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1 Introduction

An equity-indexed annuity (EIA) is an insurance product with benefits linked to the per-

formance of an equity market. It provides a limited participation in the performance of an

equity index (e.g. S&P 500) while guaranteeing a minimum rate of return. Introduced by

Keyport Life Insurance Co in 1995, EIAs have been the most innovative annuity product

over the last 10 years. They have become increasingly popular since their debut and the sales

of EIAs have broken the $20 billion barrier ($23.1 billion) in 2004 and reached $27.3 billion

in 2005. See the 2006 Annuity Fact Book from National Association of Variable Annuities

(NAVA).

There are two common approaches to deal with equity-linked products: financial and

actuarial approaches. In the latter, it is generally assumed that insurance companies can

diversify the mortality risk. Working with this assumption and using the classical Black-

Scholes framework, Tiong (2000) and Lee (2002, 2003) use the Esscher transform method de-

veloped in Gerber and Shiu (1994) to obtain closed-form formulas for several equity-indexed

annuities. Lin and Tan (2003) consider a more general model for equity-indexed annuities,

in which the external equity index and the interest rate are general stochastic differential

equations. In a discrete time setting, Gaillardetz and Lin (2006) propose loaded partici-

pation rates based on implied loaded mortality probabilities using standard life insurance

information. The actuarial approach has also been used to evaluate equity-linked products.

This method relies heavily on the choice of risk measures (see Artzner et al., 1997, 1999,

and Wirch and Hardy, 1999). The financial and actuarial approaches have been compared

by Boyle and Hardy (1997). Attempts have been made by Jacques (2003) and Barbarin and

Devolder (2005) to combine the two approaches in the management of equity-linked prod-

ucts. Our goal is to integrate these two methodologies in order to protect the equity-linked

issuers against the possible losses incurred by a fair valuation. The approach in this paper

differs from the above by obtaining a loaded participation rate that is determined using the

financial and actuarial approaches.

The traditional insurance and annuity pricing method calculates the net premium of a

product as the expected present value of its benefits with respect to a mortality law. In order

to protect the insurance company against the mortality risk, the premium is determined as

the net premium plus a loading that is based on certain premium principles (see Bowers et

al., 1997). However, the traditional actuarial pricing is difficult to extend directly to the

valuation of equity-linked products since these products are embedded with various types

of financial guarantees. However, in this paper, we propose a premium principle for equity-

indexed annuities that protects the issuer against the mortality risk. Our approach derives

the fair participation rate based on a fair valuation of the equity-linked contract using the

financial approach. The dynamic hedging strategy underlying the fair valuation principle is

then extracted. Because of mortality risk, the application of the dynamic hedging leads to
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some errors in the hedging strategy. Using risk measures, we then obtain a new participation

rate based on the tail loading of the hedging error distribution. Risk management strategies

reducing risk relating to the hedging errors are also presented.

This paper is organized as follows. The next section presents a binomial model for the

equity index and introduces actuarial notation. We then present fair valuation approaches

for standard financial contingent claims and equity-linked products. Section 4 focuses on

the underlying hedging strategy used in the fair valuation of equity-linked products and

the errors caused by this strategy. Section 5 proposes premium principles as well as risk

management strategies that reduce the hedging error risk. Each of these sections is followed

by numerical examples presenting the implications of the different proposed approaches on

EIAs.

2 Underlying Binomial Model and Actuarial Notations

Binomial models have widely been used to model stocks, stock indices, interest rates and

other financial securities due to their flexibility and tractability. See Panjer et al. (1998)

for example. In this section, we employ a modified CRR binomial model (Cox, Ross and

Rubinstein, 1979) for a stock index. We then introduce the standard actuarial notation for

mortality probabilities.

Let δ be the force of interest, i.e. δ is a nominal annual rate of interest compounded

continuously. It is assumed that δ is constant. For each year, assume that there are N

trading periods, each with the length of ∆ = 1/N . The (stock) index process is denoted

as S(t), t = 0, ∆, 2∆, · · · , where S(0) is the initial level of the index. At time t, the index

process can take exactly tN +1 distinct values denoted S(t, 0), S(t, 1), · · · , S(t, tN). Indeed,

S(t, i) represents the index level at time t that has made “i” up moves. For the time period

[t, t+∆], t = 0, ∆, 2∆, · · · , the index S(t, i) has two possible outcomes : S(t+∆, i) = S(t, i)d

and S(t + ∆, i + 1) = S(t, i)u with d < u. Hence, the index process can move up from S(t)

to S(t)u, or down to S(t)d. Because of the constant assumption of the interest rates, the

time-t value B(t), B(0) = 1, of the money-market account is given by

B(t) = eδt, (2.1)

for t = 0, ∆, 2∆, · · · .

