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Abstract
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1 Introduction

The problem of optimal investment-consumption has been an area of active

research in the last few decades. Samuelson (1969) considered a discrete-time

consumption-investment model with the objective of maximizing the overall ex-

pected utility of consumption. Using dynamic stochastic programming approach, he

succeeded in obtaining the optimal decision for the consumption-investment model.

Merton (1969) (see also Merton (1990)) extended the model of Samuelson (1969)

to a continuous-time framework and used stochastic optimal control methodology

to obtain the optimal portfolio strategy. In particular he showed that under the

assumptions of log-normal stock returns and HARA utility, the optimal proportion

invested in the risky asset is constant. More recently, Cheung and Yang (2006)

investigated a dynamic consumption-investment problem in a regime-switching en-

vironment. In this case, the price process of the risky asset was modeled as a

discrete-time regime switching process and it was shown that the optimal trading

strategy and the consumption strategy are consistent with our intuition in that in-

vestors should put a larger proportion of the wealth in the risky asset and consume

less when the underlying Markov chain is in a “better” regime. For recent develop-

ments and detailed discussion on this subject, we refer the readers to monographs

by Karatzas and Shreve (1998) and Korn (1997).

Among these literatures, the uncertainty due to the economy is most commonly

considered. In discrete-time case, the economic uncertainty is usually specified by

a set of states, each of which is a description of the economic environment for all

dates. See for instance, LeRoy and Werner (2001) and the references therein for

details. Another crucial assumption which is commonly made in these setups is

that once an economic environment is known, the returns of risky assets in any time

period are no longer uncertain. This may contradict to what we observe in practice.

In recent years, several models have been proposed for addressing this issue. For

example, Cheung and Yang (2006) proposed using the Markovian regime switching

model to capture the economic uncertainty. In their model, the underlying economy

switches among a finite number of states and the returns of risky assets during a

time period, which depend on the economic environment at the beginning of that

time period, can still be uncertain. The possible economic states in this setup,

however, remain unchanged over times. It may be more realistic to assume that
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the economic uncertainty is resolved gradually since more and more information is

available as time passes. In this paper, we consider a setup which has the capability

of modeling two types of uncertainties associate with the economy. They are the

economic environment uncertainty and the asset return uncertainty. The economic

environment uncertainty will be described by an event tree generated by finite num-

ber of economic states while the asset return uncertainty will allow for randomness

of risky asset returns in any time period under any given economic environment. In

other words the return on the assets can be stochastic at any time and for any given

economic environment.

Another assumption that is commonly made in literature on optimal investment-

consumption problems is the exact duration of the planning horizon such as ten or

twenty years; that is, at the moment of making an investment-consumption decision,

an investor knows with certainty the time of eventual exit. In practice, however,

investors may be forced to exit the market before their planned investment horizon

due to a variety of reasons such as financial crisis, fatal illness or death of investors.

In these situations the time of exit is no longer certain. Consequently, it is of

both practical and theoretical importance to develop a comprehensive theory of

optimal investment-consumption decisions under uncertain time horizon as induced

by the mortality risk. Research on this subject is very limited, especially in the

case of discrete-time. Yaari (1965) studied an optimal consumption problem for an

individual with uncertain time of death in a simple setup with a pure deterministic

investment environment. Hakansson (1969, 1971) extended this work to a discrete-

time case with uncertainty including risky assets. Merton (1971) investigated a

dynamic optimal portfolios selection problem for an investor with uncertain time of

retirement, defined as the time of the first jump of an independent Poisson process

with constant intensity. Karatzas and Wang (2001) studied an optimal dynamic

investment problem in the case when the uncertain time horizon is a stopping time of

asset price filtration. In this paper, we will study the optimality of the consumption-

investment problem that reflects the mortality uncertainty. Our model assumes

that the investor’s random time of exiting the market depends on the economic

environment uncertainty and the asset return uncertainty and has a known and

deterministic conditional probability distribution.

Under the above mentioned three types of uncertainties (the economic environ-

ment uncertainty, the asset return uncertainty, and the mortality uncertainty) and
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in a multiperiod setup with CRRA preferences, this paper investigates three related

optimal consumption-investment problems: (i) an investment only problem that

involves utility from only terminal wealth, (ii) an investment-consumption prob-

lem that involves utility from only consumption, and (iii) an extended investment-

consumption problem that involves utility from both consumption and terminal

wealth. We model these problems as optimization problems. By using dynamic pro-

gramming to tackle the first two problems, analytical expressions of their optimal

investment or/and consumption strategies are derived. The results indicates that

the optimal investment strategy in the investment only problem is the same as in the

investment-consumption problem; that is, the optimal investment and consumption

strategy can be separated. Finally, we also demonstrate that the optimal solutions

from the investment only problem and the investment-consumption problem can

be used to deduce the optimal investment-consumption strategy of the extended

investment-consumption problem.

The organization of the paper is as follows. Next section describes the nature of

the uncertainties that will be considered in the paper as well as introducing the neces-

sary notations. Sections 3 to 5, respectively, consider the investment only problem,

the investment-consumption problem, and the extended investment-consumption

problem. Last section concludes the paper.

2 Uncertainties and Notations

We consider an investor who wants to make a multiperiod consumption-investment

decision. The investor enters the market at time 0 with initial endowment of W0 > 0.

We assume that the investor has a planned investment horizon T , where T is a fixed

integer and can be interpreted as the remaining time of retirement of the investor.

By partitioning the time horizon into T time periods, as indexed by t = 0, 1, . . . , T ,

the investor, at the beginning of each such time period, can distribute his wealth

among consumption and investment. Here and thereafter the t-th time period refers

to the time interval [t, t + 1). If the investor were to invest, then he needs to decide

the appropriate allocation among J +1 assets, which are indexed by j = 0, 1, . . . , J .

