 
an adjusted R-square value of x.  Let’s say that if we use 30 data points, we can derive an 
adjusted R-square value of y, with y being 1% greater than x.  Should we use the model 
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with 30 data points?  If we take this to the extreme, R-square and adjusted R-square 
would equal 1 if we had only two data points. 
 
We follow the principle that unless we have a compelling reason to exclude points, such 
as with outliers, we do not eliminate data points just to get a model with a slightly better 
fit.  However, we often transform variables or add additional variables to get a better fit. 
 
3.2.3 p-Values in a Regression Output 
 
In a regression analysis output, there are several test statistics and corresponding p-values 
reported.  First there is the F-statistic and the corresponding p-value.  This tests if the 
overall model is statistically significant.  A p-value < 0.05 is an indicator that we most 
probably have an overall model that is statistically significant when compared to a model 
using none of the independent variables.  Then there are t-statistics and corresponding p-
values for testing each individual regression coefficient (beta value). The independent 
(predictor) variables with p-values < 0.05 are considered to be useful in describing the 
relationship between the predictor variables and the dependent (response) variable. 
 
3.2.4 Interval Estimation  
 
When using a regression model to predict the IBNR (or incurred claims PMPM values), 
the actuary may wish to construct confidence and/or prediction intervals.  Is it more 
appropriate to use confidence or prediction intervals?  It depends on our answer to the 
following questions: 
 

• Do we want the expected (average) value of the incurred claims PMPM 
corresponding to new values of the predictor variables (Lag 0 and 1)?  We then 
need confidence intervals. 

 
• Do we want the value of the incurred claims PMPM corresponding to new values 

for Lags 0 and 1?  We then need prediction intervals. 
 
The actuary would ordinarily be interested in the potential range of values of IBNR, 
which is the prediction interval.  The range within which the average value of IBNR 
would be likely to fall is usually not of interest.  We note that prediction intervals are 
larger than confidence intervals. 
 
 
3.2.5 Interval Estimates for Simple Linear Regression 
 
We now develop interval estimates in the context of simple linear regression. 
 
We will limit our exposition to that simple model. 
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Suppose that we want to find the relationship between a dependent variable Y and an 
independent variable X based on a set of sample observations collected on the two 
variables, given in Exhibit 3.1 on next page. 
 

Exhibit 3.1 
Sample Data for Linear Regression Example 

 
x y 

10 8.03
8 6.90

13 7.58
9 8.81

10 8.33
14 9.96
6 7.24
4 4.26

12 10.85
7 4.82

 
Let 1, , nx x…  and nyyy ,,, 21 …  be these observed values (with n = 10). 
 
Using simple linear regression, we will estimate the linear function that best fits this data.  
The model is written as 2

0 1 ,  ~ (0, ); 1, , .  i i i iY x N i nβ β ε ε σ= + + = " Here the idea is to 
find a model to predict the values of the dependent variable Y for given values of the 
independent variable X.  Hence the x-values are considered to be fixed and the Y-values 
are considered to be random. 
 
Following are the least squares estimates of the parameters: 

2 2
1 0 1

1

1ˆ ˆ ˆ ˆ ˆ, , ( )
2

n
xy

i i
ixx

S
y x y y

S n
β β β σ

=

= = − = −
− ∑ , 
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2

1 1 1 1

0 1

1 1, , ( ) , ( )( ),  and 
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n n n n

i i xx i xy i i
i i i i

i i

x x y y S x x S x x y y
n n

y x i nβ β
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= + =

∑ ∑ ∑ ∑
"

 

 
Suppose that we want to predict the value of the response variable corresponding to a 
new observation on the independent variable X, say x*. 
 
The point estimate of the mean of the new observation is * *

0 1
ˆ ˆŷ xβ β= + . 

 
A 100(1 )%α− prediction interval for the new observation is 
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* 2 * 2
* 2 * 2

/ 2 / 2
1 ( ) 1 ( )ˆ ˆ ˆ ˆ( 2) 1   ,  ( 2) 1

xx xx

x x x xy t n y t n
n S n Sα ασ σ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥− − + + + − + +⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

, 

where / 2 ( 2)t nα − is the upper tail / 2α  value of the student t-distribution with n – 2 
degrees of freedom. 
 
