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Abstract

Most of the usual stochastic interest rate models are designed and
calibrated to provide plausible behavior in expected value and variance,
which are the raw material for �rst approximation pricing and hedging of
�nancial instruments. Standards of practice and often regulators require
actuaries to stress-test �nancial positions over long projection horizons
against extreme interest rate paths. The behavior of extreme paths in
the usual stochastic interest rate models is not nearly so plausible as the
behavior of their expected values and variances. This paper proposes
a new class of models that deliver more plausible extreme paths while
preserving the usual expected value and variance behavior. Along the
way we derive the closed form solution for the traditional mean-reverting
lognormal process, including the drift compensation.

1 Background

The random interest rate model that we will present evolved out of a practi-
tioner�s e¤orts to make sense of the traditional mean-reverting lognormal process
model for interest rates in a decision-making stress-test context. The author
discussed this historical background informally and with no mathematical detail
in [2].
After a thorough formal background narrative in this section (still sans the

mathematics) to motivate the model this paper will proceed in later sections
to �ll in the mathematics and to develop more fully the theory that emerges
from the pragmatic modeling. The model that results, a generalization of the
Black-Karasinski model ([4] page 155), may have interest beyond the decision-
making stress-test context it came from. Moreover, the same logic will lead to
corresponding generalizations of other models that incorporate mean-reversion.
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1.1 Asset adequacy decisions

Throughout the 1990�s and into the 2000�s the author provided the asset ade-
quacy opinion for a substantial life insurance company that did business exclu-
sively in one Asian country (not Japan) but that also �led the NAIC statement
and opinion with a U.S. state of domicile. A simple but very large duration
mismatch with very little optionality (in practice) dominated the asset adequacy
position.
At �rst the duration mismatch created little asset adequacy concern (and

caused no failures of NAIC required interest rate scenarios.) Interest rates
were high relative to pricing assumptions; the predominant products had high
margins in elements other than the interest rate spread, including large volumes
of highly pro�table riders; and the reserves had high margins, including large
amounts of catastrophe and contingency reserves required by the host country
but not attributable to any speci�c insured contingency. (Under an election
permitted by the state of domicile, the company reported reserves in the NAIC
statement according to host country reserve requirements).
Out of prudence we explored what sort of future interest rate scenario would

impair current asset adequacy in light of the duration mismatch. It turned out
that only something as bad as a future decline in interest rates to 2% or less that
persisted at that level for 10 to 15 years or more could ruin the current asset
adequacy. With rates at the 8% level at �rst, surely we could judge the assets
adequate? But on what logic or facts could we characterize the ruinous scenario
as "more than moderately adverse"? The question took on more urgency as
interest rates came down over the years.
Professional guidance at the time declared that "moderate adversity" set the

threshold for asset adequacy but did not de�ne "moderate adversity" in terms
any more instructive than the phrase itself. For asset adequacy purposes, i.e.
for purposes of deciding whether or not to put up additional reserves, should
we or should we not deem "more than moderately adverse" a future decline in
interest rates from 8% to 2% or less that stayed at that level for 10 to 15 years
or more? A few years later, what about a decline from 6% to 2% and staying
there? In the end, we had to ask what about staying here at 2% or 2.5% for
another decade or more?

1.2 Random scenarios

Early in the experience, with interest rates still above 6%, we decided to validate
the judgmental conclusion that the mismatch did not impair asset adequacy by
running random interest rate scenarios generated as an option in the standard
vendor cash �ow testing software that we used. At that time the host country
had insu¢ cient volume of medium or long-dated instruments relative to poten-
tial demand to constitute a meaningful market. Given the company�s policy
almost entirely to avoid currency mismatch, short and �oating rate instruments
composed almost the whole portfolio. Our model could treat the host country
yield curve as �at, consisting only of short (one or two year) or �oating rates.
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In e¤ect, we modeled just a single, one to two year risk-free rate at each time in
the model projections. This vastly simpli�ed the interest rate modeling process
and, fortuitously, allowed our attention to focus on other too-often neglected
aspects of the interest rate modeling process.
An asset adequacy opinion requires cash �ow stress-testing of the portfolio.

Stress-testing entails the use of physical (i.e. real-world) interest rate scenarios
rather than risk-neutral ones. This in turn requires the practitioner (at least in
the opinion of this practitioner) to form a judgment about the appropriateness
of the generated set of future interest rate scenarios as a representation (singly)
of possible future worlds and (collectively) of the plausible range of possible
future worlds.
The fact that an interest rate generator comes packaged with a respected

vendor�s software or has a name (say, "mean-reverting lognormal") that often
appears in the literature fails by itself to satisfy that requirement. It requires
in addition some thoughtful analysis of the set of scenarios that come out of the
generator against the criterion "appropriately represents possible future worlds
and the plausible range of possible future worlds." Of course such analysis
almost surely will include thoughtful reference to, if not actual grounding in,
history - the actual past real-world.
Since we didn�t have a yield curve to worry about, as long as we compensated

for drift the lognormal random process for the change in interest rates provided
in the vendor cash �ow testing software had impeccable risk-neutral credentials.
As a representation of a plausible range of possible future real-worlds, however,
it created a series of dilemmata for us.