The investor is assumed to face three kinds of uncertainty: the uncertainty of

economic environment, the uncertainty of the returns of assets, and the uncertainty
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of the time of death of the investor. We now describe each of these uncertainties in

greater details.

With regards to the uncertainty induced by the economic environment, we specify

it by a set of finite number of states, Ω, which is equipped with a probability measure.

Each of the states represents an economic environment for all times t = 0, 1, . . . , T .

The information of the investor at time t is described by a σ-field Ft, which is

generated by a partition of Ω.1 At time t = 0, the investor has no information

about the state, thus F0 = {∅, Ω}. At time t = T , the investor has full information,

and hence FT = σ{{ω} : ω ∈ Ω}. At time t = 1, . . . , T − 1, the investor has

intermediate amount of information. We assume that the partition becomes finer as

time increases. Thus the sequence of σ-fields, {Ft}, is increasing. In other words,

the element of Ft+1 to which a state belongs to is a subset of the element of Ft to

which it belongs. The (T + 1)-tuple of σ-fields, {F0,F1, . . . ,FT}, simply denoted

by F , is called the information filtration. The corresponding collection of partitions

is known as an event tree. Each element of σ-field Ft is called a time-t event and

corresponds to a node of the event tree. An event at a time can be intuitively

interpreted as an economic state at that time. Denote by ξt a time-t event. The

successors of the event ξt are the event ξs ⊂ ξt for s > t. The immediate successors

of ξt are the events ξt+1 ⊂ ξt. The predecessors of ξt are the events ξs ⊃ ξt for s < t.

The immediate predecessor of ξt is the unique event ξt−1 ⊃ ξt, which sometimes is

conveniently denoted by ξ−t .

For the second uncertainty associated with the uncertainty of the returns of the

assets, we assume that the returns of these assets at each time period depend on

the economic state at the beginning of that time period. We use rj,ξt to denote the

random return of asset j in the t-th time period at event ξt. The random return rj,ξt

is assumed to be strictly positive and integrable for any j and ξt, t = 0, . . . , T − 1.

We also assume that the one-period random return vectors of the J + 1 assets in

different time periods are independent, i.e., (r0,ξt , . . . , rJ,ξt), t = 0, 1, . . . , T − 1, are

independent for any given ξt ∈ Ft, t = 0, 1, . . . , T − 1. We further assume that for

any t = 0, 1, . . . , T −1 and any ξt ∈ Ft, the random return (r0,ξt , . . . , rJ,ξt) in the t-th

time period at event ξt is independent of the state variable ξt+1 at the beginning of

the next time period.

1A partition of Ω is a collection of subsets of Ω such that each state ω belongs to exactly one

element of the partition.
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By Wt(ξt) we denote the wealth of the investor at time-t event ξt. The random

variable Wt+1(ξt+1) depends on the random return (r0,ξt , . . . , rJ,ξt) in the previous

time period t at event ξt = ξ−t+1.

It would not make sense to consider portfolios, consumptions, and so forth at

time t that differs in states that cannot be distinguished based on the informa-

tion available to the investor at time t. So we assume that the portfolio process

and the consumption process are adapted to the filtration generated by Ft and

{(r0,ξs , . . . , rJ,ξs) : s ≤ t − 1}. Under this assumption, the percentage of the wealth

invested in asset j at time t, denoted by θjt, is measurable with respect to the σ-field

generated by Ft and {(r0,ξs , . . . , rJ,ξs) : s ≤ t − 1}. We denote the common value

of θjt on ξt by θjt(ξt) and simply call it the fraction of wealth invested in asset j

at time-t event ξt. Now let the column vector θt(ξt) = (θ1t(ξt), . . . , θJt(ξt))
′ be the

portfolio of assets 1, 2, . . . , J at time-t event ξt, where the superscript ′ denotes the

transpose of a vector. Then θ0,t(ξt) = 1 − 1′θt(ξt), where 1 is the J-dimensional

vector with all entries equal to 1. To avoid the possibility of the wealth becoming

negative, our model does not permit short-selling of any asset; that is, the portfolio

weight θt(ξt) at any event ξt is constrained to lie in the convex set

Θ := {θ ∈ RJ : 0 ≤ θj ≤ 1, j = 1, . . . , J ; 1′θ ≤ 1}. (1)

We refer such a adapted process {θt(ξt) ∈ Θ : ξt ∈ Ft, t = 0, 1, . . . , T − 1} as an

admissible investment strategy.

Similarly, by ct(ξt) we denote the consumption of the investor at event ξt. We

assume that it can not be negative and can not exceed the wealth at that event,

i.e., ct(ξt) ∈ [0, Wt(ξt)]. We refer such a adapted process c := {ct(ξt) : ξt ∈ Ft, t =

0, 1, . . . , T − 1} as an admissible consumption strategy.

It follows immediately from the above notations that the wealth evolves over

time according to

Wt+1(ξt+1) = [Wt(ξt)− ct(ξt)]
J∑

j=0

rj,ξtθjt(ξt)

= [Wt(ξt)− ct(ξt)]
[
r0,ξt + R′

ξt
θt(ξt)

]
(2)

for ξt ∈ Ft, ξt+1 ⊂ ξt, t = 0, . . . , T − 1, where Rξt = (R1,ξt , . . . , RJ,ξt)
′ and Rj,ξt =

rj,ξt − r0,ξt . Obviously, the wealth process W is non-negative.
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For the last uncertainty due to the contingent time of death of the investor, we

assume that if the investor dies during the time period t, then he will exit the market

at the end of this time period, or at time t + 1. Let τ denote the random time of

exit of the investor due to death, which takes integer values 1, 2, . . ., then the actual

time of exit of the investor is T ∧ τ := min{T, τ}. We assume that the probability

distribution of τ conditional on economic environment F and asset returns R is

known and is denoted by

Pr(τ = t|F ,R) = qt, t = 0, 1, . . . ,

where q0 = 0, qt ≥ 0, t = 0, 1, . . . , and
∑∞

t=0 qt = 1.

