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Abstract

The emergence of the worldwide SARS epidemic in 2003 led to a re-
vived interest in the study of infectious diseases. Mathematical mod-
els have become important tools in analyzing transmission dynamics and
measuring the effectiveness of controlling strategies. Research on infec-
tious diseases in the actuarial literature only goes so far as to set up
epidemiological models which better reflect the transmission dynamics.
In an effort to build a bridge between epidemiological and actuarial mod-
eling, we analyze possible financial arrangements made against expenses
resulted from medical treatments given to insured patients.

Based on classical compartment models, the first part of this paper
designs insurance policies for susceptible participants facing the risk of
infection and formulates the financial obligations of both parties using
actuarial methodology. For practical purposes, the second part employs a
variety of numerical methods for calculating premiums and reserves. The
last part illustrates the methods by designing insurance products for the
Great Plague in Eyam and the SARS Epidemic in Hong Kong.

1 Introduction

One beneficial side of the Severe Acute Respiratory Syndrome (SARS) epidemic
in 2002 was to draw tremendous attention to the treatment and prevention of
infectious diseases and to their implication to general social welfare. The ad-
verse economic impact caused by SARS in East Asia has been compared with
that of the 1998 financial market crisis in that area. From a social point of view,
an effective protection against diseases depends not only on the development of
medical technology to identify viruses and to treat infected patients, but also on
a well-designed healthcare system. The latter can reduce the financial impact
of a sudden pandemic outbreak such as surging costs of medications, medical

∗Department of Statistics and Actuarial Science, University of Waterloo, 200 University
Avenue West, Waterloo, Ontario, Canada N2L 3G1. Email: rhfeng@gmail.com

†Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve
Blvd. West, Montreal, Quebec H3G 1M8. Email: garrido@mathstat.concordia.ca

1



equipments, prevention measures like vaccination and quarantine. Broader in-
surance programs can even cover financial losses resulting from the interruption
in regular business operations. As a profession with the reputation of applying
rigorous techniques to model and quantify financial risk, actuaries are certainly
well put to expand their expertise and deal with epidemics within healthcare
systems.

Due to their frontline experience with SARS, many health insurers in Asia
provided coverage to compensate for medical costs for SARS treatment, by
listing the disease as an extended liability on regular health insurance policies.
Still many problems arose. Traditional actuarial models for human mortality
lack the flexibility required to model infectious diseases, which are significantly
different from natural causes of death in many aspects.

One of the remarkable differences is that in a population exposed to an
epidemic outbreak there are several mutually dependent groups involved with
different levels of vulnerability to the disease. Whereas mortality rates are of-
ten assumed to be constant among homogenous age-specific groups. How fast
an infectious disease spreads within a population relies on the number of sus-
ceptible individuals, the number of infectious individuals and the social struc-
ture between these two groups. To be more specific in the context of a health
insurance for an initially complete susceptible group, the number of insureds
bearing premiums would actually decrease in time, whereas the number of in-
sureds claiming benefits due to infection increases as the epidemic breaks out.
Applying traditional life table methods overlooks epidemiological dynamics and
dependence between insurance payers and beneficiaries. It consequently violates
the fair premium principle assumed in the industry.

The idea of borrowing from epidemiological models to account of several
interacting subgroups in a population and modeling the according financial ar-
rangements is suggested in this paper.

To make it self–contained, basic techniques from the mathematics of epi-
demiology, for instance the simplest three–compartment model, are reviewed in
Section 2. The corresponding business model is set to cover potential financial
losses from insured clients.

For insurance applications, Section 3 formulates epidemiological models in
actuarial notation and analyzes the quantitative relations among some insur-
ance concepts, namely the actuarial present value of continuous payments to
hospital and medical services, the actuarial present value of death benefits and
the actuarial present value of premium income.

In Section 4, several premium rating methods are presented to price differ-
ent infectious disease insurance policies. An algorithm is derived to calculate
premiums under the fair premium principle.

The solvency aspects of the insurance plans are also studied. Since benefit
reserves should reflect a policy’s cash value, at least theoretically refundable
to the policyholder, these should remain positive. We see that the premiums
calculated under a fair value principle yield negative reserves. Therefore Sec-
tion 5 develops a numerical method to determine safety–loading premium levels
that ensure benefit reserve which never fall below a certain tolerable balance
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level. Based on epidemiological models in the literature, Section 6 analyzes the
dynamics of the Great Plague in Eyam and SARS epidemics in Hong Kong. We
propose an insurance coverage against the resulting financial losses in a man-
ner that could easily be adapted to enable further analysis of a wide range of
scenarios.

2 Epidemiological compartment model

Over the last century, many contributions to the mathematical modeling of
communicable diseases have been made by a great number of public health
physicians, epidemiological mathematicians and statisticians. Their brilliant
work ranges from empirical data analysis to differential equation theory. Many
have achieved successes in clinical data analysis and effective predictions. For
a complete review of a variety of mathematical and statistical models, the in-
terested readers are referred to Hethcote [14] and Mollison et al. [15]. Standing
on the shoulders of giants, actuaries could incorporate economical consideration
into epidemiological models and make financial and medical arrangements to
protect the insured population against infectious diseases. For an account of co-
operative opportunities for actuaries and epidemiologists, we refer to a report
by Cornall et al. [10].

To illustrate the main idea of application, we start off by looking at the
simplest deterministic model where a clear actuarial analysis can be conducted.
Although most infectious diseases like SARS are more complex, the general-
ization from the three-compartment model to multi-dimensional models follows
similar procedures.

In epidemiological studies, to model an epidemic, a whole population is
usually separated into compartments with labels such as S, I and R. These
acronyms are used in different patterns according to the transmission dynamics
of the studied disease. Generally speaking, class S denotes the group of individ-
uals without immunity, or in other words, susceptible to a certain disease. In
an environment exposed to the disease, some individuals come into contact with
the virus. Those infected who are able to transmit the disease are considered
in class I. Through medical treatment, individuals, removed from the epidemic
due to either death or recovery, are all counted in class R. The upper part of
Figure 1 gives the transferring dynamics among the three compartments.