1.3 Mean-reversion or no mean-reversion?

With no mean-reversion, if we set the volatility parameter value at historical lev-
els it created a set of scenarios that included some with interest rates ultimately
reaching 40% or 50% or even higher and some with interest rates ultimately
reaching 1% or lower and staying in that neighborhood for many years. We
didn�t want to reject a parameter value just because of the latter outcome. That
would amount to de�ning in advance as impossible the very scenarios that we
needed to decide whether or not to worry about. But we felt quite comfortable
about eliminating from consideration as completely implausible any parameter
value that could produce even a couple of paths out of 1000 reaching into the
40% to 50% range. (The host country had no history, cultural inclinations, or
monetary institutions even remotely suggestive of hyperin�ation.)
It seemed inappropriate as a way out of the dilemma just arbitrarily to censor

extreme scenarios, either by rejecting them and resampling or by an arti�ce such
as re�ection from a censorial barrier (at 20% or 25%, say). If a model produced
absurd scenarios at any noticeable frequency with a given set of parameters
then we took it as evidence that either the parameters or the model failed to
represent appropriately the plausible range of future worlds and needed to be
replaced.
Alternatively, we could choose an unhistorically small value for the volatility
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parameter and easily assure an historically-plausible range of ultimate interest
rates across all scenarios. But, even aside from being indefensible on historical
grounds, a small volatility parameter value produced such a tight range of inter-
est rates across all scenarios in near, intermediate, and even long (but short of
ultimate) time horizons that just on inspection it failed adequately to represent
a reasonable range of possible future worlds.
Clearly we needed to use the mean-reversion option in the vendor inter-

est rate generator in order to eliminate any practical probability of producing
scenarios that contained outlandishly high levels of interest rates. Perhaps
that would produce a model that looked plausible in all other respects, and
from which we could draw a conclusion about the likelihood of a future that
contained the ruinous drop-low-and-stay-low-for-a-decade-or-more scenario that
worried us.

1.4 What mean-reversion target parameter andmean-reversion
speed parameter values?

Risk-neutral logic says that the current value of a market variable provides the
best basis to predict its future value. The current interest rate at 8% when
we started down this road almost demanded an alternative (lower) real-world
assumption for the value of the mean-reversion target parameter. The historical
average over the longest time for which we could �nd records of the rate we
were trying to simulate provided the most obvious (and lowest historically-
based) alternative value, around 6%, for the mean-reversion target parameter.
Compared to higher then-current values of the market interest rate we could
congratulate ourselves on our conservatism.
At �rst, by trial and error we set the volatility parameter and the mean-

reversion speed parameter values jointly to produce

a. an observed model volatility (i.e. standard deviation of the log-change
in simulated interest rates after mean-reversion) equal to the historical
volatility (standard deviation of log-change in the historical interest rate
series),

and

b. observed standard deviations of model interest rates (across scenarios at
each point in time) that converged over time to the standard deviation of
the set of historical interest rates.

In e¤ect, we treated one long actual historical series of interest rates as an
empirical sample in two di¤erent ways: once as a sample from the distribution
of possible sequential changes in interest rates and once as a sample from the
distribution of possible levels of interest rates.
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1.5 The outcome

The resulting parameters produced a set of random interest rate scenarios from
the model that con�rmed our asset-adequacy conclusions. It contained a hand-
ful of ruinous (barely) scenarios but not nearly enough of them to require reserve
strengthening, or even to raise risk-based capital concerns. The whole set of
scenarios looked reasonable on �rst inspection. For example, no scenarios had
interest rates reaching 40% to 50% or more.
Apparently we had reached our goal: a model that did not de�ne away

our ruinous scenarios by its very structure or parameters and that produced a
plausible looking total set of scenarios, so that we could take some con�dence
in the low probabilities indicated for our ruinous scenarios.

1.6 A dilemma

On closer review, however, these parameters proved to have narrowed the range
of interest rates too much, despite matching the historical mean and standard
deviation in interest rates. At any selected time, the probability across scenarios
to have interest rates in the low to mid teens fell short of the historical frequency
of interest rates in the low to mid teens by just enough to cause concern.
In other words our model produced the right mean and standard deviation

of interest rates and appeared to produce a thin enough upper tail to make
outlandishly high interest rates vanishingly unlikely. But the mean reversion
parameter ruled out the creation of broad enough shoulders in the interest rate
distribution to reproduce accurately the historical probability of low to mid-teen
interest rates. Perhaps an alternative model that did produce broad enough
shoulders also would produce higher probabilities for the ruinous down-and-
stay-down scenarios that worried us?
Alternatively, we could take the risk-neutral view and just set the value

for the mean-reversion target equal to the current interest rate at the time
(something higher than the historical average interest rate). Then using exactly
the same logic as in section 1.4 to determine jointly the volatility and mean-
reversion speed parameter values we got exactly the right probability of interest
rates in the low to mid teens to match the historical value.
But with these parameter values, no ruinous scenarios occurred at all. With

the higher value for the mean-reversion target parameter, the mean-reversion
speed parameter pulled all scenarios up out of the ruinous range.

