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The parameter δ in the Black-Scholes formula 

The Black-Scholes option-pricing formula is given in Chapter 12 of McDonald 
(2006) without proof.  It is important to understand the meaning of each of its parameters.  
The meaning of the dividend yield, δ, is not very clear.  The assumption on dividend 
payments is given in the first sentence on page 132: dividends are paid continuously at a 
rate that is proportional to the stock price.  More precisely, for each share of the stock, the 
amount of dividends paid between time t and t+dt is assumed to be S(t)δdt.  Here, S(t) 
denotes the price of one share of the stock at time t, t ≥ 0.  (Note that the book also writes 
S(t) as St.  The symbol S in formula (12.1) is the same as S(0) and S0.)  This is not exactly 
a reasonable assumption for stock dividends, but it is needed to obtain formula (12.1).   
On the other hand, in the context of the Garman-Kohlhagen model for pricing options on 
currencies (page 381), where S(t) and δ stand for the exchange rate and foreign currency 
interest rate, respectively, the assumption is reasonable. 

 
It is indicated on page 132 that, if all dividends are re-invested immediately, then 

one share of the stock at time 0 will grow to eδt shares at time t, t ≥ 0.  A calculus proof of 
this fact is as follows.  Let n(t) denote the number of shares of the stock at time t under 
this immediate reinvestment policy.  Thus, n(0) = 1.  Because the additional number of 
shares purchased between time t and t+dt is dn(t), we have 

   n(t)S(t)δdt  =  S(t)dn(t), 
or 

    
td

d n(t)  =  n(t)δ. 

Rewriting the last equation as 

    
td

d ln[n(t)]  =  δ, 

integrating both sides, and applying the condition n(0) = 1, we obtain the result  
n(t)  =  eδt. 

 
 Thus, if we want one share of the stock at time T, we can buy e−δT share at time 0 
and reinvest all dividends between time 0 and time T.  This gives a meaning to the 
quantity Se−δT in formula (12.1).  More generally, if we buy e−δ(T−t) share at time t, t < T, 
and reinvest all dividends between time t and time T, we get one share of the stock at 
time T.  Hence,  
    e−δ(T−t)S(t)  =  )(, SF P

Tt ,    (1) 
the time-t prepaid forward price for delivery of one share of the stock at time T.  With  
t = 0, this is formula (5.4) on page 132. 
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The parameter σ in the Black-Scholes formula 
 The symbol σ in (12.1) is usually called volatility.  In finance literature, the term 
“volatility” does not always have the same meaning.  The quantity σ enters the Black-
Scholes model via the stochastic differential equation (20.1) 

    
)(
)(d

tS
tS   =  αdt  +  σdZ(t).    (2) 

Because dS(t) is the instantaneous change in the stock price, the left-hand side of the 
equation, dS(t)/S(t), is the instantaneous rate of return due to changes in the stock price.  
As the first quantity on the right-hand side, αdt, is deterministic, the variance of dS(t)/S(t) 
is the variance of σdZ(t), which is σ2 times the variance of dZ(t).  As pointed out on page 
650, dZ(t) is a normal random variable with variance dt.  Thus, the variance of the 
instantaneous rate of return, dS(t)/S(t), is  
     σ2 dt, 
which gives an interpretation for σ. 
 
 The stochastic differential equation (20.1) has an explicit solution, 

   S(t)  =  S(0)exp[(α − 2
2σ )t  +  σZ(t)];    (3) 

see (20.13) and (20.29).  By means of Itô’s Lemma, we can check that the stochastic 

differential equation (20.1) is indeed satisfied.  The exponent, (α − 2
2σ )t  +  σZ(t), is the 

continuously compounded return from time 0 to time t (as defined on page 353) due to 
stock price changes; its variance is  

Var[σZ(t)]  =  σ2Var[Z(t)]  =  σ2t. 
In other words, σ t  is the standard deviation of the continuously compounded return 
over the time interval [0, t] (due to changes in the stock price).  On page 919 of 
McDonald (2006), volatility is defined as “[t]he standard deviation of the continuously 
compounded return on an asset.”  This is not quite correct, because it has not specified 
that the length of the time interval is 1. 
 
 The total return on a stock has two components: return from capital gains (or 
losses) and return from dividends.  The continuous dividend assumption means that the 
instantaneous rate of return from dividends is the constant δ. 
 