Another merit of this partition, from an actuarial perspective, is that the
three compartments play significantly different roles in an insurance model.
As demonstrated in the lower part of Figure 1, The susceptible individuals
facing the risk of being infected in an epidemic each contribute a certain amount
of premium to the insurance funds in return for future coverage of medical
expenses incurred as a result of infection. During the outbreak, the infected are
eligible for claiming benefits for expenditures covered in the policy. Following
an individual’s death, a death benefit for funeral and burial expenses would be
paid to specified beneficiaries. Interest will accrue on the properly managed
insurance funds at a certain rate.
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Figure 1: General transfer dynamics and insurance principles among compart-
ments S, I and R.

We start by looking at a typical mathematical model that serves to char-
acterize the interaction among the three compartments. Let S(t) denote the
number of susceptible individuals at time t, whereas I(t) be the number of in-
fected individuals, and R(t) be the number of individuals removed from class
I. According to the mass action laws commonly used in biological quantita-
tive analysis, compartment sizes are determined in terms of their derivatives.
Therefore we assume that the number of members in each compartment is a dif-
ferentiable function, defined with support on the non-negative side of the real
line.

Their qualitative relations are given by the following system of differential
equations known as the SIR model.

S′(t) = −βS(t)I(t)/N , t ≥ 0 , (1)
I′(t) = βS(t)I(t)/N − αI(t) , t ≥ 0 , (2)
R′(t) = αI(t) , t ≥ 0 , (3)

with given initial values S(0) = S0, I(0) = I0 and S0 + I0 = N .
The model is based on the following assumptions:

1. The total number of individuals keeps constant, N = S(t) + I(t) + R(t),
representing the total population size.

2. An average person makes an average number β of adequate contacts (i.e.
contacts sufficient to transmit infection) with others per unit time.

3. At any time a fraction α of the infected leave class I instantaneously. α
is also considered to be constant.
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4. There is no entry into or departure from the population, except possibly
through death from the disease. For our purpose of setting up an insur-
ance model, the demographic factors like natural births and deaths are
negligible, as the time scale of an epidemic is generally shorter than the
demographic time scale.

Since the probability of a random contact by an infected person with a
susceptible individual is S/N , then the instantaneous increase of new infected
individuals is β(S/N )I = βSI/N . The third assumption implies that the in-
stantaneous number of people flowing out of the infected class I into the removal
class R is αI.

3 Actuarial analysis

The idea of setting up an insurance coverage against an infectious disease is
akin to that of covering other contingencies like natural death and destruction
of property.

Since mortality analysis is based on ratios instead of absolute counts, we now
introduce s(t), i(t) and r(t) respectively as fractions of the whole population,
in each of class S, I and R. Dividing equations (1)-(3) by the constant total
population size N yields

s′(t) = −β i(t) s(t) , t ≥ 0 , (4)
i′(t) = β i(t) s(t) − α i(t) , t ≥ 0 , (5)
r(t) = 1 − s(t) − i(t) , t ≥ 0 , (6)

where s(0) = s0 , i(0) = i0 given that s0 + i0 = 1 .
One could actually interpret the ratio function s(t), i(t) and r(t) as the

probability of an individual being susceptible, infected or removed from infected
class respectively at the time spot t.

Since all these ratio functions vary between 0 and 1, we could easily inter-
pret them as the probability of an individual remaining susceptible, infected or
removed at the time point t . However, it should be noted that due the laws
of mass action, movements among the compartments rely on the sizes of each
other. Thus these probabilities represent mutually dependent risks as opposed
to the independent hazards one always sees in multiple decrement life insurance
models. With these probability functions s(t), i(t) and r(t), we now incorpo-
rate actuarial methods to formulate the quantities of interest for an infectious
disease insurance.

3.1 Annuity for premium payments and annuity for hos-
pitalization

We assume that the infection disease protection plan works in a simple an-
nuity fashion. Individual premiums are collected continuously as long as the
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covered person remains susceptible, whereas medical expenses are continuously
reimbursed to each infected policyholder during the whole period of treatments.
Once the individual recovers from the disease, the protection ends right away.

Following the International Actuarial Notation, the actuarial present value
(APV for later use) of premium payments from an insured person for the whole
epidemic is denoted by as

0 with the superscript indicating payments from class
S , and APV of benefit payments from the insurer is denoted by ai

0 with the
superscript indicating payments to class I .

On the debit side of the insurance product, the total discounted future claim
is given by

ai
0 =

∫ ∞

0

e−δti(t)dt , (7)

while on the revenue side, the total discounted future premiums is

as
0 =

∫ ∞

0

e−δts(t)dt , (8)

where δ is the force of interest. Our study in this paper is based on the funda-
mental Equivalence Principle in Actuarial Mathematics for the determination
of level premiums, which requires

E[present value of benefits]=E[present value of benefit premiums] .

Therefore, the level premium for the unit annuity for hospitalization plan

P (ai
0) =

ai
0

as
0

. (9)

Just like in life insurance, where the force of mortality is defined as the
additive inverse of the ratio of the derivative of the survival function to the
survival function itself, we define here the force of infection as

µs
t = −s′(t)

s(t)
, t ≥ 0 ,

and the force of removal as

µi
t = − i′(t)

i(t)
, t ≥ 0 .

Specifically from (4)-(5), we see that µs
t = β i(t) and µi

t = −β s(t) + α .
Note that the above definitions imply that

s(t) = exp{−
∫ t

0

µs
r dr} = exp{−β

∫ t

0

i(r)dr} , t ≥ 0 , (10)

and

i(t) = exp{−
∫ t

0

µi
r dr} = exp{β

∫ t

0

s(r) dr + αt} , t ≥ 0 . (11)

6



Proposition 3.1. In the SIR model in (4)-(5),

(1 +
α

δ
) ai

0 + as
0 =

1
δ

. (12)

Proof. From (4) and (5), we obtain that

s′(t) + i′(t) = −α i(t) , t ≥ 0 .