1.7 A worse dilemma

The mean-reversion mechanism caused the preceding dilemma. More trial and
error to investigate that mechanism revealed a troubling phenomenon appar-
ently associated with any mean-reversion model no matter what we did.
Essentially any combination of parameter values that reproduced model val-

ues consistent with historical values for the observed volatility of interest rates
and for the average and standard deviation of achieved interest rate levels could

5



not possibly produce anything beyond low probabilities for the down-and-stay-
down-for-a-decade-or-more scenarios that we worried about. While a lot of
scenarios might touch the low interest rate levels that worried us, only a highly
unlikely scenario could repeatedly counter the upward pull of the mean-reversion
enough times to stay at low levels long enough to create ruinous results in the
model.
Even visually, too many scenarios just oscillated in large swings around the

target value. Where were the long runs apparent in any historical interest rate
series?
We were in the position of trying to take comfort from the results of a model

whose very structure made it impossible to produce more than an occasional
scenario that could trouble us. It seemed inappropriate to base our judgment
on a set of model outcomes guaranteed not to produce results leading to asset
inadequacy conclusions. But models without mean-reversion had produced
only absurd-looking sets of future worlds. What to do?

1.8 A way out

If we needed a mean-reversion target (to make extremely high levels of interest
rates almost impossible) but the rigidity of the mean-reversion target value
created other problems, why not add some motility to the mean-reversion target
value? Why not make the mean-reversion target value something that changes
from time to time?
Come to think of it, that might make economic sense. Sometimes we live in

a world that favors higher interest rates, other times in a world that favors lower
interest rates. That doesn�t mean we live in a world that always pulls random
interest rates toward an average level somewhere between high and low. Maybe
we live in world that sometimes pulls random interest rates toward a level higher
than average and other times toward a level lower than average.
That describes a mean reversion target whose value sometimes changes. In

other words some core economic structure beneath the �uctuating economic
environment might itself sometimes change.

1.9 When should the value of the mean-reversion target
parameter change?

To specify exactly how long "sometimes" lasts would seem to introduce another
kind of rigidity. So we made the length of time that the mean reversion target
stays at any given value a random variable to be simulated along with the
interest rates as each random scenario in the model unfolds over time.
An exponential random variable (the interarrival time for events in a Poisson

process) seemed like a logical �rst choice to model the time between changes
to the value of the mean-reversion target. We decided to generalize slightly
and use an Erlang distribution (gamma distribution with integer � parameter;
the interarrival time for � events to occur in a Poisson process) so as not to
prejudge completely the shape of the distribution.
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1.10 What should the value of the mean-reversion target
parameter change to?

To specify the new value for the mean-reversion target whenever a time to
change arises in a random scenario would seem to introduce yet another source
of rigidity. What would be a good "high" value? A good "low" value? For that
matter, why should the core structure underlying the economic environment just
keep changing back and forth between just one "high" interest rate tendency
and just one "low" interest rate tendency? Or even among a "high", "low, and
"normal" value? Or any other number of values?
To choose arbitrarily some speci�c possible values for the mean reversion

target might prejudge inadvertently the very question at issue: whether our
ruinous scenarios can arise with enough probability in the model to warrant a
decision to strengthen reserves.
So we chose not to choose. A new random variable established the new

value for the mean-reversion target whenever a time to change arose in a random
scenario. Nothing other than another lognormal distribution suggested itself for
this new random variable representing the possible values of the mean-reversion
target.
Note that this new lognormal variable represented the actual value of the

mean-reversion target after it changes, not the process of change from old value
to new. We reasoned that a major shift in the long-term central tendency of
the economy caused by (what? war, peace, in�ation, de�ation, elections won or
lost, appointments, retirements, globalization, protectionism, etc.) might have
more to do with what happened to the world than with what the world looked
like before it happened.

1.11 The resulting model

That�s how we wound up with a mean-reverting lognormal random model of in-
terest rates in which the value of the mean-reversion target was itself a random
variable. We determined the value of the mean-reversion target (independently
for each scenario) by independent (within each scenario) Erlang random vari-
ables determining the times when it would change values in that scenario and
independent (for each scenario and time of change) lognormal random variables
determining the value it would take each time that it changed.
Only when preparing for the 2001 Valuation Actuary Symposium talk [2] on

these matters did Mary Hardy�s paper [3] come to hand and we learned that
this sort of thing has a name: a regime-switching model. Each time the value
of our mean-reversion target changed to a new value the model was switching
to a new regime.
The value for its mean-reversion target parameter characterized each of the

possible regimes. Call it the regime random variable. Our model has a con-
tinuum of possible regimes de�ned by a lognormal distribution for the possible
values of the regime random variable.
Each step on the way was dictated purely by a practitioner�s desire
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a. not to rely on any model that for structural reasons might rule out inad-
vertently any real likelihood of the very scenarios that concerned him,

but

b. still to use a model that created an overall set of scenarios that in aggregate
reproduced key statistics of past interest rates and looked plausible overall
as a set of possible futures.