For the index process S(t), since the interest rates remain constant each year, it is

natural to assume that the values of d and u are constant, which will lead to a recombining

binomial model. The values of d and u will be obtained using the volatility structure of the

index process and they will be specified later. Without loss of generality, let us also assume

that the time-0 index value is one unity.

Let π and π̃ be the probability that the index value goes up during the period [t, t +

∆] under the physical probability measure P and the martingale probability measure Q
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respectively, i.e.

Pr[S(t + ∆) = S(t, i)u|S(t) = S(t, i)] = π, and Q[S(t + ∆) = S(t, i)u|S(t) = S(t, i)] = π̃,

(2.2)

for t = 0, ∆, 2∆, · · · .
That the discounted value process {S(t)/B(t)} is a martingale implies

π =
eδ∆ − d

u− d
. (2.3)

The no-arbitrage condition thus requires

d < eδ∆ < u. (2.4)

The model assumes the usual frictionless market: no tax, no transaction costs, etc.

Gaillardetz and Lakhmiri (2006) determine the price of EIAs under transaction cost. The

filtration associated with the index process is the one generated by the process.

We next introduce the standard actuarial notation, as described in Bowers et al. (1997).

Let T (x) be the future lifetime of insured (x) at time t = 0 and the modified curtate-future-

lifetime

K(x) = bN T (x)c∆, (2.5)

the fraction of future ∆ years completed by the insured (x) prior to death. Here, b.c is the

floor function.

Let t|∆qx denote the probability that (x) survives t years and dies within the following

∆ year, i.e.

t|∆qx = Pr [t ≤ T (x) < t + ∆] = Pr [K(x) = t] = Q [K(x) = t] .

Here, the martingale and the physical probability measures are assumed to be the same for

the mortality. Gaillardetz and Lin (2006) obtained different martingale probability measures

for the mortality under certain conditions. Define the probability that (x) survives to x + t

by

tpx = Pr [T (x) ≥ t] = Q [T (x) ≥ t] ,

which is also assumed to be the same under both probability measures.

3 Fair Valuations

3.1 Financial Contingent Claims

In this section, we evaluate financial contingent claims using the arbitrage-free theory. The

self-financing hedging strategy is also presented for the binomial model.
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Let Π(t, n) denote the time-t price of a contingent claim D(n), payable at time n

(n = 0, ∆, · · · and t ≤ n). From Harrison and Pliska (1981), the arbitrage-free price of

contingent claims using the martingale probability measure is given by

Π(t, n) = Ẽ

[
D(n)

B(n)
B(t) |F (t)

]
, (3.6)

where F (t) is the filtration and Ẽ[.] represents expectation with respect to Q.

For notational purposes, let

it = {i0, i∆, i2∆, · · · , it},

which represents the index’s realization up to time t and where it ∈ {0, 1, · · · , tN} is the

number of up moves up to time t with i0 = 0. Sometimes, we also use D(t, it) or Π(t, n, it)

to specify the index realization.

Harrison and Pliska (1981) also state that there is a one-to-one relation between a self-

financing strategy and a martingale (risk-neutral) probability measure Q defined by (2.3).

For t ≤ n, let {a(t, n, it), b(t, n, it)} be a portfolio strategy consisting of a(t, n, it) index shares

and an amount b(t, n, it) invested in the money market account. Since the binomial market

is complete, the contingent claim D(n) is attainable using a self-financing strategy, i.e.

D(n, in) = a(n, n, in)S(n, in) + b(n, n, in) = V (n, n, in), (3.7)

where V (t, n, it) represents the time-t value process of the replicating portfolio for a contin-

gent claim maturing at n, that is

V (t, n, it) = a(t, n, it)S(t, it) + b(t, n, it). (3.8)

Moreover, let V ((t + ∆)−, n, it+∆) denote the hedge portfolio from t that has accumulated

to t + ∆

V ((t + ∆)−, n, it+∆) = a(t, n, it)S(t + ∆, it+∆) + b(t, n, it)e
δ∆, (3.9)

for t = 0, ∆, 2∆ · · · , n−∆.

