Weather Derivatives and

Short-Period Rainfall Indices

Dr. Barry Turner
Dept. of Atmospheric and Oceanic Sciences
McGill University

Presentation Outline:

- Weather and financial risk
- Catastrophic and non-catastrophic events
- Weather derivatives and useful indices
- Rainfall time series for derivative valuation
- Modeling daily rainfall accumulations
- Modeling hourly rainfall accumulations

Weather and Financial Risk

- Financial risk due to weather uncertainty

Agriculture
Natural disasters (hurricanes)
Energy (both supply and demand)

- Weather insurance

For high risk, low probability events

- Weather derivatives

For low risk, high probability events

Catastrophic Weather Event: Hurricane Katrina

www.spatiallyadjusted.com/2005/08/30/satellite-image-of-hurricane-katrina-approaching-the-gulf-coast/

http://www.katrinahelp.com/hurricane-katrina-pictures.html

Non- Catastrophic Weather Events

- Wind - reduction in rounds played
- Rain - reduction in rounds played, course damage or reduced playability
- Heat - reduction in rounds played, increased irrigation costs
- Cold - reduction in rounds played,
http://www.guaranteedweather.com/display_file.php?file=254

Useful Indices for Weather Derivatives

- Temperature-based

Heating Degree Days (HDD)
Cooling Degree Days (CDD)
Relatively continuous in space and time

- Precipitation based

Intermittent, mixed distribution
Statistics depend on averaging in time and space

Hourly Rainfall (6 May 2006)

Multiplicative Cascade

FIG. 3. One-dimensional version of a cascade model of eddies, each breaking down into two new ones. The flux of kinetic energy to smaller scales is divided into nonequal fractions p_{1} and p_{2}. This cascade terminates when the eddies are of the size of the Kolmogorov scale, η.
(From Meneveau and Sreenivasan, 1987. Phys.Rev. Letters, 59, 1424-1427)

FIG. 4. Different stages during the construction of the proposed p model of the dissipation field [(a) first stage, (b) fifth stage, (c) twelfth stage], and (d) an experimental signal of ϵ. corresponding to the twelfth stage of construction (see text).
(From Meneveau and Sreenivasan, 1987. Phys.Rev. Letters, 59, 1424-1427)

Daily Rainfall Accumulation Modeling

- Occurrence and severity of precipitation
- Each day may have rain (R) or no rain (NR)
- For raining days, accumulation varies
- Occurrence: First-order Markov model
- Severity: Gamma distribution(s)
\sim Independent day-to-day

1971-2000 Daily Total Precipitation Records by Day of Year, Dorval Trudeau Airporth, May 1 - June 19