1.12 Calibrating the model - expected values

By this point we had more parameters to choose than obviously salient historical
statistics to reproduce.
At �rst we continued to use the long-term historical average value of the

interest rate for both the initial value of the mean-reversion target parameter
and for the mean (not the � parameter) of the lognormal regime random variable
that determined the new value after a regime change. As long as the then-
current beginning interest rate exceeded the historical average interest rate this
provided conservatism. Section 1.14 discusses what we did when the starting
interest rate became lower than the historical average.
Next we settled arbitrarily on the Erlang that has mean 20 years and mode

10 years (i.e � = 2; � = 10) for the regime-switching interval. First, the mean
assured that when the regime changed to an unfavorable mean-reversion target
parameter value it had a fair chance of staying there long enough to cause
damage. Second, the mode assured that a respectable number of scenarios
actually would change regimes soon enough to worry about the new mean-
reversion target parameter value.
To the latter point we also reasoned that at the current starting time we

have no way to know how far we stand along the interval since the last historical
regime change. The regime and its changes are unobservable variables. So we
modeled the �rst regime change in each scenario to occur at a randomly selected
time (uniform distribution) within the �rst Erlang random period generated in
that scenario.
(When illustrating all this for U.S. interest rates in section 3 we will explore

external rationale for selecting the Erlang parameters, such as Becker�s sugges-
tion [1], pages 7-12, that U.S. interest rate evolution couples (weakly) to the
presidential election cycle.)

1.13 Calibrating the model - variances

We still had to select values for the mean reversion speed parameter and the
volatility parameter for the mean-reverting lognormal process, and for the volatil-
ity parameter � of the lognormal regime random variable that determined the
mean-reversion target value for each new regime. The trick was to forget what
we knew about what mean-reversion parameters are supposed to look like.
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For any given value of �, by trial and error we set the mean reversion speed
parameter and the volatility parameter for the mean-reverting lognormal process
jointly to produce

a. an observed model volatility (i.e. standard deviation of the log-change
in simulated interest rates after mean-reversion) equal to the historical
volatility (standard deviation of log-change in the historical interest rate
series),

and

b. observed standard deviations of model interest rates (across scenarios at
each point in time) that converged to some stable value within a reasonable
period of time, �ve to ten years depending on a visual judgment of the
reasonability of the resulting set of scenarios.

The random spread of values for the mean-reversion target parameter com-
bined with requirement b. to generate a high value for the mean-reversion speed
parameter. In turn this recombined with the random spread of values for the
mean-reversion target parameter to create the broad shoulders that we needed
to see in the observed distribution of model interest rates (across scenarios at
each point in time) in order to reproduce the historical frequency of low to
mid-teen interest rates.
Finally, we iterated this process through di¤erent values of � until the stable

value in b. above for the observed standard deviations of model interest rates
matched the standard deviation of the set of historical interest rates.
The usual mean-reversion model has only the volatility parameter in the

mean-reversion process to achieve a large enough standard deviation of ob-
served interest rates to match the historical value. This new model achieved
it primarily through the volatility parameter � of the lognormal variable that
determined each new regime.

1.14 Surprising payo¤s

Naturally, because we built it that way, the model now reproduced more of the
key aspects of the historical interest rate distribution and time series. But more
bene�ts accrued.

Unplanned, but welcome, some heteroskedasticity turned up in the observed
model volatility (i.e. standard deviation of the log-change in simulated interest
rates after mean-reversion) for each scenario. Why? Observed model volatility
has some correlation with time elapsed since the last regime-switch.
Immediately post-switch the likelihood for the scenario interest rate to sit far

from the new mean-reversion target parameter value goes up. With it the like-
lihood for the mean-reversion speed parameter to induce several large changes
in the scenario interest rate goes up. This e¤ect did not become big enough to
reproduce historical heteroskedasticity, but �nding any hetroskedasticity at all
in a process driven by a constant volatility parameter opens the mind.
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As hoped, the model turned out to have real potential to produce ruinous
scenarios, even with starting interest rates higher than the historical average.
As expected, the probability of ruinous scenarios remained low enough to war-
rant a judgment of asset adequacy for high starting interest rates.
The real payo¤ came as the actual interest rates declined over the years.