The prepaid forward price version of the Black-Scholes formula 
 It is pointed out on page 380, after formula (12.5), that “[t]his version of the 
[Black-Scholes] formula is interesting because the dividend yield and the interest rate do 
not appear explicitly; they are implicitly incorporated into the prepaid forward prices.”  In 
the second half of page 380, formula (12.5) is used to price options on a stock which pays 
discrete dividends.  In this case, the stock price process, {S(t)}, cannot be a geometric 
Brownian motion, because there must be a downward jump in the stock price 
immediately after each dividend is paid.  In particular, the logarithm of the stock price 
cannot be a stochastic process with a constant standard deviation per unit time.  So, what 
is σ in formula (12.5)?  It turns out that formula (12.5) follows from the assumption that 
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the stochastic process of the prepaid forward price for delivery of one share of the stock 
at time T, 
    { )(, SF P

Tt ; 0 ≤ t ≤ T}, 
is a geometric Brownian motion, with σ being the standard deviation per unit time of its 
natural logarithm. 
 
 If the stock pays dividends continuously at a rate proportional to its price, then 
formula (1) holds.  In this case, the prepaid forward price process, { )(, SF P

Tt }, is a 
geometric Brownian motion if and only if the stock price process, {S(t)}, is a geometric 
Brownian motion; both stochastic processes have the same parameter σ.  Formula (12.1) 
is a consequence of (12.5), but the converse is not true because (12.1) is not applicable 
for pricing options on stocks with discrete dividends. 
 
European Exchange Options 
 It is pointed out on page 460 that ordinary calls and puts are special cases of 
exchange options.  As hinted in the footnote on page 380, formula (12.5) can be 
generalized to price European exchange options.  For j = 1, 2, let Sj(t) denote the price of 
asset j at time t, t ≥ 0.  Consider a European exchange option whose payoff at time T is  
    max(S1(T) − S2(T), 0).   
If {ln )]([ 1, SF P

Tτ ;  0 ≤ τ ≤ T} and {ln )]([ 2, SF P
Tτ ;  0 ≤ τ ≤ T} are a pair of correlated 

Brownian motions (see page 657), then it can be shown that the time-t price of the 
European exchange option is 
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Here, Var(ln )](/)([ 2,1, SFSF P
Tt

P
Tt ) = σ2t,  0 ≤ t ≤ T. 

 
To emphasize the simplicity of formula (4), let us write ν = T tσ − , and  

Fj = , ( )P
t T jF S , j = 1, 2.  Then, (4) becomes 

  1 2
1

ln[ / ]
2

F FF N ν⎛ ⎞× +⎜ ⎟ν⎝ ⎠
  −  1 2

2
ln[ / ]

2
F FF N ν⎛ ⎞× −⎜ ⎟ν⎝ ⎠
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which is not a difficult formula to remember.  
 

To see that formula (14.16) follows from formula (4), we note the assumptions for 
(14.16): for j = 1, 2, {Sj(t)} is a geometric Brown motion with volatility σj, dividends of 
amount Sj(t)δjdt are paid between time t and time t+dt, and the correlation coefficient 
between the continuously compounded returns, ln[S1(t)/S1(0)] and ln[S2(t)/S2(0)], is ρ.  
Thus, similar to (1), 
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   )(, j
P
Tt SF   =  )( tTje −δ− Sj(t),  j = 1, 2,  (5) 

and 
      σ2t =  Var(ln )](/)([ 2,1, SFSF P

Tt
P
Tt )  

   =  Var(ln[S1(t)/S2(t)])    because of (5) 
   =  Var(ln[S1(t)]  −  ln[S2(t)]) 
   =  Var(ln[S1(t)])  +  Var(ln[S2(t)])  −  2Cov(ln[S1(t)], ln[S2(t)]) 
   =  2

1σ t  +  2
2σ t  −  2ρσ1σ2t, 

which is equivalent to (14.17) on page 460. 
 
Black’s formula for pricing options on zero-coupon bonds 
 With the exchange option formula (4), one can derive formula (24.32), which is 
Black’s formula for pricing options on zero-coupon bonds.  For t < T, consider  
   S1(t)  =  P(t, T + s) 
and 
   S2(t)  =  K × P(t, T). 
Because zero-coupon bonds do not pay dividends, we have 
   )( 1, SF P

Tt   =  S1(t)  =  P(t, T + s) 
and 
   )( 2, SF P

Tt   =  S2(t)  =  K × P(t, T). 
Then, 
    )(/)( 2,1, SFSF P

Tt
P
Tt   =  P(t, T + s)/[KP(t, T)]. 