3 Investment Only Problem

We begin our analysis by first considering an investment only problem. In this

special case, the investor’s objective is to maximize the expected utility of his termi-

nal wealth over all admissible investment strategies. Mathematically, this is equiv-

alent to solving the following optimization problem:

max
θt(ξt)∈Θ; ξt∈Ft, t=0,...,T−1

E [u(WT∧τ )] , (3)

subject to the budget constraint

Wt+1(ξt+1) = Wt(ξt)
[
r0,ξt + R′

ξt
θt(ξt)

]
, (4)

where ξt ∈ Ft, ξt+1 ⊂ ξt, t = 0, . . . , T − 1, E is the expectation operator, and u is

an utility function of wealth. In this paper, we assume that the investor is a power

utility optimizer so that u has the following representation:

u(w) =
1

γ
wγ, (5)

where γ is a constant that lies in the interval (−∞, 0) ∪ (0, 1).

Note that the above formulation involves optimizing over an uncertain exit time.

If the investor is still alive at time T , then he is maximizing his expected utility of

retirement income. If death occurs before the scheduled retired time T , then the

investor is maximizing his expected utility of bequest.
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3.1 Problem Reformulation and the Auxiliary Function

As noted above, problem (3) deals with uncertain terminal time. To obtain its

optimal solution, it is convenient to first transform it into an equivalent optimization

problem with certain terminal time, as we demonstrate in this subsection.

Using the iterative expectation formula, we have

E [u(WT∧τ )] = E [E[u(WT∧τ )|F ,R]] = E

[
∞∑

t=1

qtu(WT∧t)

]

= E

[
T−1∑
t=1

qtu(Wt) +
∞∑

t=T

qtu(WT )

]
= E

[
T∑

t=1

ptu(Wt)

]
,

where

pt =

{
qt, t = 0, 1, . . . , T − 1∑∞

s=T qs, t = T.

Hence, pT denotes the probability of the death occurs after time T − 1 or equiva-

lently the probability of the investor survives after time T − 1. Consequently, the

optimization problem (3) can be reformulated as

max
θt(ξt)∈Θ; ξt∈Ft, t=0,...,T−1

E

[
T∑

t=1

ptu(Wt)

]
. (6)

To solve the above dynamic optimization problem, it is useful to introduce

the following auxiliary function. Let us define, for any γ ∈ (−∞, 0) ∪ (0, 1),

t ∈ {0, 1, . . . , T − 1} and ξt ∈ Ft, a function Qγ
ξt

: Θ → R such that

Qγ
ξt
(θ) = E

[
1

γ
(r0,ξt + R′

ξt
θ)γ

∣∣∣∣ ξt

]
. (7)

Clearly, Qγ
ξt
(θ) can be interpreted as the expected utility of the one-period invest-

ment return for an initial investment of $1 with portfolio weight θ and given the

time-t event ξt. Important properties associated with this function are summarized

in the following lemma.

Lemma 3.1 For any fixed γ ∈ (−∞, 0) ∪ (0, 1), t ∈ {0, 1, . . . , T − 1} and ξt ∈ Ft,

the function Qγ
ξt

: Θ → R is

(i) well-defined, if the additional condition that rγ
j,ξt

is integrable for all j is im-

posed when γ < 0;
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(ii) strictly concave;

(iii) continuous.

Proof (i) We need only to prove that (r0,ξt + R′
ξt
θ)γ is integrable for any given

θ ∈ Θ. First we note that

min
0≤j≤J

rj,ξt ≤ r0,ξt + R′
ξt
θ ≤

J∑
j=0

rj,ξt .

When 0 < γ < 1, we have

(r0,ξt + R′
ξt
θ)γ ≤

(
J∑

j=0

rj,ξt

)γ

≤ max

{
1,

J∑
j=0

rj,ξt

}
≤ 1 +

J∑
j=0

rj,ξt ,

which is integrable by our assumption that rj,ξt is integrable for all j. When γ < 0,

we have

(r0,ξt + R′
ξt
θ)γ ≤

(
min

0≤j≤J
rj,ξt

)γ

= max
0≤j≤J

rγ
j,ξt

≤
J∑

j=0

rγ
j,ξt

,

which is integrable under the additional condition that rγ
j,ξt

is integrable for all j.

(ii) Let θ̂, θ̃ ∈ Θ, θ̂ 6= θ̃, and λ ∈ (0, 1). Then

Qγ
ξt

(
λθ̂ + (1− λ)θ̃

)
= E

[
1

γ

(
r0,ξt + R′

ξt

(
λθ̂ + (1− λ)θ̃

))γ
∣∣∣∣ ξt

]
= E

[
1

γ

(
λ
(
r0,ξt + R′

ξt
θ̂
)

+ (1− λ)
1

γ

(
r0,ξt + R′

ξt
θ̃
))γ∣∣∣∣ ξt

]
> λE

[
1

γ

(
r0,ξt + R′

ξt
θ̂
)γ
∣∣∣∣ ξt

]
+ (1− λ)E

[
1

γ

(
r0,ξt + R′

ξt
θ̃
)γ
∣∣∣∣ ξt

]
= λQγ

ξt

(
θ̂
)

+ (1− λ)Qγ
ξt

(
θ̃
)

,

where the inequality follows from the strict concavity of the function xγ/γ. Hence

the function Qγ
ξt

is strictly concave.