When the starting interest rate in the model lies below the historical average
interest rate, what to do about the assumed values for the initial mean-reversion
target parameter and for the mean of the lognormal regime random variable that
determines the new target parameter value after a switch?
First, we could �nd no reason set the mean for the lognormal regime random

variable any lower just because of a lower current starting interest rate (except
to the extent that the current value slightly reduced the long term historical av-
erage interest rate). To do that would implicitly introduce regimes of regimes.
The lognormal regime random variable as originally calibrated already antici-
pates the possibility of regimes of low interest rates. It does not itself need to
assume to a lower range of possibilities (i.e. a lower expected value for a ran-
domly selected mean-reversion target parameter value) just because the starting
interest rate falls from one year to the next.
Second, we faced a more interesting question what to do about the initial

value for the mean-reversion target parameter. When the starting interest rate
exceeded the historical average it seemed easy and conservative to set the initial
value for the mean-reversion target parameter down at the historical average
level. In the reverse situation it came harder and seemed anti-conservative to
leave it up at the historical average level, in this case higher than the current
starting interest rate. But drop it all the way down to the current starting inter-
est rate? A bad model in times of high interest rates can�t become completely
good just because interest rates fall.
The current value of the mean-reversion target parameter, the regime ran-

dom variable, is never observable. Since it represents only a central tendency,
to conclude that its value has changed in a year by an amount equal to the
change in the current interest rate over that same year clearly overrates the
evidential value contained in just one year�s change in the interest rate. The
question calls for credibility logic.
We experimented variously with credibility-weighted averages of the current

interest rate and the long term historical average and with shorter term averages
of most-recent history, in e¤ect a moving-average approach from year to year.
More important than the speci�c choices, the model structure itself gave us a
very speci�c logical framework to explore in a very disciplined way the issues
that actuaries around the world faced as interest rates declined. What counts as
"moderately adverse" going forward when the current situation itself is adverse
by historical reckoning? How reasonable is a conclusion that at certain times a
scenario with interest rates frozen at their current levels forever in fact represents
"more than moderate adversity"?
There may be no universal answer to such questions. It seems noteworthy,

however, that the same model logic that we had created originally in order to
minimize any inadvertent anti-conservatism in a high interest rate environment
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provided a very natural way to moderate any inadvertent tendency toward ex-
cessively punishing conservatism in a low interest rate environment, and to do
so without the need to introduce extraneous or ad hoc considerations.
As interest rates fell year by year the combination of lower starting interest

rates and gradually lowering values (dampened by credibility) for the initial
mean-reversion target, gradually increased the frequency of the ruinous scenarios
in the model. Management started early to introduce corrective changes, where
possible, in part because the model started showing the increased frequency of
ruinous scenarios earlier than most. When those frequencies began to require
reserve strengthening, it came in measured doses as credibility of a lower initial
mean-reversion target grew from year to year.
If lower interest rates last forever the company will have pre-funded the

emerging shortfall in a measured way over time. On the other hand, if as almost
any common-sense forecast would indicate the host country interest rates even-
tually climb back out the pit then the magnitude of the reserve-strengthening
automatically will have been limited, without the need for ad hoc expedients,
to levels less punishing to policyholder prices and to shareholder capital than
immediately assuming that a low current level of interest rates must last for-
ever. And all will have been accomplished within a logical framework essentially
consistent across a wide range of interest rate environments, both high and low.

1.15 One last perplexity

We encountered a small but vexing technical problem the very �rst time we
tried the mean-reversion models and we never satisfactorily resolved it. It was
a small e¤ect that did not threaten our basic approach or conclusions but it did
nag at our con�dence that we completely understood the model and that the
software did not have a bug.
Remember (section 1.2) that we needed real-world scenarios, not risk-neutral

ones. So we had to compensate for the lognormal drift. As soon as we
introduced mean-reversion the compensation for drift got screwy.
The usual "minus one-half the square of the volatility" now overcompensated

and drove the average for the model interest rates (across scenarios at each point
in time) below what you would expect from the starting value and the values
of the mean-reversion target and speed parameters. In particular, the average
model interest rates dropped over time to levels below the value of the mean-
reversion target.
We dealt with this by trial and error to come up with a good drift compen-

sation term by visual inspection of model output graphics. But any change
to the values of the volatility parameter and the mean-reversion speed parame-
ter disrupted the drift compensation all over again and required more trial and
error to correct it. This went on for years.
Even the best trial and error drift compensation values we could come up

with still annoyed us. If they resulted in the average model interest rates ul-
timately converging over a long time to the value of the mean-reversion target
parameter (which they should for a real-world model) then they caused the
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average model interest rates to hover just a little too far, for far too long a
time, above the trajectory you would expect, running from starting value to
mean-reversion target parameter value, based on the mean-reversion speed pa-
rameter.
The most frustrating situations occurred when the starting value equalled

the value of the mean-reversion target parameter. Then the average interest
rates across scenarios drifted up a little and then back down ultimately to the
mean-reversion target parameter value. It was as if the drift compensation did
not fully kick in until many years into the scenarios.
Since concern about low interest scenarios led us to these models in the �rst

place it annoyed us to have even this small upward bias to the interest rates, in
early years especially, still embedded in the model. Often, we chose a trial and
error value for the drift compensation high enough to eliminate even this small
early upward bias, and just accepted an average interest rate (across scenarios)
that bewilderingly drifted a little too low, creeping over time to ultimate levels
below the mean-reversion target parameter value.
Section 2.2 below came as sunshine to scatter the miasma.

