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• Classical actuarial problem - the collective risk Sparre
Andersen model .

• Additional non-traditional feature, investments in a risky asset
with returns modeled by a stochastic process.

• Focus of the analysis: the probability of ruin.

• Decay of the probability of ruin in the case of Erlang(n)
distribution for inter-claims returns modeled by a geometric
Brownian motion.



Sparre Andersen model

Ut = u + ct −
N(t)∑
k=1

Xk

• u -initial surplus

• c -premium rate

• Xk iid - ”light” claims - FX ∼ exponentially bounded tail

• N(t) - renewal process

• T1,T2, · · · times when claims occur

• τ0 = 0, τn = Tn − Tn−1 inter-arrival times, independent,
identical distributed r.v.



Sparre Andersen model with investments

• Consider that the company invests all its money, continuously,
in a risky asset modeled by a non-negative stochastic process.

• NOTE: The ruin may happen only at the time of a claim, Tk .

• The model

Uk = Z
Uk−1
τk − Xk

is a discrete Markov process, where Uk = UTk
.



Definitions
The time of ruin:

Tu = inf
t≥0
{U(t) < 0 | U(0) = u}

The probability of ruin with infinite horizon:

Ψ(u) = P(Tu < ∞).



Objectives

1. An equation for the probability of ruin in the Sparre Andersen
model with investments

2. Particular case: Investigate the decay of the probability of ruin
if the interarrival times are Erlang (n, β), with returns from
investments modeled by GBM (a, σ2).

Main tools

1. Integro-differential equation: generators arguments

2. Decay: Karamata-Tauberian arguments



Assumptions

• (Xk)k - claim sizes - ”light” or well-behaved distributions FX

with exponentially bounded tail

1− FX (x) ≤ ce−ax

for some a and c and for all x ≥ 0.

• (τk)k - inter-arrival times - fτ satisfies an ODE with constant
coefficients

L(
d

dt
)fτ (t) = 0

Example: fτ (t) = βe−βt then L( d
dt )fτ (t) = ( d

dt + β)fτ (t) = 0

• Zu
t - returns from investments up to time t, starting with an

initial capital u- the company invests all its money,
continuously into a risky asset modeled by a non-negative
stochastic process with infinitesimal generator A



Transition operator of the discrete Markov process For our
discrete Markov process U0,U1,U2, · · · (where Uk = UTk

), on the
set of all real-valued, bounded, Borel measurable functions g ,
define the transition operator

Tkg(u) = E (g(Uk) | U0 = u) = Eug(Uk).

Then Mn = f (Un)−
∑n−1

k=0(T1 − I )f (Uk) is a martingale.

Proof: E (Mn+1 | σ(U0,U1, · · ·Un)) = E (g(Un+1) |
U0,U1, · · ·Un)−

∑n
k=0(T1 − I )g(Uk) =

T1g(Un)− T1g(Un) + g(Un)−
∑n−1

k=0(T1 − I )g(Uk) = Mn.



Theorem
If fτ satisfies the ODE with constant coefficients

L(
d

dt
)fτ (t) = 0

and

1. f
(k)
τ (0) = 0, the k−th derivatives of fτ , for k = 0, · · · , n − 2

2. limx→∞ f (k)(x) = 0, for k = 0, · · · , n − 1

then for any g ∈ DA(n)

L∗(A)T1g(u) = f (n−1)
τ (0)

∫ ∞

0
g(u − x)fX (x)dx

where A denotes the infinitesimal generator of the investment
process Zt , n represents the order of the ODE with constant
coefficients satisfied by fτ .



Relation to the ruin probability
Theorem. Assume that on the event {Tu = ∞}, Ut →∞ as
t →∞. If g ∈ DAU

satisfies

L∗(A)g(u) = f (n−1)
τ (0)

∫ ∞

0
g(u − x)fX (x)dx

together with the boundary conditions

g(u) = 1 if u < 0

lim
u→∞

g(u) = 0

then
g(u) = P(Tu < ∞)



Sketch of proof:

• g(Uk) is a martingale, Tu stopping time

• g(u) = Eug(UTu∧Tk
) =

Eug(UTu∧Tk
1{Tu<Tk}) + Eug(UTu∧Tk

1{Tu>Tk}) =
g(UTu)P(Tu < Tk) + g(UTk

)P(Tu > Tk) (let t →∞)

• g(u) = 1 ∗ P(Tu < ∞) + 0 ∗ P(Tu > ∞) = P(Tu < ∞)



Examples
Integro-differential equation for Cramer Lundberg model - exp(β)