The hedging strategy is self-financing, which means that it does not require new invest-

ments and no withdrawal from the portfolio during the life of the portfolio, i.e.

V ((t + ∆)−, n, {it, it + j}) = V ((t + ∆), n, {it, it + j}), (3.10)

for j = 0, 1. From (3.8) and (3.9), it follows

a(t, n, it)S(t + ∆, it + 1) + b(t, n, it)e
δ∆

= a(t + ∆, n, {it, it + 1})S(t + ∆, it + 1) + b(t + ∆, n, {it, it + 1})
= V (t + ∆, n, {it, it + 1}), (3.11)
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and

a(t, n, it)S(t + ∆, it) + b(t, n, it)e
δ∆

= a(t + ∆, n, {it, it})S(t + ∆, it) + b(t + ∆, n, {it, it})
= V (t + ∆, n, {it, it}). (3.12)

for t = 0, ∆, · · · , n−∆. The solutions of (3.11) and (3.12) are given by

a(t, n, it) =
V (t + ∆, n, {it, it + 1})− V (t + ∆, n, {it, it})

S(t + ∆, it + 1)− S(t + ∆, it)
, (3.13)

and

b(t, n, it) =
uV (t + ∆, n, {it, it})− dV (t + ∆, n, {it, it + 1})

u− d
e−δ∆. (3.14)

Under the arbitrage-free condition, the value of the self-financing replicating portfolio must

be equal to the price of the contingent claim. Then, for all t and it, we must have

V (t, n, it) = Π(t, n, it), (3.15)

which is equivalent to (2.4) for the binomial model. A comprehensive introduction to the

binomial model may be found in Shreve (2005) or van der Hoek and Elliott (2005).

3.2 Equity-linked Products

Due to their unique designs, equity-linked products involve mortality and financial risk since

these contracts provide both death and accumulation/survival benefits. Moreover, the level

of their benefits are linked to the financial market performance and an equity index in

particular. Consider now an equity-linked product that pays
{

D(K(x) + ∆), if K(x) = 0, ∆, · · · , n− 2∆,
D(n), if K(x) = n−∆, n, · · · .

(3.16)

Note that, in practice, the final payoff D(.) might not be the same function as that of the

death benefits, but for simplicity we assume it to be the same.

Let FV (x, t, n, it) denote the fair value at time t (t = 0, ∆, · · · , n) of the equity-linked

contract given that (x) is still alive and the index process has taken the path it. Given that

K(x) ≥ t, the fair value may be obtained using the expected discounted payoff of the the

equity-linked contract

FV (x, t, n, it) = Ẽ

[
D(K(x) + ∆)I{K(x)<n−∆}

B(t)

B(K(x) + ∆)

+D(n)I{K(x)≥n−∆}
B(t)

B(n)
|it, K(x) ≥ t

]
, (3.17)
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for t = 0, ∆, · · · , n.

It is also natural to assume independence between the policyholder and the financial

market under the martingale measure. The fair value given in (3.17) becomes

FV (x, t, n, it) =
∑

l∈An−t−2∆

Ẽ

[
D(t + l + ∆)

B(t)

B(t + l + ∆)
|it

]
l|∆qx+t

+Ẽ

[
D(n)

B(t)

B(n)
|it

]
n−∆px+t. (3.18)

where At = {0, ∆, · · · , t}. It follows from (3.6)

FV (x, t, n, it) =
∑

l∈An−t−2∆

Π(t, t + l + ∆, it) l|∆qx+t + Π(t, n, it) n−∆px+t. (3.19)

The fair value of the equity-linked product can be expressed as a weighted sum of the

financial contingent claim prices of diverse maturities. The weight of each contingent claim

is determined by the probability that the policyholder dies in the given period or survives

to n−∆.