Integrating from 0 to a fixed t gives

s(t) + i(t) − 1 = −α

∫ t

0

i(r) dr , t ≥ 0 .

Multiplying both sides by e−δt and integrating with respect to t from 0 to ∞
yields

as
0 + ai

0 −
1
δ

= −α

δ
ai
0 ,

where the right hand side comes from exchanging the order of integrals,
∫ ∞

0

exp (−δt)
∫ t

0

i(r) dr dt = −
1
δ

∫ ∞

0

∫ t

0

i(r) dr d(exp (−δt))

=
1
δ

∫ ∞

0

exp (−δr)i(r) dr =
1
δ
ai
0 .

Notice that the right hand side represents the present value of a unit perpet-
ual annuity. The intuitive interpretation of the left hand side is that if every one
in the insured group is rewarded with a perpetual annuity, the APV of expenses
from class S accounts for as

0 , and similarly that of expenses from class I adds
ai
0 to the cost. Recall that at any time a fraction α of the infected subgroup

move forwards to class R . Each of them would receive a perpetual of value
1/δ as well at the time of transition. Therefore, the APV of expenses from this
compartment would be (α/δ)ai

0 . It is reasonable that it should sum up to the
value of a unit perpetual annuity regardless of the policyholder’s location among
compartments.

With this relation in mind, we could easily find the net level premium for
the unit annuity for hospitalization plan,

P (ai
0) =

ai
0

as
0

=
δ ai

0

1 − (δ + α)ai
0

. (13)

3.2 Lump sum for hospitalization

The analogy of this plan is with a whole life insurance in actuarial mathemat-
ics. When a covered person is diagnosed being infected with the disease and
hospitalized, the medical expenses is to be paid immediately in a lump sum and
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insurance protection ends. Then the APV of benefit payments to the infected
denoted by A

i

0 can be obtained as

A
i
0 , β

∫ ∞

0

e−δts(t) i(t) dt , (14)

since the probability of being newly infected at time t is β s(t)i(t) .

Proposition 3.2.
1
δ
A

i

0 + as
0 =

1
δ
s0 , (15)

and
1
δ
i0 +

1
δ
A

i
0 =

α

δ
ai
0 + αi

0 . (16)

Proof. Substituting (4) into (14), we have that

A
i

0 = −
∫ ∞

0

e−δt s′(t) dt

= s(0) − δ

∫ ∞

0

e−δt s(t) dt

= s0 − δ as
0 .

Since as
0 = (1/δ)[1− (δ + α) ai

0] by (12), it follows that

A
i
0 = (δ + α) ai

0 − 1 + s0 .

The above proposition also provides an interesting insight into the break-
down of expenses in each class. To understand (15), we suppose every suscep-
tible individual claims one unit perpetual annuity. The APV of the total cost
is s0/δ . From an another perspective, it is equivalent to give every one a unit
annuity as long as the person remains healthy in the group and then grant them
each a unit perpetual immediately as he or she becomes infected. The APV of
these two payments is exactly (1/δ)A

i

0 +as
0 . If one thinks of class I as a transit,

the left hand side of (16) counts the expenses at the front door. Since expenses
for initial members is i0/δ and other individuals from class S each add 1/δ .

Hence the total expenses add up to i0/δ +(1/δ)A
i
0 . While at the back door, ev-

ery one already inside accounts for ai
0 , and any one leaving the class takes away

a perpetual of value 1/δ . Thus the right hand side sums up to (α/δ)ai
0 + ai

0 .
Therefore for the lump sum payment plan with a unit benefit, the equivalence

principle gives the net level premium P (A
i

0):

P (A
i
0) =

A
i
0

as
0

=
(α + δ)ai

0 − i0

1 − (α + δ)ai
0

.
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3.3 Death benefit

It is necessary to point out that in the epidemiological literature the class R is
composed of all individuals removed chronologically from a previous compart-
ment, who either recover with immunity or die due to the disease. A more
refined model would have separate compartments for the dead and the recov-
ered. For our purpose of deducing an actuarial analysis based upon epidemio-
logical models, we keep the model as simple as possible by assuming only one
R compartment exclusively for deaths caused by the disease, which implies that
nobody recovers from the disease. The SIR model remains the same as in (4)-
(5), except that α can now be interpreted as the constant rate of fatality from
class I .

For most health insurance policies, death benefits differ in amount from
healthcare benefits. We assume that in this infectious disease plan, a death
benefit of dt = 1 is paid immediately at the moment of death.

Thus, the actuarial present value of a lump sum death benefit payment
denoted by A

d

0 is

A
d

0 , α

∫ ∞

0

e−δt i(t) dt

= α ai
0 .

Therefore, the net level premium for the plan with both a unit annuity of
hospitalization benefit and a unit death benefit is obtained by

P (ai
0 + A

d

0) =
ai
0 + A

d

0

as
0

=
δ(1 + α)ai

0

1 − (α + δ)ai
0

,

and the net level premium for the plan with both a lump sum for hospitalization
and death benefit is given by

P (A
i
0 + A

d
0) =

A
i
0 + A

d
0

as
0

=
(δ + α + δα)ai

0 − i0

1 − (α + δ)ai
0

.

4 Premium rating

So far net premiums have only been expressed in terms of ai
0, which is a Laplace

transform of i(t). An implicit integral solution to the SIR model in (4)-(5) is as
follows,

s(t) =
1
N

exp {−β

∫ t

0

exp {βN

∫ u

0

s(r) dr − αu}du} ,

i(t) =
1
N

exp {β
∫ t

0

exp {βN

∫ u

0

i(r) dr} − αu du} .

But there is not an explicit method available to solve s(t) and i(t). Therefore we
propose numerical formulas and approximations that can provide satisfactory
solutions for insurance applications.