Note that the estimate is most accurate at the mean of the observed values of the 
independent variable x and the prediction interval is narrowest at x* = x .  The further 
away you move from x , the wider the prediction interval gets. 
 
The numerical values we obtain in applying linear regression to our sample data in 
Exhibit 3.1 are the following: 
 
The regression equation derived is y = 2.885 + 0.5154 x + ε. 
 

Exhibit 3.2 
Regression Output 

Linear Regression Example 
 

 Coefficient SE Coef t p-Value (p) 
Constant 2.885 1.353 2.13 0.066 
X 0.5154 0.1385 3.72 0.006 

 
Standard deviation (s) = 1.31457 
R-square = 63.4% 
 
 
The analysis of variance shows the following: 
 

Exhibit 3.3 
Analysis of Variance 

Linear Regression Example 
 

 Degrees of Sum of Mean   
Source Freedom (df) Squares (SS) Square (MS) F-Value (F) p-Value (p)
Regression 1 23.932 23.932 13.85 0.006
Residual Error 8 13.825 1.728  
Total 9 37.757  

 
The mean of our data x  is 9.30.  We choose three points on which to calculate prediction 
intervals 11, 15 and 18.  The response variables that we obtain are the following (with 
α = 0.05): 



 30

 
Exhibit 3.4 

Predicting Values 
Linear Regression Example 

 
Independent 

Variable 
Dependent 
Variable 

 
Prediction Interval

 
Length 

11 8.554 5.329 11.780 6.451 
15 10.616 6.952 14.279 7.327 
18 12.162 7.939 16.384 8.445 

 
This example illustrates that, as the independent variable moves further away from the 
mean of 9.30, the length of the prediction interval increases. 
 
When calculating IBNR, because our main predictor is time, moving further away from 
the mean is equivalent to projecting further out into the future.  Because the width of the 
prediction interval is increasing as we get further away from x , we generally restrict 
ourselves to using regression to project as few time periods into the future as is deemed 
really necessary.  Hence, we might use data from months 0 through 32 to project the 
PMPM values for months 33 to 35, but we would not use that same data to project the 
PMPM value for month 44 unless we really needed to. 
 
As we discussed in Section 2, prediction intervals are derived using statistical methods, 
and not using deterministic methods (e.g. the completion factor method).  We have two 
statistical methods on which to derive prediction intervals: 
 

• Prediction intervals based on lags 0 and 1 only, as derived from the regression 
models run in this section. 

• A parametric method which derives prediction intervals for all IBNR estimates.  
This is discussed in Section 4. 

 
Because over 70% of the IBNR is typically in lags 0 and 1, prediction intervals based on 
lags 0 and 1 should be reasonable for many applications. 
 
3.2.6 Residuals 
 
In regression analysis the assumption is that the dependent variable is random and the 
independent variable is not random and there is a relationship between the dependent 
variable and the independent variables and this relationship is fixed except for a random 
factor. Once a set of observations on the dependent variable and the independent 
variables is available one can get a best estimate of the relationship and this is called the 
regression equation. This equation can be used to predict the value of the dependent 
variable for any set of values of the independent variables.   The difference between the 
predicted value and the observed value of the independent variable is called the residual 
and that in fact gives an estimate of the random variation.   When the model is formulated 
the independent variable is assumed to be the sum of the fixed relationship between the 
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dependent variable and the independent variable and an error term. This error term is 
assumed to reflect the randomness of the dependent variable and, in the usual regression 
models, it is assumed that these error terms are normally distributed with mean 0 and an 
unknown variance. Once a set of independent observations on the dependent variable is 
available, then there is a set of independent error terms.  
 