(iii) From the proof of the assertion (i), the collection of random variables {(r0,ξt+

R′
ξt
θ)γ : θ ∈ Θ} is dominated by an integrable random variable. This together with

the Dominated Convergence Theorem yields the continuity of the function Qγ
ξt
. �

In what follows, we impose the additional assumption that rγ
j,ξt

is integrable for

all j = 0, . . . , J , t = 0, . . . , T−1 and ξt ∈ Ft when γ < 0. An immediate consequence

of Lemma 3.1 is that the function Qγ
ξt

achieves its maximum value on the bounded
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closed set Θ at an unique point. We use the notation θ
(γ)
ξt

to denote such unique

point and use Q
γ(1)
ξt

/γ to denote its corresponding maximum value Qγ
ξt
(θ

(γ)
ξt

). Clearly,

Q
γ(1)
ξt

is non-negative. Furthermore, by setting the initial condition

Q
γ(0)
ξt

= 1, ξt ∈ Ft, t = 0, 1, . . . , T,

we recursively define for t = 0, 1, . . . , T − 1,

Q
γ(k+1)
ξt

= Q
γ(1)
ξt

E
[
Q

γ(k)
ξt+1

∣∣∣ ξt

]
, k = 0, 1, . . . , T − t− 1. (8)

Note that Q
γ(k)
ξt

≥ 0 for t = 0, 1, . . . , T − 1 and k = 0, 1, . . . , T − t− 1.

3.2 Optimal Investment Strategy

We are now ready to solve our reformulated optimization problem (6) by using

the dynamic programming approach. This entails defining the value function vt :

R+ ×Ft as:

vt(Wt, ξt) := max
θs(ξs)∈Θ; ξs⊂ξt,

s=t,...,T−1

E

[
T∑

s=t

psu(Ws)

∣∣∣∣∣ ξt

]
,

for t ∈ {0, 1, . . . , T − 1} with the utility function u given by (5).

Our objective is to compute the optimal expected utility v0(W0, ξ0) and the

corresponding optimal investment strategy. By the Bellman optimality principle

of dynamic programming, we have the following recursive equation for the value

functions:

vt(Wt, ξt) = ptu(Wt) + max
θt(ξt)∈Θ

E [vt+1(Wt+1, ξt+1)| ξt] , t = T − 1, . . . , 0, (9)

where ξt+1 ⊂ ξt and Wt+1 is given by (4); together with the terminal condition

vT (WT , ξT ) = pT u(WT ).

Theorem 3.1 For investment only problem (3), the value functions can be repre-

sented as

vt(Wt, ξt) =
W γ

t

γ

T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

, t = 0, 1, . . . , T, (10)

and the optimal investment strategy is given by

θt(ξt) = θ
(γ)
ξt

, t = 0, 1, . . . , T − 1. (11)
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Proof We prove the theorem by induction. It is obvious that expressions (10)

and (11) are true for t = T . For t = T − 1, we have (for brevity, here θT−1(ξT−1) is

denoted by θ)

vT−1(WT−1, ξT−1) = max
θ∈Θ

{pT−1u(WT−1) + E [vT (WT , ξT )|ξT−1]}

= pT−1u(WT−1) + max
θ∈Θ

E [pT u(WT )|ξT−1]

=
1

γ
pT−1W

γ
T−1 + pT W γ

T−1 max
θ∈Θ

E

[
1

γ
(r0,ξT−1

+ R′
ξT−1

θ)γ

∣∣∣∣ ξT−1

]
=

1

γ
pT−1W

γ
T−1 + pT W γ

T−1 max
θ∈Θ

Qγ
ξT−1

(θ)

=
1

γ
pT−1W

γ
T−1 + pT W γ

T−1Q
γ
ξT−1

(θ
(γ)
ξT−1

)

=
1

γ
pT−1W

γ
T−1 +

1

γ
pT W γ

T−1Q
γ(1)
ξT−1

=
1

γ
W γ

T−1

(
pT−1Q

γ(0)
ξT−1

+ pT Q
γ(1)
ξT−1

)
,

which shows that (10) and (11) are true for t = T −1. Now assuming both (10) and

(11) hold for t, then for t− 1 we have (again θt−1(ξt−1) is denoted by θ)

vt−1(Wt−1, ξt−1)

= max
θ∈Θ

{pt−1u(Wt−1) + E [vt(Wt, ξt)| ξt−1]}

=
1

γ
pt−1W

γ
t−1 + max

θ∈Θ
E

[
W γ

t

γ

T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

∣∣∣∣∣ ξt−1

]

=
1

γ
pt−1W

γ
t−1 + W γ

t−1E

[
T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

∣∣∣∣∣ ξt−1

]
max
θ∈Θ

E

[
1

γ
(r0,ξt−1 + R′

ξt−1
θ)γ

∣∣∣∣ ξt−1

]

=
1

γ
pt−1W

γ
t−1 + W γ

t−1E

[
T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

∣∣∣∣∣ ξt−1

]
max
θ∈Θ

Qγ
ξt−1

(θ)

=
1

γ
pt−1W

γ
t−1 + W γ

t−1E

[
T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

∣∣∣∣∣ ξt−1

]
Qγ

ξt−1
(θ

(γ)
ξt−1

)

=
1

γ
pt−1W

γ
t−1 +

1

γ
W γ

t−1E

[
T−t∑
n=0

pT−nQ
γ(T−t−n)
ξt

∣∣∣∣∣ ξt−1

]
Q

γ(1)
ξt−1

=
1

γ
W γ

t−1

[
pt−1 +

T−t∑
n=0

pT−nQ
γ(1)
ξt−1

E
[
Q

γ(T−t−n)
ξt

∣∣∣ ξt−1

]]
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=
1

γ
W γ

t−1

[
pt−1 +

T−t∑
n=0

pT−nQ
γ(T−(t−1)−n)
ξt

]

=
1

γ
W γ

t−1

T−(t−1)∑
n=0

pT−nQ
γ(T−(t−1)−n)
ξt

,

which shows that (10) and (11) are also true for t− 1. This completes the induction

proof. �

It is of interest to note that while our investment only problem (3) explicitly

reflects the possibility of early exit due to the death of the investor, its optimal

investment strategy is independent of the mortality risk and the planned investment

horizon, as assured by Theorem 3.1. In other words, the investment strategies

optimally adopted by the investor are exactly the same regardless of whether he

takes into consideration the mortality risk. It should, however, be emphasized that

the optimal investment strategy depends on both the economic environments and

the asset returns. More specifically, the optimal proportion of the wealth invested

in any asset at any time depends on the event (economic state) at that time and on

the asset returns in the following time period, but not on the wealth at that time

nor on the remaining time of investment horizon. In addition, the optimal expected

utility v0(W0, ξ0) of the investor increases with the planned time horizon T as well

as with the initial wealth W0, which are consistent with our intuition.