9



4.1 Insurance related quantities and Runge-Kutta method

Among many numerical methods for solving ODE, the Runge-Kutta method is
the most popular. It can be adapted for any order of accuracy. For applica-
tions in insurance, the fourth order Runge-Kutta method (RK-4), given by the
following recursion formulas, represents a good compromise between simplicity
and accuracy:

yi+1 = yi +
1
6
(k1 + 2k2 + 3k3 + k4) , i = 1, 2, · · · , n ,

k1 = hf(ti, yi) , i = 1, 2, · · · , n ,

k2 = hf(ti +
h

2
, yi +

1
2
k1) , i = 1, 2, · · · , n ,

k3 = hf(ti +
h

2
, yi +

1
2
k2) , i = 1, 2, · · · , n ,

k4 = hf(ti + h, yi + k3) , i = 1, 2, · · · , n ,

where yi is given by the ODE:

dy

dt
= f(t, y) ,

evaluated at t = ti, and the time step h = ti − ti−1 for i = 1, 2, · · · , n .
Actuaries may particularly be interested in the properties of insurance-

related quantities, such as discounted total benefits, discounted total premiums
and premium reserves. Based on the RK-4 method, we need to fit these items
into a differential equation system. Let P (t) denote the present value of premi-
ums up to time t and B(t) the corresponding present value of benefits at the
same time point. We introduce V (t) as the cumulative benefit reserve at time
t , which is the difference of accumulated value of premiums and accumulated
value of claim expenses.

For practical use, we could as well define insurance plans of finite time du-
ration, say

as
0:t ,

∫ t

0

e−δzs(z) dz and ai
0:t ,

∫ t

0

e−δzi(z) dz .

Therefore, for the annuity for hospitalization plan, the quantitative relations
among these insurance factors could be described by the following ODE system:

P ′(t) = PAH e−δtS(t) , t > 0 , (17)
B′(t) = e−δtI(t) , t > 0 , (18)
V ′(t) = PAH eδtS(t) − eδtI(t) , t > 0 , (19)

where PAH = P (A
i

0) is determined by the equivalence principle. By applying
the RK-4 method, we should obtain as

0:t = P (t)/N/PAH , ai
0:t = B(t)/N and

tV (ai
0) = V (t)/N .
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For the lump sum for hospitalization plan, we have the following insurance
factor system:

P ′(t) = PSH e−δtS(t) , t > 0 , (20)
B′(t) = e−δtβ S(t) I(t) , t > 0 , (21)
V ′(t) = PSH eδtS(t) − eδtβ S(t) I(t) , t > 0 , (22)

where PSH = P (ai
0) is also from the equivalence principle, as

0:t = P (t)/N ,

A
i
0:t = B(t)/N and tV (A

i
0) = V (t)/N .

Similarly, the annuity for hospitalization plan with a death benefit is deter-
mined by the system

P ′(t) = PAHD e−δtS(t) , t > 0 , (23)
B′(t) = e−δtI(t)(1 + α) , t > 0 , (24)
V ′(t) = PAHD eδtS(t) − eδtI(t)(1 + α) , t > 0 , (25)

and PAHD = P (A
i
0+A

d
0) is from the equivalence principle, as

0:t
= P (t)/N/PAHD ,

A
i

0:t + A
d

0:t = B(t)/N and tV (A
i

0 + A
d

0) = V (t)/N .
Finally, for the lump sum for hospitalization plan with a death benefit, the

corresponding system is:

P ′(t) = PSHD e−δtS(t) , t > 0 , (26)
B′(t) = e−δtI(t)(βS(t) + α) , t > 0 , (27)
V ′(t) = PSHD eδtS(t) − eδtI(t)(βS(t) + α) , t > 0 . (28)

Hence, the equivalence principle gives PSHD = P (ai
0+A

d

0) , as
0:t = P (t)/N/PSHD ,

ai
0:t

+ A
d

0:t = B(t)/N and tV (ai
0:t

+ A
d

0:t ) = V (t)/N .

These ODE systems can be readily solved in most mathematical software
such as Maple environment. Information about programming with ODE tool
kits in Maple can be found in Coombes [9].

4.2 Infection table based approximation

In practice it is difficult to make record of susceptible individuals, partly because
of its enormous number in a population and partly due to the fact that an person
susceptible to a certain disease appears no different from one with immunity.
But we could keep track of infected people using public data from government
health agencies and hospitals. Hence we now rely on the function i(t) instead
of s(t) for all calculations leading to the premium rating.

A natural analogy here is with the life table in life insurance mathematics,
which virtually describes an empirical survival distribution of an average per-
son’s longevity. Similarly, an infection table can be generated to keep record of
the number of infected cases reported during each sampling period (e.g., every
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day for SARS). Table 1 in Section 6.1 is a simple example of an infection table
dated back to the seventeenth century.

Now from the infection table, we have a piecewise constant empirical ap-
proximation of the continuous function i(t) given by

ı̃(t) =
{

ik , k − 1 < t ≤ k
0 , otherwise .

Using this function in place of i(t) in (7) gives an approximation to ai
0:t

:

ai
0:t =

∫ t

0

e−δz i(z) dz ≈
∫ z

0

e−δt ı̃(z) dz

≈
n∑

k=1

e−δ(k−1) − e−δk

δ
ik ,

where n = [t] , the integer part of t , for n large enough.

4.3 Power series solutions

The power series method is one of the oldest techniques used to solve linear
differential equations. This method can be adapted well to our SIR model.

Since every point in the system is an ordinary point, in particular, t = 0, we
look for solutions of the form

s(t) =
∞∑

n=0

an tn , t ≥ 0 , (29)

i(t) =
∞∑

n=0

bn tn , t ≥ 0 . (30)

Therefore, differentiating term by term yields

s′(t) =
∞∑

n=1

n an tn−1 =
∞∑

n=0

(n + 1) an+1 tn , t ≥ 0 ,

i′(t) =
∞∑

n=1

n bn tn−1 =
∞∑

n=0

(n + 1) bn+1 tn , t ≥ 0 .

Multiplying (29) by (30) gives,

s(t)i(t) =
∞∑

n=0

cn tn , t ≥ 0 ,

where
cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 .