3.3 Equity-indexed Annuities

In this section, we determine the fair value of Equity-Indexed Annuity contracts based on the

approach presented previously. EIAs appeal to investors because they offer the same protec-

tion as conventional annuities by limiting the financial risk, but also provide participation in

the equity market. From Lin and Tan (2003) and Tiong (2000), EIA designs may generally

be grouped in two broad classes: Annual Reset and Point-to-Point. The index growth on

an EIA with the former is measured and locked in each year. Particularly, the index growth

with a term-end point design is calculated using the index value at the beginning and at the

end of each year. On the other hand, the index growth with point-to-point indexing is based

on the growth between two time points over the entire term of the annuity. Particularly, the

index growth with a term-end feature is calculated using the terminal index value. The cost

of the EIA contract is reflected through the participation rate. Hence, the participation rate

is expected to be lower for expensive designs.

To illustrate the fair valuation, we consider one of the simplest design of EIAs, known

as the point-to-point with term-end design. The payoff at time t can be represented by

Dα(t) = max
[
min

[
1 + αR(t), (1 + ζ)t

]
, β(1 + g)t

]
, (3.20)

for t = 0, ∆, · · · , n, where α represents the participation rate and the “gain” R(t) is defined

by

R(t) =
S(t)

S(0)
− 1. (3.21)
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It also provides a protection against the loss from a down market β(1 + g)t. The cap rate

(1+ζ)t reduces the cost of such a contract since it imposes an upper bound on the maximum

return. Here, we suppose for simplicity that there is no cap (ζ = ∞).

As explained in Lin and Tan (2003), an EIA is evaluated through its participation rate

α. Without loss of generality, we suppose that the initial value of EIA contracts is one

monetary unit. The present value of the EIA is a function of the participation rate through

the payoff function Dα(t), t = ∆, 2∆, · · · , n. By holding all other parameters constant, the

fair participation rate α1 is characterized by FVα1(x, 0, n, i0) = 1. Here, the subscript α1

is added to point out that the EIA contract is evaluated through the participation rate.

Through numerical methods, we may then solve for α1 using (3.19).

3.4 Equity-indexed Annuities: Example

Our example involves a five-year EIA issued to a male aged 55 with minimum interest rate

guarantee of 3% on 90% of the premium. The mortality of the policyholder is assumed to

follow the 1979− 1981 U.S. Life Table (see Bowers et al., 1997, Table 3.3.1). Moreover, we

assume that the insurer (x) may die only at the end of each year. The force interest δ is

set to be constant over time and is equal to 6%. The index is governed by the CRR model

introduced previously with S(0) = 1 and where the number of trading dates N is 6. The

index’s volatility is assumed to be constant and is 25%. In other words, u = eσ/
√

N = 1.107

(σ = 0.25) and d = u−1 = 0.903. Using (2.3) with N = 6, the index martingale probability

of going up is π̃ = 0.524.

The fair participation rate α1 for the point-to-point EIA class with term-end point is

equal to 69.31%.

4 Dynamic Hedging and Errors

This section presents the dynamic hedging underlying the fair valuation of equity-linked

products presented previously and determines the errors caused by the hedging strategy.

Indeed, the fair value given by (3.19) does not represent the usual risk-neutral price since

the combined insurance and financial markets, even under independence assumption, leads

to an incomplete market. This is due to the fact that insurance products cannot be treated

as standard financial assets, since they are neither liquid nor accessible to each investor.

However, Equation (3.19) is based on the possibility of diversifying mortality risk, which is

fundamental in insurance.

From (3.19) and (3.15), the fair value of the equity-linked contract could be written as

FV (x, t, n, it) =
∑

l∈An−t−2∆

V (t, t + l + ∆, it) l|∆qx+t + V (t, n, it) n−∆px+t. (4.22)

8



for t = 0, ∆, · · · , n, where At = {0, ∆, · · · , t}. Using (3.7) and (4.22), the dynamic hedging

strategy implied by the fair valuation is given by

FV (x, t, n, it) =
∑

l∈An−t−2∆

[a(t, t + l + ∆, it)S(t, it) + b(t, t + l + 1, it)] l|∆qx+t

+ [a(t, n, it)S(t, it) + b(t, n, it)] n−∆px+t

= a∗(x, t, n, it)S(t, it) + b∗(x, t, n, it)