We test the assumption that the model is a good model using the following: 
 

• Residual Plot 
• Histogram 
• Shapiro-Wilk Test 

 
The plot of these residual values is called the residual plot.  The residual plot should not 
show any discernable pattern.  If the picture is expanding or contracting in one direction 
or another, then the assumption of constant variance is not supported.  If our model fits 
the data well, the histogram of residuals should show a normal, or bell-shaped, pattern.  
In our software, we ask how many bins or intervals you want to use in the histogram.  
You can choose between 7 and 12 bins.  With a histogram, one visually observes the 
normality pattern.  A more rigorous test for normality is the Shapiro-Wilk Test.   
 
We analyze the residuals further with such tests as the Shapiro-Wilk Test for normality in 
Section 4.  In this section, we will only analyze residuals based on observations.  
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3.3 Models We Tested 
 
In this section, we are using 34 PMPM (point) estimates from 34 consecutive months.  
We programmed the spreadsheet using the following models: 
 

Exhibit 3.5 
Statistical Models in the Spreadsheet 

 
Name Type of 

Model 
Dependent 
Variables 

Equation 

LinRegr Linear Time t (1) ty 10 ββ += + ε 
QuadRegr Quadratic Time t 2

210 tty βββ ++= + ε 
ExpRegr Exponential Time t )exp( 10 ty ββ +=  + ε 
Lin2Var Linear Time t1, User Input t2

  (2) ty 10 ββ += 1 + β2t2 + ε 
Quad2VarRegr Quadratic Time t1, User Input t2

  y = β0 + β1t1 + β2(t1)2
 +  β3t2 + ε 

Exp2VarRegr Exponential Time t1, User Input t2
   

AdjLinRegr Linear Time t, 
Weekday/weekend wt 

y/wt = β0 + β1t + ε  
 

AdjQuadRegr Quadratic Time t, 
Weekday/weekend wt 

y/wt = β0 + β1t + β2t2
  +  ε 

AdjExpRegr Exponential Time t, 
Weekday/weekend wt 

y/wt = exp (β0 + β1t) + ε  
 

AdjLin2Var Linear Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = β0 + β1t1 + β2t2 + ε 

AdjQuad2VarRegr Quadratic Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = β0 + β1t1 + β2(t1)2

 +  β3t2 
+ ε 
 

AdjExp2VarRegr Exponential Time t1, User Input t2
 , 

Weekday/weekend wt 
y/wt = exp (β0 + β1t1 + β2t2) + ε 
 

 
We note the following: 
(1) Time (t or t1) is measured by the numbers we assign to each month. 
(2) The input variable (t2) is a variable whose value by month is input by the actuary each 

time the model is run.  In this section, we are limiting our use of this variable to 0 and 
1.  This variable enables the user to treat some months as being different from other 
months.  For example, the actuary may have information about hospital pricing 
changes that occurred in the middle of the time frame during which the observations 
were gathered.  It may be appropriate to model the data before and after the date of 
that pricing change differently. 

 
3.3.1 Key Steps to Applying the Methodology Discussed Above to Our Data 
 
The high-level steps we follow in determining our estimates for lags 0 and 1 are as 
follows: 
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1. Plot the dependent variable against the independent variables to observe the visual 

patterns. 
 
2. Based on the plot, determine which of the models programmed in the spreadsheet 

seems to be an appropriate choice for our data.  In addition to the model that the 
actuary thinks is most appropriate, the actuary may want to run the simple 
regression model as a baseline for comparison of all models run. 

 
3. Fit the model and review the diagnostics.  The key statistical values we can check 

are the adjusted R-square value as well as the p-value for the F-test. We can also 
look at the residuals, checking the normality and constant variance assumptions, 
and spotting outliers. 
 
In addition to checking that the model makes statistical sense, the model needs to 
make sense based on knowledge we have of exogenous factors affecting the 
health care plan or book of business for which we are estimating incurred claims. 

 
4. Run additional models and review the diagnostics.  If you change one item at a 

time in running successive models, you will have an idea of the effect of each 
change.  For instance, let’s say your first model is a linear regression model with 
one independent variable, time.  If you want to improve on this model, you might 
next add either the weekend/weekday variable or the additional time variable, but 
not both at the same time. 