12



From (4), we obtain

∞∑

n=0

(n + 1) an+1 tn + β

∞∑

n=0

cn tn = 0 ,

∞∑

n=0

(n + 1) bn+1 tn − β

∞∑

n=0

cn tn + α

∞∑

n=1

n bn tn−1 = 0 .

To satisfy these equations for all t, it is necessary that the coefficient of each
power of t be zero. Hence we obtain the following recurrent relation:

an+1 = − β

n + 1
(a0bn + a1bn−1 + · · ·+ an−1b1 + anb0) ,

bn+1 = −an+1 −
α

n + 1
bn .

Therefore,

ai
0:t =

∞∑

n=0

∫ t

0

an zn e−δz dz .

4.4 Integral equation approach

A considerable difficulty in solving the ODE system (4)-(5) is due to the presence
of the nonlinear term β S(t) I(t). However, its multiplicative structure inspires
the use of an inverse Fourier transform.

Recall that
∫

R
eitxf ∗ g(x) dx =

∫

R
eitxf(x) dx

∫

R
eitxg(x) dx ,

where f ∗ g(x) =
∫

R f(x − y) g(y) dy. Therefore, if we think of S(t) as a Fourier
transform of a certain function S̃(x) and I(t) as a Fourier transform of a certain
function Ĩ(t) , i.e.

S̃(x) =
1
2π

∫ ∞

0

S(t)e−itx dt, Ĩ(x) =
1
2π

∫ ∞

0

I(t)e−itx dt .

Now write the nonlinear term as

βS(t)I(t) = β

∫ ∞

−∞
eitxS̃ ∗ Ĩ(x) dx .

Therefore, we take the inverse Fourier transform on both sides of (4), giving

ixS̃(x) − 1
2π

S(0) = −β

∫ ∞

−∞
S̃(y)Ĩ (x − y)dy , x ∈ R ,

ixĨ(x) − 1
2π

I(0) = β

∫

R
S̃(y)Ĩ (x − y)dy − αĨ(x) , x ∈ R . (31)
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Adding up the above two equations gives

S̃(x) =
1

2πix

[
S(0) + I(0)

]
− (ix + α)

ix
Ĩ(x) , x ∈ R (32)

Substitute (32) into (31) to obtain the following integral equation

Ĩ(x) =
β

(ix + α)

∫ ∞

−∞

[ N

2πiy
− α + iy

iy
Ĩ(y)

]
Ĩ(x − y) dy +

1
2π

I(0) , x ∈ R .

By the definition (7), we have then

ai
0:t =

1
N

∫ t

0

e−δz

∫ ∞

−∞
eizxĨ(x) dx dz

=
1
N

∫ ∞

−∞

e(ix−δ)t − 1
(ix − δ)

Ĩ(x) dx .

5 Premium adjustment

In actuarial mathematics, the fact that mortality rises with age leads to the con-
sequence that an insurer’s future financial liability is always greater than future
revenue from benefit premiums. Therefore the benefit reserve is normally pos-
itive in traditional life insurance products. Unlike the “U” shape of mortality
curve, a unique feature of epidemics is that the infection rates rapidly increases
at the beginning and then drops down after reaching a peak. Figure 2 illus-
trates a typical path of a benefit reserve function obtained from the insurance
quantities system (17) - (19), where the benefit premium is determined by the
means employed in (13).

Although the equivalence principle is applied from time 0 to 5, it is danger-
ous for an insurer to have a long standing negative reserve, which indicates so
much more expenses are paid out than premiums collected that the insurer ac-
tually becomes an debtor to all policyholders. A negative reserve could severely
increase an insurer’s risk of insolvency, and in worst scenario might even cause
bankruptcy. Another potential hazard is that the insurance policy virtually be-
comes a certificate of debts. It is likely that policyholder might withdraw from
the insurance simply by stopping paying premiums. Therefore a prudent in-
surer would require additional premium in order to keep reserve above an early
warning level, which we choose zero in our analysis.

Before giving an algorithm for determining an added-value premium, we
would like to study for a moment the trend of a benefit reserve function V (t)
and its dependency on functions S(t) and I(t).

Proposition 5.1. For the SIR model in (1)-(3), S(t) is a monotonically de-
creasing function, and R(t) is monotonically increasing. If S(0) ≤ αN/β, then
I(t) is a monotonically decreasing function; If S(0) > αN/β, I(t) increases up
to the time when S(t) = αN/β, and then decreases after.

14



Figure 2: Benefit reserve function V (t) for AH plan for the Great Plague, PAH =
106.51. Double arch structure as explained in Proposition 5.3.

Proof. Since S(t) and I(t) are all non-negative, from (1) and (3) we know that
S′(t) = −β S(t) I(t)/N < 0 , for t > 0 , and R′(t) = α I(t) > 0 . Hence S(t)
is a monotonically decreasing function and R(t) is a monotonically increasing
function. If S(0) ≤ α/β, then I′(t) = I(t)[β S(t)/N − α] < 0 , which means
that I(t) is monotonically decreasing. By contrast, if S(0) > αN/β, because
S(t) is monotonically decreasing, then I′(t) = I(t)[β S(t)/N − α] > 0 , as long
as S(t) > αN/β . Thus I(t) reaches its local maximum at the point where
S(t) = αN/β . When S(t) continues to decrease below αN/β , I′(t) < 0 and
I(t) is monotonically decreasing thereafter.

From now on in this section, we study the benefit reserve by limiting our
focus on an AH plan where the force of interest is considered zero. The gen-
eralization to other plans follows the same idea. From (19), we know that
V ′(t) = PAH S(t) − I(t) , for t ≥ 0 . The sign of an instantaneous change in
V (t) depends on the two competing forces, monotonically decreasing PAH ·S(t)
and increasing-then-decreasing I(t). There are only two possible geometrical
structures in the trend of V (t): Single arch structures as shown in Figure 3
and double arch structures typically illustrated in Figure 2. The following
propositions indicate conditions under which the two structures may appear,
respectively.