Note that P(t, T + s)/P(t, T) is the time-t forward price for time-T delivery of a zero-
coupon bond that pays 1 at time T + s.  If we can assume that the zero-coupon bond 
forward price process, 
   {P(t, T + s)/P(t, T);  0 ≤ t ≤ T}, 
is a geometric Brownian motion with  
     Var(ln[P(t, T + s)/P(t, T)])  =  σ2t,  0 ≤ t ≤ T 
(the assumption stated in the first sentence on page 791 is that “the bond forward price is 
lognormally distributed with constant volatility σ”), then the time-0 price of the European 
call option with time-T payoff [P(T, T + s) – K]+ is given by formula (4) with t = 0.  That 
is, the time-0 price of the call option on the zero-coupon bond is 
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which is the formula in footnote 3 on page 791 of McDonald (2006). 
 

If we write  
F = F0,T[P(T, T + s)] = P(0, T + s)/P(0, T), 

then (6) becomes  
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which is formula (24.32) on page 791.  Alternatively, because  
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we can rewrite formula (4) as  
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Then, (7) follows from (8) with t = 0. 
 

The parameters δ and σ in the binomial model 
The quantities, δ and σ, also appear in Chapters 10 and 11, which are on binomial 

models.  On page 316, δ is called the continuous dividend yield, and on page 321, σ is 
called the annualized standard deviation of the continuously compounded stock return.  
Because binomial models are discrete models, it seems strange that these “continuous-
time” concepts are involved.  The motivation for incorporating δ and σ in binomial 
models is sketched in Section 11.3.  By letting the length of each time period, h, tend to 
zero (and the number of periods tend to infinity), we can obtain the risk-neutral 
geometric Brownian motion for stock price movements with the dividend yield δ and 
volatility σ.  Note that McDonald (2006) has suggested three pairs of formulas for  

u  =  hhe σ+α )(  
and 

   d  =  hhe σ−α )( . 
In (10.10), α(h) = (r – δ)h.   In (11.18), α(h) ≡ 0, which means u = 1/d.  In (11.19), α(h) = 
(r – δ − ½σ2)h.  They yield the same limit as h → 0. 
 

The usual model in McDonald (2006) is α(h) = (r – δ)h.  A binomial tree so 
constructed is called a “forward tree” (page 322).  In this case, the risk-neutral 
probabilities are 

    p*  = 
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because σ > 0, we have p* < ½ < 1 – p*. 
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Greeks 
Greeks are partial derivatives of the option price formula.  “The actual formulas 

for the Greeks appear in Appendix 12.B” (McDonald 2006, p. 382).  As the author 
seemed to want to avoid using calculus in the first half of his book, the definitions given 
on pages 382 and 383 are numerical approximations.  We need to be careful about the 
units in which changes are measured.  For example, it is stated on page 383 that “[t]heta 
(θ) measures the change in the option price when there is a decrease in the time to 
maturity of 1 day.”  However, the mathematical definition for theta is the partial 
derivative of the option price with respect to t.  In the Black-Scholes option-pricing 
formula, the variable t is (usually) in years.  Thus, the definition on page 383 differs from 
the partial-derivative definition by a factor of 365. 

 
Interest rate   
 In McDonald (2006), the interest rate is usually a continuously compounded rate, 
or in actuarial terminology, a force of interest.  One exception is Section 24.5 “The 
Black-Derman-Toy Model” where r0, ru, rd, ruu, etc. are effective annual interest rates.  
Another exception is the second half of Section 24.3, which is on pricing interest rate 
caps and caplets. 
 
Chapters 18 and 21 

Chapter 18 “The Lognormal Distribution” is not in the syllabus of Exam MFE/3F, 
but in the syllabus of Exam C/4.  Section 18.4 “Lognormal Probability Calculations” is 
useful for understanding the Black-Scholes formula.   

 
 Chapter 21, not in the syllabus, derives the celebrated Black-Scholes partial 
differential equation.  McDonald (2006, p. xxiii) states: “Although the Black-Scholes 
formula is famous, the Black-Scholes differential equation, discussed in this chapter, is 
the more profound result.”  Chapter 21 can be quite helpful for understanding Chapters 
12 and 13.  Some will find that page 687 demystifies page 394.  Others may learn that 
equation (21.31), 

   E∗
t [dV]  =  V×rdt, 

is a particularly easy-to-remember derivation of the Black-Scholes equation.  The 
instantaneous change in option price, dV, is calculated using Itô’s Lemma, which is in the 
syllabus of Exam MFE/3F.  Taking expectation and canceling dt immediately yields the 
Black-Scholes partial differential equation. 