 
3.4 Numerical Example:  Deriving IBNR for Our Data Set 
 
As a first step, we show our data graphically.  The plot of our 34 PMPM estimates for the 
time period January 2001 through October 2003 shows the following: 
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Exhibit 3.6 

Graphical View of the Data for our Regression Analysis 
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Instead of showing claims costs constantly increasing over time, the graph seems to show 
two levels of claims costs, with one level for months 0 through 23 and another level for 
months 24 through 33; therefore, we will assign our (0,1) variable as follows: 
 

 0 for months 0 through 23; 
 1 for months 24 though 35. 

 
Note that we are assuming that the claims pattern that commenced at Lag 24 will 
continue in the two lags that we are predicting, Lags 34 and 35. 
 
Based on this observation, the first two models we run are the following: 
 

• LinRegr: Linear regression model as a base 
• Lin2Var: Linear regression model with second variable defined as: 

 0 for months 0 through 23; 
 1 for months 24 though 35. 

 
The key output values from LinRegr are the following, using our spreadsheet: 
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Exhibit 3.7 
Regression Results 

LinRegr Model 
 

Estimators for coefficients  
  p-values 
beta_0 135.2215 7.03E-20
beta_1 2.095960 9.19E-07
 
Standard Error 19.79333
R^2 0.534173
Adjusted R^2 0.519616
p-value for F-test 9.19E-07

 
This model has an adjusted R-square of 0.520; we would like to improve on this value.  
The p-value for the F-test and the p-values for the coefficients are all significantly less 
than 0.05.  Therefore, if we cannot improve on our adjusted R-square value, we would 
use LinRegr. 
 
The key output values from Lin2Var are the following: 
 

Exhibit 3.8 
Regression Results 

Lin2Var Model 
Estimators for coefficients p-values 
beta_0 148.52583 7.83E-22
beta_1 0.52689 2.49E-01
beta_2 42.78974 1.07E-04
   
Standard Error 15.72873  
R^2 0.71504  
Adjusted R^2 0.69665  
p-value for F-test 0.00000  

 
With Lin2Var, our adjusted R-square has improved from 0.520 to 0.697, an increase of 
0.177.  This relatively high increase in adjusted R-square indicates that our Boolean 
variable is contributing significantly in predicting the value of the dependent variable. 
 
To the Lin2Var model, we add the Day Factor, which is AdjLin2Var; with this model we 
obtain the following regression results: 
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Exhibit 3.9 

Regression Results 
AdjLin2Var Model 

 
Estimators for coefficients p-values 
beta_0 153.58718 1.39E-23
beta_1 0.52399 2.05E-01
beta_2 43.62881 2.09E-05
   
Standard Error 14.20020  
R^2 0.76025  
Adjusted R^2 0.74478  
p-value for F-test 0.00000  

 
 
Our adjusted R-square value is 0.745, which is an improvement over the adjusted R-
square value of 0.697 we obtained without the day factor. 
 
To see if our model can be improved, we now test to see if the exponential model, with 
the day and Time 2 factors (model AdjQuad2VarRegr), gives us an improved R-square 
value.  With model AdjExp2VarRegr, our results are the following: 
 

Exhibit 3.10 
Regression Results 

AdjExp2VarRegr Model 
 

Estimators for coefficients p-values 
beta_0 5.03637 2.66E-47
beta_1 0.00292 2.02E-01
beta_2 0.23455 3.12E-05
   
Standard Error 0.07853  
R^2 0.75219  
Adjusted R^2 0.73620  
p-value for F-test 0.00000  

 
 
With this model, our adjusted R-square value decreases from 0.745 with AdjLin2Var to 
0.736. We do not use this model because it is a more complicated model with a lower 
adjusted R-square.  We now see if using the quadratic model, with the Day Factor and 
Time 2 Factor (model AdjQuad2VarRegr) will improve the results.  Thus we run the 
AdjQuad2VarRegr model.  Our results are the following: 
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Exhibit 3.11 

Regression Results 
AdjQuad2VarRegr Model 

 
Estimators for coefficients p-values 
beta_0 163.07512 1.09E-21
beta_1 -1.64617 1.07E-01
beta_2 0.08586 2.46E-02
beta_3 25.54311 2.93E-02
Standard Error 13.25123  
R^2 0.79795  
Adjusted R^2 0.77775  
p-value for F-test 0.00000  

 
 
We see that the adjusted R-square value with this model is 0.778, which is the largest 
adjusted R-square value we have obtained.  We select this model for further analysis. 
 