4 Investment-Consumption Problem

In this section, we focus on the problem of optimal investment and consumption

for an investor. The investor needs to decide an appropriate wealth allocation among

assets and consumption at the beginning of each time period so as to maximize the

expected utility from consumption over all times before exiting. In other words, the

problem of the investor can be formulated as

max
θt(ξt)∈Θ,ct(ξt)∈[0,Wt(ξt)];

ξt∈Ft, t=0,...,T−1

E

[
T∧τ−1∑

t=0

U(ct)

]
, (12)

subject to the budget constraint (2), where U is an utility function of consumption

which again is assumed to be the power utility but with parameter µ; i.e.

U(x) =
1

µ
xµ, (13)
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where µ ∈ (0, 1) is a given constant.

4.1 Problem Reformulation and the Auxiliary Function

Note again that the investment-consumption problem (12) maximizes the ex-

pected utility over an uncertain exit time. This problem can be converted into an

equivalent optimization problem with certain terminal time by first recognizing that

E

[
T∧τ−1∑

t=0

U(ct)

]
= E

[
E

[
T∧τ−1∑

t=0

U(ct)

∣∣∣∣∣F
]]

= E

[
∞∑

s=1

qs

T∧s−1∑
t=0

U(ct)

]

= E

[
T∑

s=1

qs

s−1∑
t=0

U(ct) +
∞∑

s=T+1

qs

T−1∑
t=0

U(ct)

]

= E

[
T−1∑
t=0

T∑
s=t+1

qsU(ct) +
T−1∑
t=0

∞∑
s=T+1

qsU(ct)

]

= E

[
T−1∑
t=0

ytU(ct)

]
,

where yt :=
∑∞

s=t+1 qs captures the probability that the investor survives until (or

dies after) time t. Then the optimization problem with certain terminal time that

is equivalent to (12) is

max
θt(ξt)∈Θ,ct(ξt)∈[0,Wt(ξt)];

ξt∈Ft, t=0,...,T−1

E

[
T−1∑
t=0

ytU(ct)

]
. (14)

The following auxiliary result, which is from Cheung and Yang (2006), is useful

in solving the above optimization problem.

Lemma 4.1 Suppose that λ > 0, w > 0, and 0 < µ < 1 are fixed constants. The

function f : [0, w] :→ R defined by

f(c) = cµ + λ(w − c)µ

achieves its unique maximum

f(c∗) = wµ
(
1 + λ

1
1−µ

)1−µ

13



at

c∗ =
w

1 + λ
1

1−µ

.

4.2 Optimal Investment-Consumption Strategy

We now turn to solving the optimization problem (14). For t ∈ {0, 1, . . . , T −1},
let us define the value function Vt : R+ ×Ft as

Vt(Wt, ξt) := max
θs(ξs)∈Θ, cs(ξs)∈[0,Ws(ξs)];

ξs⊂ξt, s=t,...,T−1

E

[
T−1∑
s=t

ysU(cs)

∣∣∣∣∣ ξt

]
,

where Wt(ξt) = Wt and U is from (13). The Bellman optimality principle of dynamic

programming implies the following recursive equation for the value functions:

Vt(Wt, ξt) = max
θt(ξt)∈Θ, ct(ξt)∈[0,Wt]

{ytU(ct) + E [Vt+1(Wt+1, ξt+1)| ξt]} , t = T−2, . . . , 0,

(15)

where ξt+1 ⊂ ξt and Wt+1 is given by (2); together with the terminal condition

VT−1(WT−1, ξT−1) = max
θT−1(ξT−1)∈Θ, cT−1(ξT−1)∈[0,WT−1]

yT−1U(cT−1(ξT−1))

= yT−1U(WT−1). (16)

By initializing

LξT−1
:= 0 (17)

for ξT−1 ∈ FT−1, we recursively define

Lξt =

{
yt+1

yt

Q
µ(1)
ξt

E
[(

1 + Lξt+1

)1−µ
∣∣∣ ξt

]} 1
1−µ

(18)

where ξt ∈ Ft, t = 0, 1, . . . , T − 2. In the above equation, Q
µ(1)
ξt

/µ denotes the

maximum value of the function Qµ
ξt
(θ) where Qµ

ξt
(θ) is similarly defined as in (7)

except replacing the parameter γ by µ. Analogously, we also use the notation θ
(µ)
ξt

to denote the point at which the function Qµ
ξt
(θ) attains its maximum. Note that

Lξt is nonnegative for all ξt ∈ Ft, t = 0, 1, . . . , T − 1.

We now present the optimal solution to our investment-consumption problem

(12), which is summarized in the following theorem:

14



Theorem 4.1 For investment-consumption problem (12), the value functions are

given by

Vt(Wt, ξt) = yt
W µ

t

µ
(1 + Lξt)

1−µ , ξt ∈ Ft, t = 0, 1, . . . , T − 1, (19)

and the optimal investment-consumption strategy is given by

θt(ξt) = θ
(µ)
ξt

, (20)

ct(ξt) = Wt (1 + Lξt)
−1 (21)

for ξt ∈ Ft, t = 0, 1, . . . , T − 1.