May		T	0	1.3	4.8	0	9.7	0	2	0.4	0	0	T	0.2	1.2	0.6	7	0.2	0.2	T	0	8.8	3	0	18	0	0.5	10	0	0	
May	2	T	1	5.3	0		2	10.3	T	0	0	0	0	16.1	0	0	0.4	0 T	T	15.8	0	4.2	5.4	0	T	0	T	T	T	0	0
May	3	4.8	10.9	10.2	7.9	0	2.3	0	T	14.8	0	0	0	2.6	0	0	T	0	0	4		T	0.4 I	MW	0		T	28.5	5.5	0	0
May	4	14	12.7	T	T	1.5	T	0	0	T	0	0	0	4.2	15.1	1.2	1.2	0	-	0	0	0			0		I	0	8.5	T	0.5
May	5		3.6	1	0	0.8 T	T	3.4	0	1	0.8	0	0	2.4 T		12.6	5.2 T	T	0	1.6	12.8	0	0	7.4	0	1.4	T	0		T	0
May	6		4.1		19.8	0	3	T	0	0	5.4	7	0	0	0	2	1	4	0	19.2		17	0	22.8	T			1.5	3.5	0	1.5
May	7	0	0	0	3.8	0	23.1	0	0	0	4	0	0	0.4	0	3	11.6	0.2	0	2	0.4	3	0	0	0	0	-	0	0.5	0	5.5
May	8		0	3.3		0	0.8	0	2.4	0	0	0	4	21.2	32.8	0	4.6	0	0	3.6	T	0	0	0	1.2	0	0	0	0	7.5	
May	9	0	0	19.8	21.6	0	0	0	12.8	0	4.4	0	3.4	9	0.6 T	T	0	0.2	0			0	2.4	0	1.2	0	0		T	1.5	21.5
May	10	0	0	2.5	3.6	0	0	0		0		1.6	0	2	0	0.8	0.2	0	0	0	11.2	0		T	0.8	0.2	15	0.5		0	29.5
May	11	0	0.5	9.4	0	0	10.2	0	0	0	2	23.4	0	0.2	9	1.4	0	10.8	1	6.2	5.6	0	0 T	T	0.8	10	13.5	0	0	0	1.5
May	12	1.8		4.1	14.2		T	0.7			0	16.4		0	2.6	0.2	0	1.6 T		9.6		0	0	2.4	2.6	0.8	29.5	7.5	0	0	0
May	13	0	0	T		T	0	0	T	4.6	T	1.8	0	0	0.2 T		0	0	7.2	2.6		0	3.8	0.6	O	T	0		0	0	2.5
May	14		3.6	0		0	4.6	0	0	0	0.4	0	0	0	1.2 T		0	2.8	0	0.2	0	T	0 I	MW	0		T	0	0	0	
May	15			T	1.3	10.7	0	0	7	4.2	0	3.8	0	10	2.8	0	0	11.4		0	0.8	0	0				T	5.5	0		
May	16	0.8	8.6			13.7	0.5	0	3.8	2.6	0	1.4	0.2	0 T		1.6	8.4 T	T	8	0	0.2	0	0.8	MW	33.4	0.4	0.5	1	0	0	
May	17	1.8		9.4		0	1	0	0.6	0	0	0	0	0	0	0	1.8 T		6	0	34.4	19.8	15.6 I	MW	3	15.8	0	0	0.5	0	0
May	18		1.3	11.2	0	0	6.6	0	1.4	0	28.4		T	0	0		0 T	T	0.4	0		0	0	0		0	13.5	0	0	0	34.5
May	19	0	0	8.9	0	0	31	0	0	0	0	0		0.2	T	T	10.8	0 T	T	0	0.6	0	0	4.4	0	0		0.5	0	11.5	0
May	20	8.9	0	1	0	0	2	0	0.2		0	0	2.6	1.8 T	T		5.6	0	8.6	0	5.6	0	0	4	0	0	10.5		4.5	0	0
May	21	0.3	0	3.8 '		0	0.3	0	3.4	5.6	0	1.4	0	0	0.4	0.4	2.4 T		7.6	3.2	1.6	0		MW		T		0.	0.5	0	0
May	22	0	0	T	6.4	0	1.3	0	0	T	0	0	0	2.4 T		0	6.6	8.2	0	1.8		0	0 T	T	0	0	0.5		0		0
May	23	0	0	0	5.8	0	1.5	0	0	1.2		0	T	7	26.8	0	9.6	6.2		0		0	3.8	0	. 4	2.8		0	0	0	1
May	24		-	0	6.1	0	0.5	0	0		0	0	0.8	0.2	1.2	0	1.6	0.6		3	0	0		18.7	T	2	0	0.5	0	16	22
May	25	4.3	0	0		0	0	0	0	8	0	0.6	0	0.2	0.2 T		0	0 T	T	T	0	1.8	0	0.4	4.6	0	0	0.5	0	1	6
May	26	0.8	0	0	2.8	11.7	0.3	0	0	10.8	0	1.8	0	14.4	0.2			T T	T	4	0	31	T	0.6	24.8	0.6	0	0		5	1.5
May	27	1.8	0	0		17.5	0.5	0	0	9.3	0	14.2	0	8	0	7.4	0	0.6	0	1.6	0	0.4		0.2	0	0	0	0	0	1.5	0
May	28	0	0	19.8	0.3	0	0	10	0	3.6	0	10	1.4	0		0	0	3.4	0	0	0	0	0	0.2	1		T	0	0.5	0.2	0
May	29	0	0	2.3	1.5	0	0	0	0	. 4	0	0.8			21.4	0	0	2	0	0		1	0	1	1.4	25.5	.	0	2.5	0	0
May	30	0	15.5	0		16.3	0	0	0	9.7	1.5	4.4	0	26.4	2.4 T		3.8 T		11.2	4.6	0	3.4	0	0	3.6			5.5	0	0	0
may	31	0	6.4	7.1	5.1	1	18.3	0	10.2	4.8	0.4	0	1.8	8.2	0	8.4	0.6	2.8	0	T	0	0.8	20.2	17	2.6	0	0	0	20	0	T
June	1	O	17		0	6.6	0.3	0.2	0	0	0.2	0	8.4	T	0	0.2	12.4	2.4 T		0.2	0	T	2.2 I	MW	2	0	0	0	0	1.5	0
June	2	3	17.5	0	0	0	0	T	3.5	0	T	0	1.4	0.6	0	0	0 T		0.2	2.2		0	0	0	5	4.5	0	0	9	14.5	0.5
June	3	1	0	0	5.6	T	2.5		0	0	0.8	4.2	0	T T	T	0	0	2.4	0	0.2		T	0	0.2	0	49.2	1.5	0	0.5	11.5	1
June	4		10.2	1	0	1.8	0	0.2	0	0	2.4	10.6	0.8	3.4	0.8	0	T	0	0	15.8		T	0	0	0	0	3.5	0	0.5	0	1
June	5	0	0	T	T	20.1	0	2.8	4.8	2.6	0	0	1.2	0.2	0	11.4	0.2 T		0.4	0	T	T	0.8	3.4	0	0	1			0	0
June	6	0.3	0	0	0	6.6	0.5		0	0	0	18	1.4	5.8	5.6	3.8	0	0	0	0	0.2	0	18	1.2	12	0	0	0	0	0.5	0.5
June	7	7.4	0	2	0	3.8 T		12.5	5	0	0	0.4	0		14.2	0	1.4 T		0	0		0	13.6 T		5.2		11		T	1.5	0
June	8	1.5		T	0	0.5	6.4	2.5	2	6.6	0.8	9.8	0	2.4 T		T	5	61.6	0	0	T	0	0	0		T	2			T	3.5
June	9	0	18.8	T	T	0	0	T	4.8	0	5.8	3.8	0	0	0	1	0	19.6	0	4.8	4.2	0	0	0.8	0	0	17	0	0	0	T
June	10	0	9.1	2.5	24.6	0	0	0	0	T	0.2	0.2	0	1.6 T		0	0	0	0.4	38.4	2.6	0	0	0	0	0	2	0	0	0	3
June	11	0	0	11.9	1.5	0	14		0	6.4	0	T	3.2	0	0	0	6	0.2 T		0.6	1	0.2	0	0.4	0.4	2.5	6	0	T	0	13
June		0		24.9		4.8	0		0	2.4	0	1.4	0	3.6	0		8.6	4.6	0	0	0	5	32	0	3.8	0			10.5		