Proposition 5.2. (Single Arch Structure) In the insurance quantities system
(17) - (19), the benefit reverse V (t) is concave, if the premium

PAH >
αN

βS∞
− 1 , (33)

where the constant c = I0 + S0 − αN/β log(S0) and S∞ = lim
t→∞

S(t) .
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Proof. To check the concavity of V (t), we look at V ′′(t),

V ′′(t) = PAHS′(t) − I′(t)

= − β

N
PAH S(t) I(t) − β

N
S(t) I(t) + α I(t)

= I(t) [α− β

N
(PAH + 1)S(t)] .

It follows that when

PAH >
αN

βS(t)
− 1 , for all t > 0 ,

V (t) is concave downward. Since S(t) is monotonically decreasing, thus condi-
tion (33) is required.

Figure 3: Benefit reserve function V (t) for AH plan for the Great Plague, PAH =
843.38, Single arch structure as explained in Proposition 5.2.

Proposition 5.3. (Double Arch Structure) If

αN

βS0
− 1 < PAH <

αN

βS∞
− 1 , (34)

then the benefit reserve V (t) changes from concave to convex, with a point of
inflection tf such that

S(tf ) =
αN

(1 + PAH)β
. (35)
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Proof. In view of (34), V ′′(t) changes from negative to positive at time tf , when

S(tf ) =
αN

(1 + PAH)β
.

Therefore, no matter whether V ′(t) starts from a negative or positive value,
V (t) goes through two phases, from concave to convex.

The next question that comes to mind is how to control the extent of the
“deficit” in the reserve by premium adjustment, while preserving the equivalence
principle. From the double arch structure, we know that the biggest “deficit”
in reserves comes at the local minimum in the second arch. Therefore we are
interested in locating the minimum point on the time scale and looking into the
connection between the premium rates and the local minimum point .

We observe from (35) that tf is an increasing function of the premium rate
PAH , i.e. as we increase the premium, the point of inflection between two
arches moves forward on the time scale. Another time point of interest denoted
by tm is the one when the reserve function reaches its local minimum in the
second arch,

I(tm)
S(tm)

= PAH .

We would show in the next proposition that tm is an increasing-then-decreasing
function with respect to PAH . Therefore, as the premium rates increase, the
local minimum would eventually move backward on the time scale. As one can
imagine, when the point of inflection gets closer to the next local minimum, the
curve in between becomes flatter. It is a natural conjecture that as the premium
PAH rises to a critical value P ?

AH , there must be a corresponding time point
when tf overlaps with tm, as shown in Figure 4. Thus,

αN

β[1 + I(tm)/S(tm)]
= S(tm) ,

which implies that S(tm) + I(tm) = αN/β . It is not surprising to obtain the
same critical value in the following proposition.

Proposition 5.4. For the insurance quantities system in (17) - (19), the reserve
V (t) is concave and strictly increasing, if

PAH > P ?
AH =

αN

β
exp (

βc

αN
− 1) − 1 , (36)

where the constant c = I0 + S0 − αN/β log(S0) .

Proof. To ensure that V ′(t) > 0, we need

PAH >
I(t)
S(t)

, for all t ,
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Figure 4: Benefit reserve function V (t) for AH plan for the Great Plague, PAH =
202.17. Double arch structure and strictly increasing as explained in Proposition
5.4.

or equivalently,

logPAH > log I(t) − log S(t) , for all t .

Let f(t) = log I(t) − log S(t) , then

f ′(t) =
I′(t)
I(t)

− S′(t)
S(t)

=
β

N
[S(t) + I(t)] − α , by (1) and (2).

Since S(t) + I(t) = N − R(t) is monotonically decreasing, at the time tm when

S(tm) + I(tm) = αN/β , (37)

f ′(t) changes from positive to negative and f(t) reaches its maximum at time
tm. Thus PAH is required to be greater than I(tm)/S(tm) .

Now since

I′(t)
S′(t)

=
dI(t)
dS(t)

=
(βS(t)/N − α)I(t)
−βS(t)I(t)/N

= −1 +
αN

βS(t)
,

integrating to find the orbits of the (S, I)-plane gives:

I(t) + S(t) − αN

β
logS(t) = c , (38)

where c is a constant of integration for each specific orbit, say c = I0 + S0 −
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αN/β log(S0) . Combining (37) and (38), we can solve for S(t) and I(t), as

S(tm) = exp (1 − βc

αN
) , (39)

I(tm) =
αN

β
− exp (1 − βc

αN
) . (40)

Hence
logPAH > f(tm) . (41)

Substituting (39) and (40) into (41) gives the condition (36).

From the above analysis, we realize that as the premium tends to P ?
AH , the

local minimum in the second arch and the point of inflection move towards each
other, which implies that the local maximum in the first arch approaches the
local minimum in the second arch as well. They all converge at the time point
tm . Therefore V (tm) should shift upwards as the premium rates increase. We
can infer that a proper premium rate between P (A

i
0:t ) and P ?

AH exists in order
to fulfill certain requirements on the reserves. However, it can not be found in a
closed algebraic expression. Instead, an easy algorithm can determine the value.

1. Specify an early warning level which the reserve function should never go
below. For example, V (t) ≥ 0 , for all t .

2. Start by setting premium rate at P (0) = P (A
i

0:t ) .

3. Increment the premium each time by a monetary unit, say, P (n) = P (n−1)+
0.01 .

4. Calculate the resulting V (tm) , and see if it is greater than zero. If yes,
P (n) gives a reasonable adjusted premium. Otherwise, repeat the last
step.

5. By the fair premium principle, a survival benefit should be awarded to
the remaining susceptible policy holders when the policy duration t ends.
The benefit amount is determined by V (t)/S(t) .