Proof The above result can similarly be proved by induction. The conclusions

of the theorem are obviously true for t = T − 1. For t = T − 2, we have (for brevity,

here cT−2(ξT−2) and θT−2(ξT−2) are denoted, respectively, by c and θ)

VT−2(WT−2, ξT−2)

= max
c∈[0,WT−2],θ∈Θ

{yT−2U(c) + E [VT−1(WT−1, ξT−1)|ξT−2]}

= max
c∈[0,WT−2],θ∈Θ

{
yT−2U(c) + E

[
yT−1

W µ
T−1

µ

∣∣∣∣ ξT−2

]}
= max

c∈[0,WT−2],θ∈Θ

{
yT−2U(c) + E

[
yT−1(WT−2 − c)µ 1

µ
(r0,ξT−2

+ R′
ξT−2

θ)µ

∣∣∣∣ ξT−2

]}
= max

c∈[0,WT−2],θ∈Θ

{
yT−2U(c) + yT−1(WT−2 − c)µQµ

ξT−2
(θ)

}
= max

c∈[0,WT−2]

{
yT−2U(c) + yT−1(WT−2 − c)µ max

θ∈Θ
Qµ

ξT−2
(θ)

}
= max

c∈[0,WT−2]

{
yT−2U(c) + yT−1(WT−2 − c)µQµ

ξT−2
(θ

(µ)
ξT−2

)

}
=

yT−2

µ
max

c∈[0,WT−2]

{
cµ +

yT−1

yT−2

Q
µ(1)
ξT−2

(WT−2 − c)µ

}
=

yT−2

µ
max

c∈[0,WT−2]

{
cµ + L1−µ

ξT−2
(WT−2 − c)µ

}
= yT−2

W µ
T−2

µ

(
1 + LξT−2

)1−µ

where the maximum is achieved at θ = θ
(µ)
ξT−2

and c = WT−2

(
1 + LξT−2

)−1
according

to Lemmas 3.1 and 4.1. This shows that the theorem holds for t = T − 2. Now we

assume it is true for t. Then, for t− 1 we have (again, here ct−1(ξt−1) and θt−1(ξt−1)

are denoted by c and θ, respectively)

15



Vt−1(Wt−1, ξt−1)

= max
c∈[0,Wt−1],θ∈Θ

{yt−1U(c) + E [Vt(Wt, ξt)|ξt−1]}

= max
c∈[0,Wt−1],θ∈Θ

{
yt−1U(c) + E

[
yt

W µ
t

µ
(1 + Lξt)

1−µ

∣∣∣∣ ξt−1

]}
= max

c∈[0,Wt−1],θ∈Θ

{
yt−1U(c) + E

[
yt(Wt−1 − c)µ (1 + Lξt)

1−µ 1

µ
(r0,ξt−1 + R′

ξt−1
θ)µ

∣∣∣∣ ξt−1

]}
= max

c∈[0,Wt−1],θ∈Θ

{
yt−1U(c) + yt(Wt−1 − c)µE

[
(1 + Lξt)

1−µ
∣∣ ξt−1

]
Qµ

ξt−1
(θ)

}
= max

c∈[0,Wt−1]

{
yt−1U(c) + yt(Wt−1 − c)µE

[
(1 + Lξt)

1−µ
∣∣ ξt−1

]
max
θ∈Θ

Qµ
ξt−1

(θ)

}
= max

c∈[0,Wt−1]

{
yt−1U(c) + yt(Wt−1 − c)µE

[
(1 + Lξt)

1−µ
∣∣ ξt−1

]
Qµ

ξt−1
(θ

(µ)
ξt−1

)

}
=

yt−1

µ
max

c∈[0,Wt−1]

{
cµ +

yt

yt−1

Q
µ(1)
ξt−1

E
[
(1 + Lξt)

1−µ
∣∣ ξt−1

]
(Wt−1 − c)µ

}
=

yt−1

µ
max

c∈[0,Wt−1]

{
cµ + L1−µ

ξt−1
(Wt−1 − c)µ

}
= yt−1

W µ
t−1

µ

(
1 + Lξt−1

)1−µ

where the maximum is achieved at θ = θ
(µ)
ξt−1

and c = Wt−1

(
1 + Lξt−1

)−1
by Lemmas

3.1 and 4.1. This indicates that the theorem is valid for t−1 and hence the theorem

is proved by the principle of induction. �

We now make several remarks regarding Theorem 4.1. First, the optimal in-

vestment strategy for the investment-consumption problem (12) is identical to that

for the investment only problem (3) as long as the preference for consumption co-

incides with the preference for terminal wealth; i.e. both power utilities have the

same parameters γ = µ. This implies that the optimal investment and consumption

strategy can be separated and that the economic implications on the optimal in-

vestment strategy stated after Theorem 3.1 apply to this model as well. Second, in

contrast to the optimal investment strategy, the optimal consumption strategy de-

pends not only on the current economic state and the future asset returns, but also

on the current wealth level and the remaining time horizon. Third, at each event ξt,

the investor should optimally consume a fraction (1 + Lξt)
−1 of his wealth with the

remaining wealth being invested among the J + 1 assets according to portfolio θ
(µ)
ξt

.

And the optimal fraction changes with the economic states at that time and with

times. Fourth, if the investor perceives a higher rate of mortality in the following
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time period, then he will increase his current consumption.2 This is consistent with

our intuition since with the greater likelihood of dying, the investor is faced with

the earlier exit time and consequently he should increase the current consumption

in order to maximize his utility from consumption. Fifth, as can be seen from both

(18) and (21) that if the investor is optimistic about the future economy, then the

investor will reduce the current consumption. This again is aligned with our intu-

ition since with the anticipated higher asset returns, the investor is willing to invest

more to fully exploit the future higher investment gains. Sixth, it can also be verified

that3 for a given initial wealth W0, the optimal expected utility V0(W0, ξ0) of the

investor increases with the planned time horizon T , as to be expected.