Sometimes adding variables does not increase the accuracy of a model, which happens 
when we have multicolinearity.  The text by Belsey, Kuh, and Welsch discusses the issue 
of multicolinearity.   
 
As a check for reasonableness of this choice, we compare the R-square value of all of the 
models in our software as follows:  
 

Exhibit 3.12 
Summary of Adjusted R-Square Values 

 
Name Type of 

Model 
Adjusted R-Square Value 

LinRegr Linear 0.520 
QuadRegr Quadratic 0.721 
ExpRegr Exponential 0.503 
Lin2Var Linear 0.697 
Quad2VarRegr* Quadratic 0.740 
Exp2VarRegr Exponential 0.676 
AdjLinRegr Linear 0.553 
AdjQuadRegr Quadratic 0.747 
AdjExpRegr Exponential 0.549 
AdjLin2Var Linear 0.745 
AdjQuad2VarRegr Quadratic 0.778 
AdjExp2VarRegr Exponential 0.736 

 
* In this analysis, the Time 2 variable is defined as follows: 

 0  1 – 23 
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 1 24-35 
 
As this exhibit shows, the AdjQuad2VarRegr model has the highest Adjusted R-square 
value.  The residual graph for the AdjQuad2VarRegr model shows the following: 
 

Exhibit 3.13 
Residuals 

AdjQuad2VarRegr 
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The residuals in this model do not show a pattern.  Therefore, we do not reject our model 
based on our examinations of the residuals. 
 
Our results from the AdjQuad2VarRegr model are PMPM incurred values of $207.70 for 
November 2003 and $230.08 for December 2003.  Before we conclude that we will 
accept the values from AdjQuad2VarRegr as our estimates, we need to check these 
values for reasonableness.  Are these values reasonable?  The PMPM values we have 
from the completion method are the following: 
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Exhibit 3.14 

Testing for Reasonableness of Results 
2003 Per Member Per Month Input Values 

 
Jan-03 $208.59
Feb-03 179.89
Mar-03 195.55
Apr-03 188.06
May-03 202.00
Jun-03 188.86
Jul-03 217.83

Aug-03 219.59
Sep-03 247.26
Oct-03 215.69

 
Our PMPM values of $207.70 for November 2003 and $230.08 for December 2003 seem 
to be in a reasonable range based on the PMPM values we have calculated for 2003.  
Thus we accept the values from AdjQuad2VarRegr as our PMPM estimates.    
 
 
3.4.1 Adjustment for Catastrophic Cases 
 
We took a $750,000 catastrophic case out of our calculations, so our calculation of IBNR 
to this point does not include any reserve for catastrophic cases.  A general formula for 
calculating the mean value of IBNR for one catastrophic case is the following: 
 

• expected cost of catastrophic case 
multiplied by the 

• expected probability of claim occurring. 
 
We calculate our reserve for catastrophic cases as follows: 
 
With our data, let’s assume that the cost of catastrophic case is $750,000.  If we use a 
conservative estimate of the probability of the catastrophic claim occurring in a given 
month, we would only use our 24 months of completed claims as our base (calendar years 
2001 and 2002).  Thus our probability is 1/24.  The claim was incurred in January 2002 
and paid in August 2002 (Lag 7).  Thus the $750,000 was in IBNR in 7 out of 24 months.  
Our catastrophic reserve is calculated as follows: 
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Exhibit 3.15 
Calculation of Additional IBNR for Unknown Catastrophic Cases 

 
Cost Per Catastrophic Claim $750,000 (1) Cost For Actual Claim in Data 
Frequency 1/24 (2) Conservative Estimate – Based 

on Completed Months 
Months in IBNR 7 (3) 
IBNR For Catastrophic Cases $218,750 (4) = (1) × (2) × (3)    

 
A key issue with catastrophic claims reserves is the following: 

 
• If the catastrophic claim has not been incurred, the IBNR is over-stated by 

$218,750. 
• If the catastrophic claim has been incurred, the IBNR is under-stated by 

$531,250. 
 
