41st Actuarial Research Conference Montréal, QC, August 10-12, 2006

MULTIVARIATE MODELING OF ASSET RETURNS FOR INVESTMENT GUARANTEES VALUATION

* Mathieu Boudreault

HEC Montréal, Montréal, Canada

Christian-Marc Panneton

Industrial Alliance, Québec, Canada

Introduction

- Canadian insurance industry has widely accepted the regime-switching model for valuation purposes
- However, different funds are offered and dependence between them must be accounted for
- Objectives
 - Present multivariate models that can be used for valuation purposes
 - Compare the CTE provisions for each model
 - Analyze the impacts of a multivariate estimation on the CTE provision

Outline

- 1. Introduction
- 2. Models
- 3. Data
- 4. Estimation
- 5. Results
- 6. Monte Carlo experiment

Models – Multivariate modeling

- Families of models considered
 - Multivariate regime-switching
 - Multivariate GARCH
- Desired features
 - Time-varying volatility and dependence
 - Manageable number of parameters
 - PSD covariance matrix
- Need to specify the dependence structure
 - Copulas or multivariate error distribution

Models – Regime-switching

- Types of regimes
 - Global regimes
 - Each market is influenced by a common process
 - Each market is simultaneously in the same regime
 - Local regimes
 - Each market has its own set of regimes
 - Captures specific market conditions
 - Transitions are independent between markets
 - Local-global regimes
 - Similar to local regimes
 - Transitions are dependent between markets

Models – GARCH

- VECH model (or diagonal VECH)
 - Idea: use a univariate GARCH(1,1) for each element of the covariance matrix
 - Covariance matrix:
 - Not PSD unless we impose PSD parameter matrices
 - PSD if we redefine the PSD parameter matrices
 - → Model known as PSD VECH
- BEKK model
 - Matrix quadratic form: PSD covariance matrix
 - Features volatility and dependence diffusion

Models – GARCH

- Dynamic Conditional Correlation (DCC)
 - Idea: modeling the dynamics of the conditional correlation of returns is equivalent to modeling conditional covariance of standardized returns.
 - 2 steps modeling/estimation
 - (1) Volatility
 - (2) Correlation
 - Can use many models for the correlation dynamics
 - + PSD covariance matrix if correlation matrix is PSD
 - Particular case: constant correlation model (CCORR or CCC)

Data

- Monthly data from January 1956 to September 2005
- 4 different markets
 - Canada: S&P TSX total return index
 - U.S.: S&P 500 total return index
 - U.K.: monthly historical return of
 - Actuaries Investment Index (01/1956 04/1962)
 - FTSE All Shares Index (05/1962 09/2005)
 - Japan: monthly historical return of TOPIX

Estimation – Regime-switching

- Different pairs of markets considered
 - Canada U.S. (high correlation)
 - U.S. Japan (low correlation)
- Global regime is the most parsimonious
 - Even for low correlated markets
 - Global-local approach has too much parameters to be chosen
 - Global regime approach only will be considered

Estimation – Regime-switching

- Different global regime models considered
 - Gaussian or Student copula
 - 2 or 3 regimes
 - 1 or 2 correlation matrices
 - Compared with constrained univariate model used in practice
- Constrained univariate model 3 steps
 - (1) Transition probabilities: univariate estimation on some arbitrary market or portfolio
 - (2) Means and variances: given (1), perform constrained univariate estimation on each market
 - (3) Correlation matrix: estimated empirically

Estimation

Ranked parsimonious models (SBC)

Rank	Model	Param.	Log-like.	SBC
1	CCORR GARCH	22	4424.38	4354.08
2	RS2LN w/1 corr. matrix	24	4423.72	4347.04
3	Same as (2) w/ Student copula	25	4426.50	4346.62
Last	Constrained Univ. RS2LN	24	4321.89	4245.20

- Constant correlation GARCH model is the most parsimonious
- Consistent with the regime-switching model with one correlation matrix

Results - Assumptions

- CTE provision with 3% annual MER (continuously compounded)
- Different CTE levels (60%, 80%, 95%)
- Initial ratio of MV/GV = 100%
- We consider:
 - CTE computation of an equally weighted portfolio in the 4 markets
 - Comparison with univariate models:
 Canadian market

Results – 4 markets

Model	60%-CTE	80%-CTE	95%-CTE
CCORR GARCH	3.3%	6.6%	22.8%
RS2LN w/ 1 corr. matrix	5.6%	11.2%	33.8%
Same as (2) w/ Student copula	4.5%	8.9%	29.1%
Constrained Univ. RS2LN	6.5%	13.0%	38.1%