Environment Canada Daily Total Precipitation Records Dorval Trudeau Airport (May 1971-2000)

Random Rainfall Occurrence, Daily Occurrences Indedpendent
0 for 'no rain' (NR) day and 1 for 'rain' (R) day

First-Order Markov Model for Daily Rainfall Occurrence
0 for 'no rain' (NR) day and 1 for 'rain' (R) day

Distributions of Daily Rainfall Accumulations

Hourly Rainfall Accumulation Modeling

- Occurrence and severity of precipitation
- Each hour may have rain (R) or no rain (NR)
- For raining hours, accumulation varies
- Occurrence: Higher-order Markov model
- Severity: Lognormal distribution(s)

Hour-to-hour dependence

Short-Period Rainfall Measurements

- POSS (Precipitation Occurrence Sensor System)
- Low power radar
- Vertically pointing
- Detects raindrops
- Measures drop speeds
- Determines drop sizes
- Calculates rainfall rates
http://www.radar.mcgill.ca/dsd.html

Independent	Previous Hour Dependence		Two Previous Hours		Three Previous Hours	
$\mathbf{P r}(\mathbf{R}(\mathrm{t})$)	Previous Hour	$\operatorname{Pr}(\mathbf{R}(t) \mid$ Previous	Previous Hours	$\operatorname{Pr}(\mathrm{R}(\mathrm{t})$ Previous)	Previous Hours	$\operatorname{Pr}(\mathbf{R}(\mathrm{t})$ Previous)
					NR, NR, NR	0.078+/-0.006
			NR(t-2),NR(t-1)	0.082+/-0.006		
					R, NR, NR	0.131+/-0.025
	NR(t-1)	0.092+/-0.006				
					NR, R , NR	0.114+/-0.031
			$\mathrm{R}(\mathrm{t}-2), \mathrm{NR}(\mathrm{t}-1)$	0.194+/-0.026		
					R, R, NR	0.262+/-0.040
0.248+/-0.007						
					NR, NR, R	0.527+/-0.037
			$\mathrm{NR}(\mathrm{t}-2), \mathrm{R}(\mathrm{t}-1)$	0.539+/-0.033		
					R , NR, R	0.581+/-0.075
	$\mathrm{R}(\mathrm{t}-1)$	0.725+/-0.016				
					NR, R , R	0.732+/-0.040
			$\mathrm{R}(\mathrm{t}-2), \mathrm{R}(\mathrm{t}-1)$	0.795+/-0.017		
					R, R, R	0.811+/-0.018

Hourly Rainfall Modelling (continued)

- Occurrence depends on several previous hours
- Severity depends on at least previous hour

$$
\log R(t+1)=\log R(t)+\varepsilon(t)
$$

- Seasonal variation of time series parameters
- Diurnal variation of time series parameters

Summary

- Rainfall time series modelling

Historical observations to fit model parameters
Generate time series for derivative valuations
Daily rainfall modelling - manageable
Hourly rainfall modelling - very difficult

- Future work:

Spatial distribution of rainfall and basis risk