This type of catastrophic claim lends itself to a separate financing arrangement.   Among 
the ways an insurer can approach this issue are the following: 
 

• Set up a separate catastrophic reserve for catastrophic claims – In this 
research, we did not have enough data on catastrophic claims to derive this 
IBNR. 

• Purchase reinsurance from an external source 
 
The prediction intervals that we are developing are designed to cover fluctuations in non-
catastrophic claims, while some sort of reinsurance arrangement can provide a margin for 
catastrophic claims. 
 
Apart from including a very large margin, the actuary needs to document the risk of 
under-statement due to catastrophic cases.  The best way to minimize the issue of 
unknown catastrophic claims is to attempt to get information on catastrophic claims from 
case management or other internal company sources; in other words, an actuary can’t 
minimize the occurrence of catastrophic claims, but s/he can minimize the occurrence of 
unknown catastrophic claims. 
 
If a catastrophic case is known, we just add the estimated cost of the case to our IBNR 
estimate.  For instance, if, through the case management department, we know about a 
$500,000 catastrophic case for which we have not paid any claims, we would add 
$500,000 to our IBNR. 
 
The estimate of IBNR for catastrophic cases can be refined by using statistical 
distributions that include a multiple number of claims and multiple claims amounts. 
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3.5 Calculating IBNR 
 
We have derived PMPM estimates for November and December 2003.  We calculate 
IBNR from these estimates as follows: 
 

IBNR = Incurred Claims – Claims paid to date 
 
where Incurred Claims = PMPM × Membership. 
 
Our calculation of IBNR for the months of November and December 2003 is the 
following: 
 

Exhibit 3.16 
Calculation of IBNR for Lags 0 and 1 

 
 Incurred Month  
 November 2003 December 2003  

PMPM Estimate $207.70 $230.08 (1)  
Members 11,902 11,844 (2) 
Total Incurred 
Claims 

$2,472,045 $2,725,068 (3) = (1) * (2) 

Claims Paid  
  Paid Month  
  Nov 2003 $58,510 N/A (4) * 
  Dec 2003 $1,225,307 $96,378 (5) 

 
  Total Paid $1,283,817 $96,378 (6) = (4) + (5) 
  
IBNR $1,188,228 $2,628,690 (7) = (3) – (6) 
 
* By definition, in our data, paid date occurs on or after the incurred date; therefore, the 
value for claims incurred in December 2003 and paid in November 2003 is not 
applicable.  The value $58,510, claims paid and incurred in November 2003, can be 
found in bold in the Appendix in Exhibit A1. 
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Our total IBNR without margin is the following: 
 

Exhibit 3.17 
Total IBNR as of December 2003 

Without Margin 
 
December 2003 – Lag 0 $2,628,690 (1)
November 2003 – Lag 1 1,188,228 (2)
December 2002 Through October 2003 – Lags 2 through 
12  

833,796 (3)

Sub-total 4,650,714 (4)=(1)+(2)+(3)
IBNR for Catastrophic Cases 218,750 (5)
  
Total $4,869,464 (6)=(4)+(5)
 
3.6  Confidence Intervals 
 
The upper bound of the 95% confidence interval is calculated as follows: 
 

Exhibit 3.18 
Calculation of the Upper Bound of a Prediction Interval (with 95% Confidence 

Level) 
 

 November 
2003 

December 
2003 

Total  

PMPM Value $207.70 $230.08  (1) 
One-Sided Prediction 
Interval Length 

28.82 33.00  (2) 

Upper Bound 
– Prediction Interval 

236.52 263.08  (3) = (1) + (2) 

Members 11,902 11,844  (4) 
One-Sided Interval 
for All Members (Margin) 

$343,016 $390,852  (5) = (2) * (4) 