5 An Extended Investment-Consumption Problem

In this section we extend our analysis by considering an investor who derives

utility both from consumption (i.e., from “living well”) and from terminal wealth

(i.e., from “becoming rich” either alive or dead). We also demonstrate how the opti-

mal solutions established in the last two sections can be used to solve the extended

optimization problem presented in this section. Since the investor is interested in

maximizing the expected utility of both consumption and terminal wealth, the ex-

pected (aggregate) utility is given by

E

[
T∧τ−1∑

t=0

U(ct)

]
+ E [u(WT∧τ )] ,

where u and U are defined in (5) and (13), respectively. The objective of the investor

boils down to solving the following optimization problem:

max
θt(ξt)∈Θ,ct(ξt)∈[0,Wt(ξt)];

ξt∈Ft, t=0,...,T−1

{
E

[
T∧τ−1∑

t=0

U(ct)

]
+ E [u(WT∧τ )]

}
, (22)

2Since the probability yt that the investor survives until present time t could not be changed,

when the mortality rate qt+1 in the following time period increases, the probability yt+1 that

the investor survives until time t + 1 decreases, implying yt+1/yt decreases. Hence Lξt
decreases

according to (18) and hence ct(ξt) increases duo to (21).
3For a planned horizon with T time periods, LξT−1 = 0 by (17). For a planned horizon with

T +1 time periods, LξT−1 =
{

yT

yT−1
Q

µ(1)
ξT−1

}1/(1−µ)

by (18) and (17), which is nonnegative and hence

not smaller than the former. Note that Lξt
increases with Lξt+1 .
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subject to the budget constraint (2).

The above formulation of the optimization requires an investor to balance be-

tween two conflicting objectives. If the investor were to “enjoy life” by consuming

more at each intermediate time period, then the terminal wealth (i.e. either in the

form of retirement income or bequest) would be substantially penalized. On the

other hand if the investor wishes to receive more terminal wealth, then this can be

achieved at the expense of spending less at each time period. The key is therefore to

maintain an equilibrium tradeoff between consumption at each time and the wealth

at terminal time.

Let V (W0) denote the maximum value to optimization problem (22) of an in-

vestor with initial endowment W0. To obtain its optimal investment-consumption

strategies, we proceed as follows. At time t = 0, we first divide the investor’s

initial endowment W0 into two nonnegative components W
(1)
0 and W

(2)
0 such that

W
(1)
0 + W

(2)
0 = W0. Then, based upon the initial wealth W

(1)
0 and utility u, we

solve the investment only problem (3) of Section 3 and use V1

(
W

(1)
0

)
to denote its

maximum value. Similarly, using W
(2)
0 as the initial wealth and with utility U , we

solve the investment-consumption problem (12) of Section 4 and use V2

(
W

(2)
0

)
to

denote its maximum value. Finally we show that the superposition of the investor’s

allocations for these two problems lead to the optimal policy for problem (22) pro-

vided both W
(1)
0 and W

(2)
0 are chosen such that their “marginal expected utilities”

(i.e. V ′
1(W

(1)
0 ) and V ′

2(W
(2)
0 )) are identical.

From Theorem 3.1, the maximum V1

(
W

(1)
0

)
is achieved at a pair

(
θ(1), c(1)

)
:=(

θ(γ), 0
)
. By denoting W (1) as the wealth process corresponds to the optimal strat-

egy θ
(1)
t and π(1) as the process of the optimal amount of the wealth invested in

assets 1, . . . , J (i.e., π
(1)
t := W

(1)
t θ

(1)
t for all t), we obtain

W
(1)
t+1(ξt+1) = W

(1)
t (ξt)

[
r0,ξt(ξt+1) + Rξt(ξt+1)

′θ
(1)
t (ξt)

]
= W

(1)
t (ξt)r0,ξt(ξt+1) + Rξt(ξt+1)

′π
(1)
t (ξt), (23)

where ξt+1 ⊂ ξt ∈ Ft, t = 0, 1, . . . , T − 1. Similarly, it follows from Theorem

4.1 that the maximum V2

(
W

(2)
0

)
is attained at a pair

(
θ(2), c(2)

)
, where θ(2) =

θ(µ) and c(2) is given by (21) with W0 being replaced by W
(2)
0 . By denoting W (2)

as the wealth process corresponding to the optimal strategy θ
(2)
t and π(2) as the

process of the optimal amount of the wealth invested in assets 1, . . . , J (i.e., π
(2)
t :=
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(
W

(2)
t − c

(2)
t

)
θ

(2)
t for all t), we have

W
(2)
t+1(ξt+1) =

(
W

(2)
t (ξt)− c

(2)
t (ξt)

) [
r0,ξt(ξt+1) + Rξt(ξt+1)

′θ
(2)
t (ξt)

]
=

(
W

(2)
t (ξt)− c

(2)
t (ξt)

)
r0,ξt(ξt+1) + Rξt(ξt+1)

′π
(2)
t (ξt), (24)

where ξt+1 ⊂ ξt ∈ Ft, t = 0, 1, . . . , T − 1.

Let us now define

Ŵt := W
(1)
t + W

(2)
t , ĉt := c

(2)
t , π̂t := π

(1)
t + π

(2)
t , and θ̂t :=

π̂t

Ŵt − ĉt

, (25)

then summing (23) and (24) yields

Ŵt+1(ξt+1) =
(
Ŵt(ξt)− ĉt(ξt)

)
r0,ξt(ξt+1) + Rξt(ξt+1)

′π̂t(ξt)

=
(
Ŵt(ξt)− ĉt(ξt)

) [
r0,ξt(ξt+1) + Rξt(ξt+1)

′θ̂t(ξt)
]
, (26)

for ξt+1 ⊂ ξt ∈ Ft, t = 0, 1, . . . , T − 1. Consequently, Ŵ is the wealth process

corresponding to the investment-consumption strategy (θ̂, ĉ).

