Risk Management of a DB Underpin Pension Plan

Kai Chen Supervisor: Mary Hardy

Acknowledge the UW Institute for Quantitative Finance and Insurance CKER ARC Travel Grant for their Support

Outline

- Introduction and Background
- Risk Management
 - Hedging Strategies
 - Numerical Results
- Comments and Future Work

Introduction of Current Pension Systems

- Two basic kinds of pension plans
 Defined Benefit (DB) and Defined Contribution (DC)
- Pension Reforms
 - Three-dimensional classification(Lindbeck, 2003):
 - Actuarial vs Non-Actuarial
 - Funded vs Unfunded
 - Defined Benefit vs Defined Contribution

Introduction and Background

- "Greater of" benefit a DB and DC hybrid plan
 - DC plus DB guaranteed minimum
- The payoff of the guarantee is same as an exchange option payoff.
 - Eg. McGill University, WLU offer a hybrid pension plan with minimum DB guarantee.

Description of Benefits (DB)

The DB benefits depend on the salary at exit age xr:

$$\begin{split} D_{xe,xr}(t) &= \alpha \times S_{xr} \times n \times_{xr-xe-t} \ddot{a}_{xe+t}^{(12)} \\ D_{xe,xr}(t) &: \text{The actuarial value at age xe+t} \\ \alpha &: \text{The accrual rate} \\ S_{xr}: \text{The salary at age xr} \\ n &: \text{The years of service} \\ xr-xe-t & \ddot{a}_{xe+t}^{(12)}: \text{The annuity factor} \end{split}$$

Description of Benefits (DC)

The DC benefits depend on the monthly contribution:

$$A_{xe,xr}(t+h) = A_{xe,xr}(t) \cdot (1+hf_t) + c \cdot h \cdot S_{xe+t}$$

Where

- c: The contribution rate
- h :The time interval

Risk Management

- Our problem
 - Valuation and risk management of Max(D-A,0) at exit.
- Assume no exits
 - Given retirement time T=xr-xe, the value of guarantee at entry age xe is,

$$e^{-r(xr-xe)}Max(D_{xe,xr}(T) - A_{xe,xr}(T),0)$$

Exchange Option

Rates of return of two assets

$$dS_i = S_i [\alpha_i dt + \sigma_i dZ_i], i = 1, 2$$

A European-type option with maturity time T

• Payoff at maturity time T $w(S_1, S_2, T) = Max(S_1 - S_2, 0)$

Price at any time t

$$w(S_1, S_2, t) = S_1 N(d_1) - S_2 N(d_2)$$

$$d_1 = \frac{\ln(S_1/S_2) + 1/2 \cdot \sigma^2 (T - t)}{\sigma \sqrt{T - t}}$$

$$d_2 = d_1 - \sigma \sqrt{T - t}$$

$$\sigma^2 = \sigma_1^2 - 2\sigma_1 \sigma_2 \rho + \sigma_2^2$$

Monte Carlo Hedging

At any time t, change the value of DB and DC accounts \downarrow \downarrow \downarrow the projected value of guarantee ŢŢ calculate delta rebalance at time t+h

Too Volatile!

• Eg. Entry age 35, Current age 40, Normal Retirement Age 65 Projected value of DB: $\alpha \cdot 5 \cdot_{25|} \ddot{a}_{40}^{(12)} \cdot S_{40} e^{\int_{40}^{65} s(u) du}$ Projected value of DC: $A_{40} e^{\int_{40}^{65} f(u) du}$ Projected value of guarantee:

$$Max(0, \alpha \cdot 5 \cdot_{25|} \ddot{a}_{40}^{(12)} \cdot S_{40} e^{\int_{40}^{65} s(u) du} - A_{40} e^{\int_{40}^{65} f(u) du})$$

• Eg. Entry age 35, Current age 40, Normal Retirement Age 65 Projected value of DB: $\alpha \cdot 5 \cdot_{25|} \ddot{a}_{40}^{(12)} \cdot S_{40}$ Projected value of DC: $A_{40}e^{\int_{40}^{65} f(u)du}$ Projected value of guarantee:

$$Max(0, \alpha \cdot 5_{25|} \ddot{a}_{40}^{(12)} \cdot S_{40} - A_{40} e^{\int_{40}^{65} f(u) du})$$

Hedging Costs

At time t, assume delta hedging shares are $\Delta_{1,t}$ and $\Delta_{2,t}$. The value of hedging fund is

 $\Delta_{1,t} \cdot S_{1,t} + \Delta_{2,t} \cdot S_{2,t}$

- At time (t+1), the value of hedging fund is $\Delta_{1,t} \cdot S_{1,t+1} + \Delta_{2,t} \cdot S_{2,t+1}$
- At time (t+1), the value of hedging fund is

 $\Delta_{1,t+1} \cdot S_{1,t+1} + \Delta_{2,t+1} \cdot S_{2,t+1}$

At time (t+1), the hedging cash flow CF_{t+1} is

$$(\Delta_{1,t+1} - \Delta_{1,t}) \cdot S_{1,t+1} + (\Delta_{2,t+1} - \Delta_{2,t}) \cdot S_{2,t+1}$$

Two ways to calculate hedging costs

 Discount all hedging cash flows and amortize by the salary-related annuity

$$rac{\sum_{j}e^{-rj}CF_{j}}{\sum_{j}e^{-rj}S_{j}}$$

 At time t, calculate the proportion of the hedging cash flows of the salary at time t, then calculate the average

$$\frac{1}{n}\sum_{j}CF_{j}/S_{j}$$

Parameters

Base Projections

- Mean of Salary Growth Rate: 0.04
- Std of Salary Growth Rate : 0.02
- Mean of Crediting Rate : 0.10
- Std of Crediting Rate : 0.20
- Contribution Rate : 0.125
- Discount Rate : 0.05

Results Comparison (% of Salary)

_	Table 1: Discount Rate: 5%, Strategy 2				Table 2: Hedging Cost 1, Strategy 2		
	Entry Age	Hedging Cost 1	Hedging Cost 2		Entry Age	Discount Rate:5%	Discount Rate:3%
	20	4.69	4.33		20	4.69	4.01
		(0.0086)	(0.0086)			(0.0086)	(0.0094)
	25	4.55	4.25		25	4.55	3.98
		(0.0082)	(0.0080)			(0.0082)	(0.0091)
	30	4.38	4.14		30	4.38	3.92
		(0.0078)	(0.0076)			(0.0078)	(0.0085)
	35	4.20	4.01		35	4.20	3.84
		(0.0074)	(0.0073)			(0.0074)	(0.0081)
	40	4.03	3.87		40	4.03	3.74
		(0.0069)	(0.0068)			(0.0069)	(0.0073)
	45	3.80	3.68		45	3.80	3.61
		(0.0063)	(0.0062)			(0.0063)	(0.0068)
	50	3.56	3.48		50	3.56	3.43
		(0.0056)	(0.0055)			(0.0056)	(0.0060)
	55	3.36	3.20		55	3.36	3.19
Q		(0.0049)	(0.0048)			(0.0049)	(0.0051)

Monthly Hedging Cost

August, 2006 @ 41st ARC

Quantile

Scenario Tests (Strategy 2, Hedging Cost 2)

Conclusions

- Hedging costs depend on many factors, but are not very sensitive to the entry age or the salary growth rate.
- Standard errors depend on the entry age and increase when the entry age increases.

Future Work

- Use inflation-linked bonds hedge salary and explore basis risk.
- Introduce stochastic interest and annuity.

Thank You!