= V ∗(x, t, n, it), (4.23)

where

a∗(x, t, n, it) =
∑

l∈An−t−2∆

a(t, t + l + ∆, it) l|∆qx+t + a(t, n, it) n−∆px+t, (4.24)

b∗(x, t, n, it) =
∑

l∈An−t−2∆

b(t, t + l + ∆, it) l|∆qx+t + b(t, n, it) n−∆px+t, (4.25)

and V ∗(x, t, n, it) represents the time-t value process of the replicating portfolio for an equity-

linked product maturing at n. Hence, the fair value of equity-linked contracts may be

expressed as a weighted sum of different replication portfolios. It can be decomposed into

a∗ index shares and b∗ invested in the money market account. Let V ∗(x, (t + ∆)−, n, it) be

the hedge portfolio from t that has accumulated to t + ∆, which is explicitly given by (3.9)

with superscript ∗ for a, b, and V .

The hedging strategy underlying the dynamic hedging is not self-financing, which means

that the issuer will have to invest or withdraw from the account in order to keep the hedging

strategy solvent. The error term is used to refer to the addition or subtraction of money

from the replicating portfolio. There are two causes of errors: survival and death. The latter

occurs when, in case of death, the accumulated hedging portfolio is not equal to the payoff

of the equity-linked contract, while the former occurs when readjustment of the hedging

portfolio is needed in case of survival. The error present value is defined by

ERROR =∑

l∈AK(x)−∆

[
(FV (x, l + ∆, n, il+∆)− V ∗(x, (l + ∆)−, n, il+∆))e−δ(l+∆)

]

+
[
D(K(x) + ∆, iK(x)+∆)− V ∗(x, (K(x) + ∆)−, n, iK(x)+∆)

]
e−δ(K(x)+∆), (4.26)

if K(x) = 0, ∆, 2∆, · · · , n− 2∆, with the physical probability given by

Pr [K(x) = t, it+∆] = t|∆qx πit+∆(1− π)(t+∆)N−it+∆ . (4.27)
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If K(x) = n−∆, n, · · · , we have

ERROR =
∑

l∈An−2∆

(FV (x, l + ∆, n, il+∆)− V ∗(x, (l + ∆)−, n, il+∆))e−δ(l+∆), (4.28)

with the physical probability given by

Pr [K(x) ≥ n−∆, in−∆] = n−∆px πin−∆(1− π)(n−∆)N−in−∆ . (4.29)

Note that there is no error after time n − ∆, since at this time the product becomes

a financial derivative. Given K(x) ≥ n − ∆, the policyholder will receive D(n) at time n

in either cases, and the underlying contingent claim can then be perfectly hedged using a

self-financing strategy. Bear in mind that negative errors represent gains for issuers and,

conversely, positive errors represent losses for the insurance company.

4.1 Dynamic Hedging and Errors: Example

In this numerical illustration, we consider the same set of parameters as in the previous

example. It still involves a five-year point-to-point EIA issued to a male aged 55 with

minimum interest rate guarantee of 3% on 90% of the premium. The mortality of the

policyholder is assumed to follow the 1979 − 1981 U.S. Life Table (see Bowers et al., 1997,

Table 3.3.1) with death occurring only at the end of each year. The index is governed by

the CRR model with σ = 25%, δ = 6%, and N = 6. The index physical probability of going

up is set such that

π =
eµ∆ − d

u− d
, (4.30)

with µ1= 15%, which implies that π = 0.598.

Figure 1 presents the histogram of the hedging error distribution for the point-to-point

with the term-end point design, which is given by (4.26), (4.27), (4.28), and (4.29). We also

obtain the expected value, the standard deviation (Std), the 95% conditional tail expectation

(CTE), and the 95% value-at-risk (VaR) of the errors.

Insert Figure 1

This distribution will serve as a benchmark for alternative hedging strategies. The

mean of the hedging errors is zero since the participation rate is designed to allow for exact

replication when the mortality of the group is equal to its expectation. Because holdings

in portfolios of various maturities do not differ substantially, the inherent dynamic hedging

error is small relative to the size of the contract; therefore, most of the risk is transferred to

1The parameter µ may be estimated using the index data.
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the hedging strategy. This is observed in the small range of the distribution and its standard

deviation of only 1.4%. Although the distribution has zero mean, it is right-skewed with

mode close to 1%. Also, the probability that the insurer records a positive loss on the issue

of this EIA is 45%; this is consistent with the skew ness of the distribution. The VaR95%

is 2.8%, which means that 5% of the time, the issuer loses more than 2.8% of the contract

value. If the loss exceeds the VaR95%, the insurer assumes, on average, a (CTE95%) loss of

3.2% of the contract; thus, catastrophic events typically result in dangerously high losses.