According to Theorems 3.1 and 4.1, we know that

E [u(WT∧τ )] ≤ E
[
u(W

(1)
T∧τ )

]
= V1

(
W

(1)
0

)
and

E

[
T∧τ−1∑

t=0

U(ct)

]
≤ E

[
T∧τ−1∑

t=0

U(c
(2)
t )

]
= V2

(
W

(2)
0

)
.

Adding them gives

E

[
T∧τ−1∑

t=0

U(ct)

]
+ E [u(WT∧τ )] ≤ V1

(
W

(1)
0

)
+ V2

(
W

(2)
0

)
,

so that the optimal value to our extended investment-consumption problem (22) is

bounded from above as follows:

V (W0) ≤ V∗(W0) := max
W

(1)
0 +W

(2)
0 =W0

W
(1)
0 ,W

(2)
0 ≥0

{
V1

(
W

(1)
0

)
+ V2

(
W

(2)
0

)}
. (27)

If we find
(
W

(1)
0 , W

(2)
0

)
at which the maximum V∗(W0) is achieved, then the total

expected utility corresponding to the pair (θ̂, ĉ) will be exactly equal to V∗(W0).
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Therefore, we have shown that V (W0) = V∗(W0) and that the pair (θ̂, ĉ) is optimal

to problem (22).

The optimal solution
(
W

(1)
0 , W

(2)
0

)
to the maximization problem in (27) is de-

termined by the system

V ′
1

(
W

(1)
0

)
= V ′

2

(
W

(2)
0

)
, W

(1)
0 + W

(2)
0 = W0, W

(1)
0 , W

(2)
0 ≥ 0. (28)

From Theorems 3.1 and 4.1, we have

V1

(
W

(1)
0

)
= v0(W

(1)
0 , ξ0) =

(
W

(1)
0

)γ

γ

T∑
n=0

pT−nQ
(T−n)
ξ0

,

V2

(
W

(2)
0

)
= V0(W

(2)
0 , ξ0) = y0

(
W

(2)
0

)µ

µ
(1 + Lξ0)

1−µ

with y0 = 1. Hence, the system (28) has a unique solution
(
W

(1)
0 , W

(2)
0

)
and we

establish the following result:

Theorem 5.1 For a fixed initial wealth W0, let
(
W

(1)
0 , W

(2)
0

)
be the unique solu-

tion to the system (28), and let W (1) and W (2) be, respectively, the optimal wealth

processes of problem (3) with initial wealth W
(1)
0 and problem (12) with initial

wealth W
(2)
0 . Then, the optimal investment-consumption strategy of the extended

investment-consumption problem (22) is given by

θ̂t(ξt) =
W

(1)
t (ξt)

W
(1)
t (ξt) + W

(2)
t (ξt)− ĉt(ξt)

θ
(γ)
ξt

+
W

(2)
t (ξt)− ĉt(ξt)

W
(1)
t (ξt) + W

(2)
t (ξt)− ĉt(ξt)

θ
(µ)
ξt

, (29)

ĉt(ξt) = W
(2)
t (1 + Lξt)

−1 (30)

for ξt ∈ Ft, t = 0, 1, . . . , T − 1.

It is of interest to note that the optimal investment strategy of the extended

investment-consumption problem is a weighted average of the optimal investment

strategies from both the investment only problem and the investment-consumption

problem. In the special case where the preferences for both consumption and termi-

nal wealth are identical (i.e., γ = µ), then the three optimal investment strategies

coincide. Note also that in the extended problem, the optimal consumption strategy

does not depend on the utility function of terminal wealth. More specifically, the
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optimal consumption strategy in the investment-consumption problem by assum-

ing initial wealth W
(2)
0 is also the optimal consumption strategy to the extended

investment-consumption problem.

6 Conclusion

By incorporating uncertainties due to economic environment, asset returns, and

mortality in a multiperiod setup, this paper analyzed three investment-consumption

problems for a risk averse investor with power utilities: (i) an investment only prob-

lem that involves utility from only terminal wealth, (ii) an investment-consumption

problem that involves utility from only consumption, and (iii) an extended investment-

consumption problem that involves utility from both consumption and terminal

wealth. Using standard dynamic programming approach, analytic solutions to these

problems were derived.

We also pointed out some interesting economic implications arising from our

analytical results and many of which are consistent with our intuition. For exam-

ple, the investment only problem shown that the optimal investment strategy is

not influenced by the mortality risk. Whether we take into account the mortal-

ity risk, the same investment strategy is adopted. For the investment-consumption

problem, we also demonstrated how the mortality and the asset returns affect the

current consumption and the investment strategy. Typically, a higher future mor-

tality risk leads to a greater current consumption (and hence a lower investment)

while a greater future expected investment returns implies a greater current invest-

ment (and hence a lower consumption). For the extended investment-consumption

problem that involves utility from both consumption and terminal wealth, we also

demonstrated how the solutions from the earlier two problems can be used to ob-

tain the solution for the extended case. More specifically, the key to solving the

extended investment-consumption problem hinges on first obtaining the solution to

the system (28). Once the optimal partition
(
W

(1)
0 , W

(2)
0

)
of the initial wealth W0

is derived, these partitions are in turn assumed to be the initial wealth levels for

the investment only problem and the investment-consumption problem discussed in

Sections 3 and 4. The optimal solutions from these problems are then used to deter-

mine the optimal investment-consumption strategies for the extended problem. As a
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consequence, the optimal investment strategy for the extended problem is a convex

combination of the optimal investment strategies from respectively the investment

only and investment-consumption problems while the optimal consumption corre-

sponds to the optimal consumption from the investment-consumption problem but

with initial wealth replaced by W
(2)
0 .
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