IBNR – Best Estimate   $4,650,714 (6) Line (4) – 
Exhibit 3.17 

Half length of the Prediction 
Interval 

  $638,273 (7)* 

Upper Bound of IBNR with 
95% Prediction Interval 

  $5,288,987 (8) = (6) + (7) 

Margin as 
Percent of Best Estimate 

  12.1% (9) = (7) ÷ (6) 

 
* The confidence was calculated for lag 0 and 1 together, and not separately for lag 0 and lag 1.  Thus, from 
Line (7), $638,273 ≠ $343,016 + $390,852 (from line (5)) 
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Thus, we are 97.5% confident (the upper bound is only one side of the confidence 
interval) that, once all of the claims incurred on or before December 2003 are paid, the 
total paid will be less than or equal to $5,288,987, excluding catastrophic claims.  The 
margin is the amount that we are adding to have sufficient IBNR to cover paid claims 
97.5% of the time.   
 
Note that we did not assign a confidence interval around the catastrophic case IBNR. 
 
If we want different levels of confidence for our prediction intervals, we can use our 
spreadsheet to derive these levels.  Other prediction levels with our AdjQuad2VarRegr 
model are the following: 
 

Exhibit 3.19 
IBNR With Different Prediction Intervals 

 
Prediction 
Interval 

One Sided 
Prediction 
Interval 

IBNR With Margin 
(Without Catastrophic 
IBNR) 

IBNR With Margin (With 
$218,750 Catastrophic 
IBNR) 

95% 97.5% $5,288,987 $5,507,737 
50% 75%   4,864,011   5,082,761 
90 95%   5,288,902   5,507,652 
99% 99.5%   5,510,085   5,728,835 
 
A major limitation of the method that we just described in calculating prediction intervals 
is that the intervals are just based on our calculations for the most recent two months 
(Lags 0 and 1).  In our other paper in this journal (ARCH, 2007), we discuss methods 
where prediction intervals are calculated for all months. 
  
3.7 Summary 
 
In this paper, we have shown that just using the completion factor will often not yield a 
satisfactory result in the calculation of IBNR.  One has to use statistical methods and 
apply knowledge about the product to improve the calculation of IBNR. 
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Appendix 
 
The data set used in Section III is presented below.  Each row corresponds to an 
ascending month while each column corresponds to a lag.  Month 0 corresponds to 
January 2001 in the text.  Claim data is the following: 
 

Exhibit A1 
Claim Data 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12
0 180 436082 933353 116978 42681 41458.5 5088 22566 4750.5 3280.5 -187.5 1464 1696.5
1 5161.68 940722 561967 21694.4 171659 11007.8 19088 5212.94 4337.08 7843.52 2972.79 4061.21 10235.9
2 42263.5 844293 720302 94633.8 182077 32215.8 12936.9 22815 1754.41 4695.1 1325.66 757.52 2177.11
3 20780.6 762302 394625 78043 157950 46173.2 126254 4838.86 336.5 1572.86 9572.67 1947.42 5936.67
4 20345.9 772404 392330 315888 39196.7 21360.4 8720.76 5452.19 16627.4 2117.83 4119.37 5666.43 -1977.1
5 20490.7 831793 738087 65525.9 27767.9 12184.6 1493.28 11265 1805.47 29278.1 13019.7 2966.56 -83.05
6 37954.5 1126675 360514 89316.7 40126 16576.2 16701.4 2443.54 8265.69 11310.5 8006.03 1403.37 3123.59
7 138558 806362 589304 273117 36912.5 16831.5 19941.2 13310.2 8619.23 4678.52 3094.16 4608.62 236.1
8 28331.7 954543 246571 205528 60060.2 15198.5 42208 17568.2 1685.95 9897.12 3367.21 2062.16 421.49
9 104160 704796 565939 323789 45307.3 32517.9 26226.7 7976.11 3363.65 991.52 33962.8 2199.55 1292.75