Compare this figure to an average loss of 1.25%, given that the issuer experiences a loss.

These last measures are good indicators of the inherent risk of the hedging strategy, since

they use the entire right tail of the distribution. Gaillardetz and Lakhmiri (2006) present

the effect of portfolio diversification on the hedging errors.

5 Tail Loading and Risk Management Strategies

This section proposes a new premium principle for equity-linked products based on the dy-

namic hedging strategy and risk measures. The proposed approach is inspired from actuarial

premium principles (see Bowers et al., 1997), which usually loads the premium to protect

the insurance company against mortality risk2. Similarly, the proposed premium principle

loads the equity-linked premium to protects the issuer against the dynamic hedging errors.

Different investment strategies are also presented. Those risk management strategies may

be grouped in two broad classes: static and dynamic. The former sets an investment strat-

egy for the loading at time 0 and keeps the same positions in the financial market during

the contract life. The latter adjusts the investment strategy every ∆ period, based on the

underlying dynamic hedging strategy. Each investment strategy is set such its fair value is

one unity at time 0.

The pricing principle has three distinct steps. We first obtain the fair value of the equity-

linked products. In particular, the participation rate α1 for the equity-indexed annuity is

obtained such that the fair value of the contract is one unity. The distribution of the hedging

errors is then obtained using the dynamic hedging strategy. Based on this information, a

tail loading is determined using a risk measure. For instance, the 95% value-at-risk may be

used to obtain a tail loading of 2.8% in the previous example. Let ε (ε > 0) be the choice

of tail loading based on the risk measure, e.g. ε = 2.8%. A loaded participation rate for

the equity-indexed annuity is then obtained by setting the fair value of the contract equal

to 1− ε. In other words, the participation rate α2 is set such that

FVα2(x, 0, n, i0) = 1− ε, (5.31)

which is defined using (3.19).

2Mortality risk can never be perfectly diversifiable.
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Note that the α2 replicating portfolio has a time-t value process V ∗
α2

(x, t, n, it) and a

present value of 1− ε at time 0. It is clear that α2 ≤ α1 if and only if ε≥ 0.

5.1 Strategy I

In strategy I, the insurer invests 1
1−ε

in the replicating portfolio α2. Hence, the asset share

a∗α2
and the investment in the money market b∗α2

is increased by a factor 1
1−ε

. The fair value

of this investment strategy is given by

a∗α2
(x, 0, n, i0)

1− ε
S(0) +

b∗α2
(x, 0, n, i0)

1− ε
=

V ∗
α2

(x, 0, n, i0)

1− ε
= 1, (5.32)

since V ∗
α2

(x, 0, n, i0) = 1 − ε. In other words, the insurer invests 1 − ε in the α2 replicating

portfolio and also ε in the α2 replicating portfolio.

The present value of the dynamic hedging errors is now obtained using

ERROR =
∑

l∈AK(x)−∆

[(
FVα2(x, l + ∆, n, il+∆)− V ∗

α2
(x, (l + ∆)−, n, il+∆)

1− ε

)
e−δ(l+∆)

]

+

[
Dα2(K(x) + ∆, iK(x)+∆)− V ∗

α2
(x, (K(x) + ∆)−, n, iK(x)+∆)

1− ε

]
e−δ(K(x)+∆), (5.33)

if K(x) = 0, ∆, 2∆, · · · , n− 2∆, and

ERROR =
∑

l∈An−2∆

(
FVα2(x, l + ∆, n, il+∆)− V ∗

α2
(x, (l + ∆)−, n, il+∆)

1− ε

)
e−δ(l+∆),

(5.34)

if K(x) = n−∆, n, · · · , with physical probabilities given by (4.27) and (4.29), respectively.

5.2 Strategy II

Strategy II suggests that the insurer invests 1 in the replicating portfolio α1. It is clear that

the fair value of the replicating portfolio is 1 since α1 has been set such that the fair value

of the contract is 1.