2 Mathematics of the model

Remember (section 1.2) that we built a real-world interest rate model for stress-
testing purposes, not a risk-neutral one, and that term structure essentially did
not exist for us because of certain unique facts in the particular stress-testing
situation. It may be that this one-factor model with further development can
anchor two- or three- factor models, real-world or risk-neutral. This paper
sticks to the one-factor single rate model.
In sections 2.1 through 2.3 we derive the closed form solution for the tradi-

tional mean-reverting lognormal process. Then in subsequent sections we make
the �rst steps to apply a similar analysis to the regime-switching model with
randomized regimes.
The model must produce scenarios (or paths) of a single interest rate rt

across times t starting with a given value r0 at time t = 0 and proceeding
in equal �nite increments of time that we will denote by dt in order facilitate
passage to a continuous model when desired.
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2.1 The traditional practitioner�s mean-reverting lognor-
mal model

In this simplest model rt in each scenario is generated iteratively by the process

ln(rt) =
h
ln(rt�dt) + �

p
dtNt +Dtdt

i
(1� F )dt

+ ln(T )
h
1� (1� F )dt

i
(2.1.1)

= ln(rt�dt) +
h
1� (1� F )dt

i
[ln(T )� ln(rt�dt)]

+ (1� F )dtDtdt+ (1� F )dt �
p
dtNt (2.1.2)

where Nt are independent standard normal variables for each t in each scenario
and the following are parameters common across all scenarios:
F < 1 is the annualized value of the mean-reversion speed parameter,
T is the mean-reversion target parameter value for the interest rate,
Dt is a drift compensation term at each t (speci�ed in advance and common

across all scenarios, but allowed to vary with t),
� is the annualized volatility parameter for the lognormal process.

For Monte Carlo simulations, the software implements (2.1.1) or (2.1.2) and
the journey described in section 1 begins.

For analytic purposes, (2.1.2) allows the backward-di¤erence expression

d ln(rt) =
h
1� (1� F )dt

i
[ln(T )� ln(rt�dt)]+(1� F )dtDtdt+(1� F )dt �

p
dtNt

(2.1.3)

If one wants to reproduce some speci�c observed annualized volatility value

�obs =
std:dev: [d ln(rt)]p

dt

in the interest rate series, then it is necessary and su¢ cient to set the annualized
volatility parameter

� =
�obs

(1� F )dt
(2.1.4)

This direct calculation eliminates the need to incorporate the desired historical
�obs into a trial and error routine such as described in sections (1.4) and (1.13)
(item a. in each case).
In the continuous case, letting dt ! 0 in (2.1.3) and observing that by

l�Hbopital�s rule
lim
dt!0

h
1� (1� F )dt

i
dt

= � ln (1� F )

we arrive at

d ln(rt) = f� ln (1� F ) [ln(T )� ln(rt)] +Dtg dt+ �dWt (2.1.5)
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where dWt is the standard Brownian motion. Equation (2.1.5) will be recog-
nized as the Black-Karasinski stochastic interest rate model, a variant of the
Black-Derman-Toy ([4], page 155).

2.2 The surprise in the drift compensation

As discussed in section 1.15 a practitioner certainly wants a real-world interest
rate model to have

lim
t!1

E [rt] = T (2.2.1)

because if not then she can�t understand or interpret the mean-reversion target
parameter value T in real-world terms. In fact, to be sure that she understands
what the mean-reversion target parameter and speed parameter values mean in
the real-world, it will make the the practitioner happiest if the model admits
for all t the crystal clear expression

E [rt] = r
(1�F )t
0 T [1�(1�F )

t] (2.2.2)

for the expected value across all scenarios for the interest rate at time t. Equa-
tion (2.2.2) allows no doubt about the real-world interpretation of the mean-
reversion target and speed parameters. What does it take to guarantee that
(2.2.2) will hold?
Use (2.1.1) recursively, substituting into the right hand side the expression

for ln(rt�dt) that would result if you used t � dt instead of t on the left hand
side. Repeat all the way back until the only value for r that appears on the
right hand side is r0. You will arrive at the expression (there�s nothing for it
but to walk through a step or two until you see the pattern)

ln(rt) = ln(r0) (1� F )
t
dtdt + �

p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T )
h
1� (1� F )dt

i t
dtX
s=1

(1� F )(s�1)dt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.2.3)

which simpli�es, noting that the second
P
is a geometric series, to

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T )
h
1� (1� F )t

i
+ dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.2.4)
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Exponentiating both sides

rt = r
(1�F )t
0 T [1�(1�F )

t]e
�
p
dt

t
dtP
s=1

Nt�(s�1)dt(1�F )sdt+dt

t
dtP
s=1

Dt�(s�1)dt(1�F )sdt

(2.2.5)
TheNt�(s�1)dt terms in the exponential represent independent standard normal
random variables and everything else in (2.2.5) is constant. The indicated linear
combination of the independent standard normal random variables must be
normal itself so (2.2.5) provides the closed form solution to the mean-reverting
lognormal, just another more complicated lognormal whose parameters appear
in (2.2.5). Since the expected value of a lognormal with � = 0 is e