6 Numerical examples

The epidemiological model in our first numerical example of Great Plague in
Eyam was originally studied by Raggett [16], and has been considered as a
classical case study in many textbooks because predictions from the model are
remarkably close to actual data. The second example of six compartment model
came from Chowell et al. [8], in which parameters were primarily used for
measuring basic reproduction number.
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6.1 Great plague in Eyam

The village of Eyam near Sheffield, England, suffered an horrific outbreak of
bubonic plague in 1665-1666. The plague was survived by only 83 of an initial
population of 350 villagers, and detailed records were preserved as shown in
Table 1. In Raggett [16], the disease in Eyam was fitted by the SIR model, over
the period from mid-May to mid-October 1666, measured in months with an
initial population of 7 infectives and 254 susceptibles, and a final population of
83. Since the disease was fatal at that time, infected individuals eventually died
due to the disease.

Date Susceptibles Infectives

Initial 254 7

July 3/4 235 14.5

July 19 201 22

August 3/4 153.5 29

August 19 121 21

September 3/4 108 8

September 19 97 8

October 4/5 Unknown Unknown

October 20 83 0

Table 1: Eyam plague observation of susceptible and infective populations in
1666. Data source: Raggett [16], Table II.

According to (38),

I0 + S0 − αN

β
logS0 = I∞ + S∞ − αN

β
logS∞ ,

from which we obtain an expression for β/(αN ) in terms of the measurable
quantities S0, I0, S∞ and I∞, namely

β

αN
≈

log S0
S∞

S0 − S∞
.

The relation with S0 = 254, I0 = 7 and S∞ = 83 gives αN/β = 153. The
parameter α is determined by its reciprocal, which has the clinical meaning
of an average infectious period. From clinical observations, an infected person
stays infectious for an average of 11 days or 0.3667 months before death, so that
α = 2.73 and β/N = 0.0178. The resulting graphs of S and I, as functions of
time t, are given in Figures 5.

Insurance coverage would not directly reduce the transmission of the disease,
but a well-designed insurance system could have provided financial incentives
for prevention measures and compensate for hospitalization and other medical
costs and services. To develop this insurance model, we assume that everyone
in the village foresees the coming of the Great Plague and willingly chips in the
mutual insurance group at the beginning of the epidemic. The insurance funding
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Figure 5: Function of susceptibles S(t) and infectives I(t)

is secured with a monthly force of interest of 0.2%. The insurance period lasts
5 months which matches the duration of the epidemic.

Plan P.V. Benefits P.V. Premiums Level Premium

1 65015.62 610.41 106.51

2 242508.27 610.41 397.29

3 172385.38 610.41 282.41

4 349878.02 610.41 573.18

Table 2: Eyam plague premium rating (dollar)

1. Annuity for Hospitalization (AH):

This plan provides infection benefits continuously at the rate of $1000 per
month until death for every infected individual regardless of how long he
or she has entered the class. The insurance liability is terminated after
death. It is purchased continuously by susceptible individuals.

2. Annuity for Hospitalization with Death Benefit (AHD):

This plan contains all of the same benefits as in the previous one plus an
additional death benefit of $1000 payable at the moment of death. The
insurance liability is terminated after death. It is also purchased in the
same pattern.

3. Lump Sum for Hospitalization (SH):
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This plan provides a lump sum infection benefit of $1000 at the moment of
the individual being diagnosed infected. The insurance liability is termi-
nated after death. It is purchased continuously by susceptible individuals.

4. Lump Sum for Hospitalization with Death Benefit (SHD):

This plan contains all of the same benefits as in the previous one. In
addition, a death benefit of $1000 is payable to specified beneficiaries at
the moment of the insured’s death. The insurance liability is terminated
after death. It is purchased continuously by susceptible individuals.

Figure 6: Benefit reserve V (t) with premiums determined by the equivalence
principle. Clockwise from the top left corner Plan AH, AHD, SHD and SH.

Table 2 gives net level premiums for each plan determined by the original
equivalence principle. It is probably against what one might expect that the
premium of the annuity for hospitalization plan is not even half the premium
of the lump sum for hospitalization plan. Note that although it seems to cost
more for the first plan to cover not only the newly infected, but also all exist-
ing patients. The fact is that few of them ever survived longer than a month
once the disease spread out. Therefore, providing the infected with immediate
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reimbursement costs an insurer much more than a monthly annuity in the case
of an acute fatal disease.

Figure 7: Benefit reserve V (t) with adjusted premiums and survival benefits.
Clockwise from the top left corner Plan AH, AHD, SHD and SH.

Like benefit reserves in life insurance, the reserve functions, shown in Figure
6 for the infectious disease coverage, reaches zero at the end of policy duration,
when the protection ends. However, as discussed in Section 5, every reserve
function in our example appears to go through a negative phase, which dan-
gerously reduces the insurer’s financial solvency. Thus there is a need for our
algorithm that adjusts premiums to meet the financial requirement such as that
benefit reserve must not be allowed to go under zero.

Since the death and hospitalization benefits remain the same and only pre-
miums are raised to ensure insurers’ nonnegative reserve, the equivalence cannot
be established unless the insurer clears off the reserve balance in the form of
another benefit for the remaining survivors. Therefore, in each plan we add a
new insurance liability that every survivor of the epidemic is entitled to an equal
payment of dividends. Table 3 illustrates the adjusted premiums for each plan
and the final dividend payment to survivors.
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Plan Adjusted Premium Survival Dividend Terminal Reserve

1 128.38 184.74 14170.81

2 478.86 689.11 52858.76

3 370.76 756.95 58062.73

4 715.02 1209.73 92793.84

Table 3: Eyam plague adjusted premiums (dollar)

6.2 SARS epidemic in Hong Kong

In the classical SIR model, the implicit assumption that the mixing of members
from different compartments is geographically homogeneous is probably unre-
alistic. The susceptible people in geographical neighborhoods of an infectious
virus-carrier are more likely to be infected than those who are remote from the
carrier. For instances, health care workers are at higher risk of infection than
most other groups in a population.