This investment strategy is inspired from actuarial science. Generally, premiums for

standard insurance products are evaluated using premium principles (e.g. standard deviation

principle, percentile principle, etc.) and the reserves are then obtained using the equivalence

principle (see Bowers et al., 1997).
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The present value of dynamic hedging errors is now obtained using

ERROR =∑

l∈AK(x)−∆

[(
FVα2(x, l + ∆, n, il+∆)− V ∗

α1
(x, (l + ∆)−, n, il+∆)

)
e−δ(l+∆)

]

+
[
Dα2(K(x) + ∆, iK(x)+∆)− V ∗

α1
(x, (K(x) + ∆)−, n, iK(x)+∆)

]
e−δ(K(x)+∆), (5.35)

if K(x) = 0, ∆, 2∆, · · · , n− 2∆, and

ERROR =
∑

l∈An−2∆

(
FVα2(x, l + ∆, n, il+∆)− V ∗

α1
(x, (l + ∆)−, n, il+∆)

)
e−δ(l+∆),

(5.36)

if K(x) = n−∆, n, · · · , with physical probabilities given by (4.27) and (4.29), respectively.

5.3 Strategy III

In Strategy III, the issuer invests 1 − ε in the α2 replicating portfolio and invest ε in the

index and/or money market account. This strategy is different than strategies I and II since

it is using a static investment strategy for ε. Similar to Strategy I, the insurance company

invest 1− ε in portfolio α2. However, they also invest ε−φ in the money market account and

buy φ index shares at time 0. Those proportions will remain constant over the contract’s

life. The fair value of this investment strategy is then given by

(
a∗α2

(x, 0, n, i0) + φ
)
S(0) + b∗α2

(x, 0, n, i0) + ε− φ = V ∗
α2

(x, 0, n, i0) + ε = 1, (5.37)

since S(0) = 1.

Under Strategy III, The present value of dynamic hedging errors is now obtained using

ERROR =∑

l∈AK(x)−∆

[(
FVα2(x, l + ∆, n, il+∆)− V ∗

α2
(x, (l + ∆)−, n, il+∆)

)
e−δ(l+∆)

]

−(ε− φ) +
[
Dα2(K(x) + ∆, iK(x)+∆)− V ∗

α2
(x, (K(x) + ∆)−, n, iK(x)+∆)

−φS(K(x) + ∆, iK(x)+∆)
]
e−δ(K(x)+∆) (5.38)

if K(x) = 0, ∆, 2∆, · · · , n− 2∆, and

ERROR =∑

l∈An−2∆

[(
FVα2(x, l + ∆, n, il+∆)− V ∗

α2
(x, (l + ∆)−, n, il+∆)

)
e−δ(l+∆)

]

−(ε− φ)− φS(n−∆, in−∆)e−δ(n−∆) (5.39)

if K(x) = n−∆, n, · · · , with physical probabilities given by (4.27) and (4.29), respectively.
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5.4 Risk Management Strategies: Example

In this numerical illustration, we consider the same set of parameters as in the previous

examples. It still involves a five-year point-to-point EIA issued to a male aged 55 with

minimum interest rate guarantee of 3% on 90% of the premium. The mortality of the

policyholder is assumed to follow the 1979 − 1981 U.S. Life Table (see Bowers et al., 1997,

Table 3.3.1) with death occurring only at the end of each year. The index is governed by

the CRR model with σ = 25%, δ = 6%, N = 6, and π given by (4.30), where µ = 15%.

The loaded participation rate is obtained using the premium principle presented previ-

ously. The fair participation rate α1 equal 69.31% (see first example). The corresponding

hedging error distribution is illustrated in Figure 1. The tail loading ε is obtained using the

95% value-at-risk, which is equal to 2.8%. Hence, the loaded participation rate α2 = 59.35%,

which is evaluated using (4.22); that is FVα2(x, 0, n, i0) = 97.2%.

Figures 2 and 3 considers hedging errors for the investment Strategies I and II, respec-

tively. The errors are obtained using (5.33) and (5.34) for Strategy I and (5.35) and (5.36)

for Strategy II.