- Significant variation between RS models
- Less variation between GARCH models (not shown)
- Largest CTE provisions with constrained univariate RS model (for this portfolio) but it is not always the case

Results – 1 market

Model	60%-CTE	80%-CTE	95%-CTE
RS2LN	8.9%	17.8%	47.0%
MRS2LN	8.2%	16.5%	43.9%
GARCH	2.7%	5.3%	20.9%
CCORR	4.8%	9.7%	30.6%

Univariate vs multivariate

Univariate model

- RS: not clear whether there is an increase in CTE
- GARCH: significant increase in CTE
- Regime-switching vs GARCH
 - RS: CTE provisions are greater than with GARCH
 - True for all other portfolios

- Market is more complex than GARCH or regime-switching
- Misspecification (and small samples) have impacts on CTE
 - Bias, non-normality
- **Purpose**: obtain the real distribution of the CTE given a complex market model
- Market model: bivariate stochastic volatility model

- Market model specifications:
 - Log-volatilities: correlated VAR(1)
 - Errors: constant correlation bivariate normal
 - Parameters: usual range for stochastic volatility
- Assumptions:
 - CTE: 120 months, 95%, 3% MER, MV/GV=1
 - Portfolio allocation: 60%-40%
 - True CTE: approximated empirically using 100 000 paths of 120 months → 100 000 accumulation factors
 - CTE distribution: 1000 samples of 500 observations
- Approximating models used: RS2LN w/ 1 corr. matrix and CCORR GARCH

CTE distribution (smoothed histogram)

• Greater CTE underestimation risk with regimeswitching model

Bias

	GARCH	Regime- switching
Mean	0,634167	0,622031
True value	0,645354	
Std dev.	0,137012	0,163142
RMSE	0,137468	0,164801

- Path by path inconsistency
 - Only 3 of the 10 smallest (largest) CTEs are common to both models
 - Correlation of 78% between pairs of CTEs

Conclusion

- With the specific dataset presented:
 - CCORR GARCH model is the most parsimonious model (SBC)
 - Current practitioner's approach provides the worst fit
 - Significant variation in CTEs among models
- Monte Carlo experiment was intended to assess the costs of misspecifying the market model

Conclusion

- Model selection alternative:
 - Choose a model with the lowest CTE RMSE since the target output is the CTE
 - CCORR GARCH has lowest CTE RMSE
- Even if the regime-switching model is widely accepted in a univariate framework
 - Should be reconsidered in a multivariate setting
- Final model selection and CTE computation
 - Depends on the context
 - Should reflect the actuary's judgment

Bibliography

Main paper (does not include the Monte Carlo experiment results):

Boudreault, M. and C.-M. Panneton (2006), «Practical Considerations in Multivariate Modeling of Asset Returns for Actuarial Valuation of Investment Guarantees», Paper presented at the 2006 Stochastic Modeling Symposium and Investment Seminar, Toronto, ON

http://www.actuaries.ca/meetings/stochastic-investment/2006/pdf/2111 v.3.pdf

DCC:

Engle, R.F. (2002), «Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models», *Journal of Business and Economic Statistics*, vol. 20, no. 3, 339-350.

VECH:

Bollerslev, T., R. F. Engle and J. M. Wooldridge (1988), «A Capital Asset Pricing Model with Time-Varying Covariances», *Journal of Political Economy*, 96, 1, 116-131

Bibliography

BEKK:

- Baba, Y., R. F. Engle, D. Kraft, K. F. Kroner (1989). «Multivariate Simultaneous Generalized ARCH», University of California, San Diego (UCSD), Department of Economics
- Engle, R. F. and K. F. Kroner (1995), «Multivariate Simultaneous Generalized ARCH», Econometric Theory, 11, 122-150

Regime-switching:

- Hamilton, J.D. (1989), «A New Approach to the Economic Analysis of Non-Stationary Time Series», *Econometrica* 50, 987-1007.
- Hardy, M. (2003), Investment Guarantees (Modeling and Risk Management for Equity-Linked Life Insurance), Wiley.

Stochastic volatility:

• Jacquier, E., N.G. Polson and P.E. Rossi (1994), «Bayesian Analysis of Stochastic Volatility Models», Journal of Business & Economic Statistics, Vol. 12, No. 4