To distinguish different levels of vulnerability or infectiousness within differ-
ent social groups, spatial structures were introduced and developed in epidemi-
ological studies. A typical example of a spatial structure applied to the SARS
epidemic in Hong Kong is defined by Chowell et al. [8] in the following ODE
system,

S′
1(t) = −βS1(t)

I(t) + qE(t) + lJ(t)
N

, t ≥ 0 , (42)

S′
2(t) = −βpS2(t)

I(t) + qE(t) + lJ(t)
N

, t ≥ 0 , (43)

E′(t) = β(S1(t) + pS2(t))
I(t) + qE(t) + lJ(t)

N
− kE(t) , t ≥ 0 , (44)

I′(t) = kE(t) − (α + γ1 + δ)I(t) , t ≥ 0 , (45)
J ′(t) = αI(t) − (γ2 + δ)J(t) , t ≥ 0 , (46)
R′(t) = γ1I(t) + γ2J(t) , t ≥ 0 . (47)

In this model, there are two distinct susceptible compartments with different
levels of exposure to the SARS, namely S1 for the most susceptible urban com-
munity and S2 for the less susceptible rural population. Initially, S1(0) = ρN
and S2(0) = (1 − ρ)N , where ρ is the proportion of urban inhabitants in to-
tal population. An average highly susceptible person (in the Class S1) makes
an average number of β adequate contacts (i.e. contacts sufficient to transmit
infection) with others per unit time. Because of less frequent visits to public ar-
eas where viruses concentrate, an average lower susceptible person (in the Class
S2) would only be exposed to an average number of pβ adequate contacts with
others per unit time.

Because an individual infected with SARS may experience an incubation
period of 2-7 days before the onset of any visible symptom. An infectious
class is set up for those infected but not yet symptomatic. The parameter q
is used to measure the lower level of infectivity during the incubation. As the
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Figure 8: Transfer diagram of the SARS epidemic dynamics, Reprinted from
the Figure 1 in Chowell [8].

time elapses, the infected individual would develop observable symptoms and
become fully infectious in Class I with q = 1. In order to distinguish their
potential disease transmission to general public, the Class I is separated for
those infectious individuals that are undiagnosed. Since almost all diagnosed
cases are quarantined in hospitals, the Class J has a lower infectivity level
reflected by a reduction factor l.

The rates of population transferring from E, I and J to their chronologically
adjacent compartments I, J and the recovered class R are respectively k, α and
γ2. Considering that even before being diagnosed SARS patients may either
recover naturally at the rate of γ1 or die at the force of fatality δ, we also have
the class D keeping track of deaths as a result of the SARS from two sources
I and J . The patients under medical treatments in Class J suffer death at the
rate assumed to be the same as the mortality in Class I.

Notice that both E and I are undiagnosed phases, there is literally no sta-
tistical data for estimating their parameters. Therefore, another compartment
C for reported probable cases is set aside to trace back the original time of in-
cidences by a time series. Figure 8 gives transfer directions among the different
compartments.

To avoid getting into details of parameter inference, we make use of param-
eter values estimated in the original paper as summarized in Table 4. These
parameter values were used to compute the basic reproductive number R0 in
the original article. A defect of this model is that there appears to be some
negative numbers in Classes I and J .

From an insurer’s point of view, this model presents many business opportu-
nities. On the one hand, individuals in Classes S1 and S2 are potential buyers
facing the risk of infection with SARS. On the other hand, there is an evident
need for insurance covering vaccination costs in both S1 and S2, medical exam-
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Parameter Moving from/to Value

β S1, S2/E 0.75

q reduced infectiousness 0.1

l reduced infectiousness 0.38

p reduced susceptibility 0.1

k E/I 1/3

α I/J 1/3

γ1 I/R 1/8

γ2 J/R 1/5

δ I, J/R 0.006

ρ reduced contacts 0.4

Table 4: Parameter values that fit the SARS model for Hong Kong, adapted
from the Table 1 in Chowell et al. [8].

ination expenses for probable cases in Class I, hospitalization and quarantine
expenses for Class J and death benefit for Class D. Since a number of parties
are involved in the health care system, such as insurance companies, policy-
holders, government health agencies, and hospitals. Numerous business models
could be designed to bring them together in order to reduce the financial impact
to the lowest level. To illustrate an easy example of such an infectious disease
insurance, we design the following two plans.

1. Annuity for Hospitalization Plan

Every participant of the mutual insurance funding purchases the coverage
by means of an annuity. Rural inhabitants are charged lower premiums
proportional to their reduced susceptibility. From the time of policy issue
to the end of the epidemic, every insured is eligible for claiming a medical
examination fee of $100,000 once observed with suspicious symptoms, and
hospitalization expenses of $100,000 per day, in the form of a life annuity
for the period under medical treatment in hospital. Specified beneficiaries
are entitled to a death benefit of $100,000 after a covered person’s death
due to the infectious disease. The protection ends at the ealiest time of
either the end of the epidemic or the time of the policyholder’s death.

2. Lump Sum for Hospitalization Plan

This plan contains all of the same benefits as in the previous one with the
exception of a lump sum payment, instead of an annuity, of $100,000 after
the policyholder is diagnosed positive with the disease. The protection
also ends at the ealiest time of either the end of the epidemic or the time
of the policyholder’s death.

The discounted total benefits and premiums in Table 5are calculated under
the assumption that all Hong Kong residents during the pandemic are enrolled
in the policy. We obtained surprisingly low net level premiums for both plans,
which are determined by the equivalence principle. This reinforces our assertion
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that an insurance plan of fairly low cost could cushion the sharp blow from a
pandemic to our healthcare system.

Plan P.V. Benefits P.V. Premiums Level Premium

1 3.0571 × 108 1.71604 × 108 1.78

2 1.3231 × 108 1.71604 × 108 0.77

Table 5: SARS insurance premium rating (dollar)

7 Future work

Since research in this emerging type of insurance is just at the infancy stage,
much more work needs to be done to generalize the models in order to fit
other aspects and features of different diseases. There have been abundant and
extensive studies in epidemiological stochastic modeling. We are looking forward
to having some stochastic models incorporated in our actuarial applications.
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Figure 9: Functions of individual numbers in each compartment S1(t), S2(t),
E(t), I(t), J(t) and R(t) .
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