Insert Figures 2 and 3

Strategy 1 and 2 require the issuer to invest in a hedging strategy whose value is

greater than the EIA contracted on the loaded participation rate α2. Thus, the value of the

a portfolio at maturity is always greater than or equal to its corresponding payoff. Since the

overall effect of this is to reduce the hedging error in case of death, losses tend to shift to the

left. Accordingly, the mean values for these Strategies are −3.3% and −5.7% respectively.

In addition, due to the overall leftward shift, there is a reduction in the frequency of positive

losses; the probability of experiencing such an event under Strategy 1 and 2 are now only

9% and 7%, a dramatic decrease for the original 45%. Whenever the hedging portfolio is

readjusted in the case of survival, errors are also magnified. This magnification causes an

increase in the dispersion of the distribution, as reflected in standard deviations of 2.3%

for Strategy 1 and 6.67% for Strategy 2. This also gives rise to pathological cases, in with

some outcomes produces profit as high as 20% and 80% of the contract value. It is clear

that Strategy 2 has distorded the original hedging error distribution more than Strategy 1;

however, Strategy 1 outperforms its counterpart in reducing the size of the right tail. The

VaR95% is now 0.21% and 0.32%, the CTE95% measure is 1.16% and 1.77% and the expected

loss given a positive loss is 0.72% vs 1.26%, respectively. These are, of course, all below

benchmark values.

Figures 4 present hedging errors for the investment Strategy IIIA, where φ is equal to

0. The errors for this strategy are obtained using (5.38) and (5.39).

Insert Figure 4
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Under Strategy IIIA with φ = 0, the mean of the hedging errors is −2.80%, because

the issuer realizes a net gain of ε = 2.80% in average. The standard deviation is 1.89%.

The VaR95% is 0.74%. The CTE95% is 1.55%. The probability of recording a positive loss is

13.47%. The expected loss, given the loss is positive is 0.82%.

Figures 5 and 6 still present hedging errors for the investment Strategy III, where φ is

determined according to an optimal investment strategy. We present the hedging errors for φ

that minimizes either the 95% value-at-risk in Figure 5 (Strategy IIIB) or the 95% conditional

tail expectation in Figure 6 (Strategy IIIC). There is no short/long and borrowing limit for

the index and the money market account, respectively. For both strategies, the errors are

still obtained using (5.38) and (5.39).

Insert Figures 5 and 6

In Figures 5 and 6 φ is 5.89% and 3.70%, respectively. For Figure 5, this means that

ε − φ = −3.09% is held in the money-market account, which constitutes a loan. The same

is true for Figure 6, where ε − φ = −0.09% is also negative. This seems to suggest that

catastrophic losses tend to occur when the index level is high, since the position in stock

partially offsets the claim by the insured. The expected value is −4.83% and −4.07%,

respectively. The standard deviation for Figure 5 and 6 is 4.53% and 3.29% respectively.

The VaR95% is −0.52% and −0.18%; notice that these static strategies are able to generate

profits, at least 95% of the time. The CTE95% is 1.32% and 0.99%, respectively. The

probability of registering a positive loss is 2.92% and 4.76% respectively. The expected loss,

given a positive loss is 2.43% and 1.04% respectively.

6 Conclusions

The purpose of this paper is to present a loaded participation rate for equity-linked products

that can be implemented in practice. To this end, we introduce a tail loading on the hedging

errors. This is an improvement over the standard financial approach since the issuer is

protected against the idiosyncratic mortality risk. The errors are extracted from the dynamic

hedging strategy, which underlies the fair valuation. We also present risk management

strategies that reduces the mortality risk. A detailed numerical analysis is then performed

for a point-to-point with term-end design EIA.

Our methodology may be used to evaluate variable annuities (segregated fund contracts

in Canada) because of the similarity in payoff structure between EIAs and VAs.
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Figure 1: The present value of dynamic hedging errors
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Figure 2: Strategy I: The present value of dynamic hedging errors
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Figure 3: Strategy II: The present value of dynamic hedging errors
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Figure 4: Strategy IIIA: The present value of dynamic hedging errors
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Figure 5: Strategy IIIB: The present value of dynamic hedging errors

−30 −20 −10 0

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Percent Discrete 
Hedging Error

P
ro

ba
bi

lit
y

Expected :  −4.0748

Std :  3.2939

CTE :  0.986

VaR :  −0.1789

Figure 6: Strategy IIIC: The present value of dynamic hedging errors
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