L(
d

dt
)fτ (t) = (

d

dt
+ β)fτ (t) = 0 =⇒ L∗( d

dt
) = (− d

dt
+ β)

therefore

L∗(A)Ψ(u) = (−A + β)Ψ(u) = β

∫ ∞

0
Ψ(u − x)fX (x)dx



Examples
If no investments, A = c d

du ,

(−c
d

du
+ β)Ψ(u) = β

∫ ∞

0
Ψ(u − x)fX (x)dx

Ψ′(u) =
β

c
Ψ(u)− β

c

∫ ∞

0
Ψ(u − x)fX (x)dx



Particular case

• fX ∼ finite moments in the neighborhood of the origin

• fτ ∼ Erlang (n, β) - L( d
dt )fτ (t) = ( d

dt + β)nfτ (t) = 0

• Z ∼ GBM(a, σ2) returns,

dZ = (c + aZ )dt + σZdWt

A = (c + au)
d

du
+

σ2

2
u2 d2

du2

Then the surplus model is:

U(t) = u + ct + a

∫ t

0
U(s)ds + σ

∫ t

0
U(s)dWS −

N(t)∑
0

Xk .



Integro-differential equation for Erlang(n) with investments
The integro-differential equation for a Sparre Andersen model
when the time in between claims is Erlang(n, β)

(−A + β)nΨ(u) = βn

∫ ∞

0
Ψ(u − x)fX (x)dx

together with the boundary conditions for Ψ.
If the investments are made in a stock modeled by a geometric
brownian motion

(−(c + au)
d

du
− σ2u2

2

d2

du2
+ β)nΨ(u) = βn

∫ ∞

0
Ψ(u − x)fX (x)dx

Then the decay of the probability of ruin is algebraic

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = Kn

for (small volatility) 1 < 2a
σ2 < 2.



Steps in establishing the algebraic decay rate

1. Take Laplace transform

2. Regularity at zero of the homogeneous ODE obtained in the
Laplace side implies that Ψ̂(s) = sρ

∑∞
k=0 cksk .

3. Karamata -Tauberian arguments



Laplace transform

• Erlang(n, β)

(−Â + β)nΨ̂(s) = βn f̂X Ψ̂(s)

(−1)nÂnΨ̂(s) + · · ·+ βn = βnΨ̂(s)f̂X (s) + βn(
1

s
− f̂X (s)

s
)

• 2n-th order ODE:

y (2n) + p1(s)y
(2n−1) + p2(s)y

(2n−2) + · · ·+ p2n(s)y = p2n+1(s)

• regularity at zero

=⇒ Ψ̂(s) = sρ
∞∑

k=0

cksk



Regularity at zero
Determine ρ :

• The coefficient of the sρ term should be zero, i.e.

(−δ + β)n − βn = 0

where
δ = [σ2(ρ + 2)− a](ρ + 1)

• For k = 0, 1, 2, · · · , n − 1

δ = β(1− e
2πik

n )

• distinguish two cases, n odd or even



Case 1. n = odd

ρ1 = 0

ρ2 = −2 +
2a

σ2

ρ1 ≤ ρ2

• ρ1 doesn’t produce decay of the probability of ruin

• ρ2 is the leading term,

lim
s→0

Ψ̂(s)s2− 2a
σ2 = Kn

=⇒ lim
u→∞

Ψ(u)u−1+ 2a
σ2 = Kn

for 1 < 2a
σ2 < 2.



Case 2. n =even

ρ1 = 0

ρ2 = −2 +
2a

σ2

ρ3,4 =
ρ2 − 1

2
+

√
(
ρ2 + 1

2
)2 +

4β

σ2

ρ4 ≤ ρ1 ≤ ρ2 ≤ ρ3

• ρ4, ρ1 do note produce decay of the probability of ruin

• By Karamata arguments and ordering of the ruin probabilities
for Erlang of different n it can be shown that for any n,

lim
u→∞

Ψ(u)u−1+ 2a
σ2 = Kn

for 1 < 2a
σ2 < 2.



Conclusions

1. For a Sparre Andersen model, perturbed by a stochastic
process, a very general integro-differential equation for the
ruin probability can be written, if the inter-claim arrivals are
mixture of Erlangs.

2. For any n, the Sparre Andersen model with inter-arrival times
distributed Erlang (n) and investments in a stock modeled by
a GBM with small volatility, has an algebraic decay rate,
depending on the parameter of the investments only.

3. Conjecture: in the case of high volatility, σ2 > 2a, the ruin is
certain.



Future questions

1. fτ satisfies an ODE with polynomial coefficients

2. fτ ∼ Gamma(α, β)

3. Gerber-Shiu functions

4. Optimal investment strategy
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