10 40746.9 927158 425794 146145 66663.3 31214.1 12807.6 15858.6 373.68 3079.32 411.52 936.57 1874.71
11 10860.8 847338 272165 134798 71804.3 27800.1 17917 3929.79 2793.64 846.17 1961.73 1879.33 16059.9
12 77938.2 896195 544372 173606 41595.4 4209.16 16473.3 756000 -65.62 -1880.5 -4053.9 84232.7 4920.96
13 38041.4 1035439 438153 115587 12488.7 22260.1 13203.1 6394.65 2056.12 -3323.4 33397.4 3478.9 -1624.7
14 39409.5 1022024 255002 169881 35230.1 40307.5 21067.2 5377.81 5508.42 17606.1 -24320 1298.16 1362.02
15 68252.7 1414379 317110 91880.3 53969.6 10887.9 3170.9 11659.6 20860.7 1033.06 -21670 2633.57 148.7
16 124824 1053972 516876 145954 25171.2 12608.9 7704.25 29632.9 4555.18 6203.3 3872.11 1115.66 665.74
17 49725.3 1119099 533444 80181.9 32202.9 23204.7 18806.7 7944.07 4151.88 -910.3 3663.86 608.33 528
18 44317.5 1297335 385789 141155 150726 35075.2 16176.1 8070.24 67.03 14216.6 2325.84 7090.56 687.22
19 134152 1111151 493175 101439 46656.6 22824.1 12818.3 3780.94 1265.42 2466.91 -62165 246.82 -8689.3
20 29968.2 1382043 178587 71030.3 25708.1 15068.3 3145.03 -4058.2 -1919.6 4984.06 -1523 -3538.9 -477.91
21 210377 999963 528880 201410 58003 26174.1 -9371.4 2016.79 9794.64 6688.15 -40.13 453.36 -73.44
22 56654.4 1206370 376504 56321.8 19590.5 12054.8 21076.9 11572.8 4038.96 821.64 6611.88 -9677.9 714.96
23 89180.6 1240938 279553 57163.5 75343.9 12665 71741.4 9048.55 1297.94 12164.4 19615.6 -4603.9 -3183.9
24 131568 1301927 716180 150253 110031 78147.5 4609.85 19855 18447.7 14432.4 118.97 2747.78  
25 76262 1130312 692736 174283 38890.6 41810.9 8834.16 18122.5 4268.11 -290.76 2119.3   
26 159575 1313809 704116 68411.5 30184.6 64401.6 19228.7 -3020.5 3220.03 1994.04    
27 76312.7 1505842 437084 50872.4 116723 18159.6 10974.7 12663.7 8804.83     
28 104028 1667823 360676 153274 37529.2 34840 17479.1 9373.82      
29 79687.9 1235573 776240 65302.8 18722.7 10778.6 10614.6       
30 76394.6 1689354 442965 234171 36806.5 22351.3        
31 110460 1492980 589184 93366.4 180095         
32 196687 2011979 313416 166839          
33 268365 1027925 897097           
34 58510.1 1225307            
35 96378.3             
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Membership by month is the following: 
 

Exhibit A2 
Membership Data 

 
 Month  

Month Number Membership
Jan-01 0 11,154 
Feb-01 1 11,118 
Mar-01 2 11,070 
Apr-01 3 11,069 
May-01 4 11,130 
Jun-01 5 11,174 
Jul-01 6 11,180 
Aug-01 7 11,420 
Sep-01 8 11,400 
Oct-01 9 11,456 
Nov-01 10 11,444 
Dec-01 11 11,555 
Jan-02 12 11,705 
Feb-02 13 11,823 
Mar-02 14 11,753 
Apr-02 15 11,654 
May-02 16 11,703 
Jun-02 17 11,580 
Jul-02 18 11,577 
Aug-02 19 11,655 
Sep-02 20 11,735 
Oct-02 21 11,889 
Nov-02 22 11,951 
Dec-02 23 12,132 
Jan-03 24 12,227 
Feb-03 25 12,201 
Mar-03 26 12,130 
Apr-03 27 11,986 
May-03 28 11,927 
Jun-03 29 11,814 
Jul-03 30 11,787 
Aug-03 31 11,689 
Sep-03 32 11,731 
Oct-03 33 11,843 
Nov-03 34 11,902 
Dec-03 35 11,844 

 