1
2�

2

(2.2.5)
implies that

E [rt] = r
(1�F )t
0 T [1�(1�F )

t]e
1
2�

2dt

t
dtP
s=1

(1�F )2sdt+dt

t
dtP
s=1

Dt�(s�1)dt(1�F )sdt

= r
(1�F )t
0 T [1�(1�F )

t]e
1
2�

2dt(1�F )2dt 1�(1�F )2t

1�(1�F )2dt
+dt

t
dtP
s=1

Dt�(s�1)dt(1�F )sdt

(2.2.6)

This means that (2.2.2) holds if and only if

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt = �
1

2
�2 (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt
(2.2.7)

Now we want (2.2.2) to hold for all t so (2.2.7) must hold for all t. In particular,
(2.2.7) must hold when t gets replaced by t� dt, so rearrange (2.2.7) as follows:

Dt (1� F )dt = �1
2
�2 (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt
�

t
dtX
s=2

Dt�(s�1)dt (1� F )sdt

= �1
2
�2 (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt

� (1� F )dt
t
dtX
s=2

Dt�(s�1)dt (1� F )(s�1)dt

= �1
2
�2 (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt

� (1� F )dt
t�dt
dtX
s=1

D(t�dt)�(s�1)dt (1� F )sdt
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Now use (2.2.7) at t� dt to evaluate the sum, giving

Dt (1� F )dt = �1
2
�2 (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt

+(1� F )dt 1
2
�2 (1� F )2dt 1� (1� F )

2(t�dt)

1� (1� F )2dt

= �1
2
�2

(1� F )2dt

1 + (1� F )dt

�
"
1� (1� F )2t

1� (1� F )dt
� (1� F )dt 1� (1� F )

2(t�dt)

1� (1� F )dt

#

Notice that both terms represent geometric series, so

Dt (1� F )dt = �1
2
�2

(1� F )2dt

1 + (1� F )dt

�

242t�dtX
s=0

(1� F )s � (1� F )dt
2(t�dt)�dtX

s=0

(1� F )s
35

= �1
2
�2

(1� F )2dt

1 + (1� F )dt
h
1 + (1� F )2t�dt

i
, and �nally

Dt = �1
2
�2

(1� F )dt

1 + (1� F )dt
h
1 + (1� F )2t�dt

i
(2.2.8)

Equation (2.2.8) explains our bewildering problems (section 1.15) trying to
come up with a constant drift compensation term by trial and error. Who knew?
No constant can compensate for drift in a mean-reverting model. Equation
(2.2.8) gives the correct drift compensation, varying with time, for (2.2.2) to
hold in a mean-reverting model.
Dt clearly decreases in absolute value with increasing t and

lim
t!1

Dt = �
1

2
�2

(1� F )dt

1 + (1� F )dt
, provided that F > 0, (2.2.9)

which is the stable link between (2.2.8) and the usual lognormal value � 1
2�

2.
In the continuous case with dt! 0 in (2.2.8) we get

lim
dt!0

Dt = �1
2
�2

1

2

h
1 + (1� F )2t

i
= �1

4
�2
h
1 + (1� F )2t

i
for each t

and lim
t!1

lim
dt!0

Dt = �1
4
�2, provided that F > 0. (2.2.10)
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The limiting value � 1
4�

2 of the drift compensation in the continuous case is
independent of the annualized mean-reversion speed F > 0.
When the practitioner�s ideal drift compensation values (2.2.8) have been

used then we know that (2.2.7) holds and its value can be substituted for the
drift compensation sum in formula (2.2.5) giving a slightly simpler practitioner�s
form for the scenario interest rate at each time:

rt = r
(1�F )t
0 T [1�(1�F )

t]e
�
p
dt

t
dtP
s=1

Nt�(s�1)dt(1�F )sdt� 1
2�

2dt(1�F )2dt 1�(1�F )2t

1�(1�F )2dt

(2.2.11)
We could have entitled this whole section "Expected value of the interest rate

distribution produced by a mean-reverting lognormal process." Equation (2.2.6)
gave E [rt] for each t for any arbitrary speci�cation of the sequence fDs : s � tg
of drift terms. Our next section can take up the variance calculation.
Before that, to complete the expected value presentation, in the continuous

case with dt! 0 in (2.2.6) we get

E [rt] = r
(1�F )t
0 T [1�(1�F )

t]e
1
2�

2
R t
0
(1�F )2sds+

R t
0
Dt�s(1�F )sds

= r
(1�F )t
0 T [1�(1�F )

t]e�
1
4

�2

ln(1�F ) [1�(1�F )
2t] +

R t
0
Dt�s(1�F )sds

(2.2.12)

The value for E [rt] in (2.2.6) - for the discrete process - and (2.2.12) - for
the continuous process - converges respectively to

lim
t!1

E [rt] = Te

�
1
2�

2dt
(1�F )2dt

1�(1�F )2dt
+dt

(1�F )dt

1�(1�F )dt
limt!1Dt

�
(2.2.13)

lim
t!1

E [rt] = Te�(
1
4�

2+limt!1Dt) 1
ln(1�F ) (2.2.14)

provided that F > 0 and that Dt has a limit as t ! 1. Actually a slightly
weaker condition on Dt would work, namely that as t increases Dt should in-
creasingly sum or integrate as if it had a limit. At any rate, the condition for
the weak desideratum (2.2.1) to hold is that (2.2.9), respectively (2.2.10), hold
or at least increasingly behave in sums or integrals as if they hold.

2.3 Variance of the interest rate distribution produced by
a mean-reverting lognormal process

Since they contain just constants and independent standard normal random
variables, (2.2.5) or (2.2.11) allow us to calculate at each t the variance V[rt]
across scenarios of the random interest rates rt the same way it allowed us to
calculate expected values. Recall that a lognormal random variable with � = 0
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has variance equal to e�
2
�
e�

2 � 1
�
. Then (2.2.5) gives

V[rt] =

0BB@r2(1�F )t0 T 2[1�(1�F )
t]e

�2dt

t
dtP
s=1

(1�F )2sdt+2dt

t
dtP
s=1

Dt�(s�1)dt(1�F )sdt

1CCA

�

0BB@e�2dt
t
dtP
s=1

(1�F )2sdt
� 1

1CCA

=

0BB@r2(1�F )t0 T 2[1�(1�F )
t]e

�2dt(1�F )2dt 1�(1�F )2t

1�(1�F )2dt
+2dt

t
dtP
s=1

Dt�(s�1)dt(1�F )sdt

1CCA
�
�
e
�2dt(1�F )2dt 1�(1�F )2t

1�(1�F )2dt � 1
�

(2.3.1)

In cases when the practitioner�s ideal drift compensation values (2.2.8) have
been used then we can use (2.2.11) for the variance calculation, or just refer to
(2.2.7), which is equivalent to (2.2.8), to simplify (2.3.1). Either way the result
is the practitioner�s formula for the variance across scenarios for the interest
rate at time t.

V[rt] = r
2(1�F )t
0 T 2[1�(1�F )

t]
�
e
�2dt(1�F )2dt 1�(1�F )2t

1�(1�F )2dt � 1
�

(2.3.2)

The limit of this as t!1 is

lim
t!1

V[rt] = T 2
�
e
�2dt

(1�F )2dt

1�(1�F )2dt � 1
�
, provided that F > 0, (2.3.3)

knowledge of which would have saved endless trial and error model runs, as
described in section 1.4, looking for joint values of F and � to reproduce in
the limit the historical variance of the interest rate. In fact, if the histori-
cally observed variance of the interest rate is �obs, then the value � = �obs

(1�F )dt

from (2.1.4) can be substituted into (2.3.3), along with the requirement that
limt!1V[rt] = �2obs, to give

�2obs = T 2
�
e
�2obs

dt

1�(1�F )2dt � 1
�
, provided that F > 0.

(2.3.4)

This can be solved for the value of the annualized mean-reversion parameter
value F that will reproduce �2obs,

F = 1�

8<:1� �2obsdt

ln
h�

�obs
T

�2
+ 1
i
9=;

1
2dt

(2.3.5)
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with no trial and error required. For the continuous model dt! 0, inaccessible
to trial and error anyway, the identity lim�!0 (1 + a�)

1=�
= ea applied to (2.3.5)

produces

F = 1� e
� 1
2�

2
obs

1

ln

�
(�obsT )

2
+1

�
(2.3.6)

for the annualized mean-reversion parameter value F to reproduce �2obs.
To complete the general story, for the continuous model dt ! 0 with arbi-

trary values for the drift function Dt, (2.3.1) becomes

V[rt] =

�
r
2(1�F )t
0 T 2[1�(1�F )

t]e�
1
2

�2

ln(1�F ) [1�(1�F )
2t]+2

R t
0
Dt�s(1�F )sds

�
�
�
e�

1
2

�2

ln(1�F ) [1�(1�F )
2t] � 1

�
(2.3.7)

in a calculation exactly parallel to (2.2.12). When t ! 1 in this continuous
case, with arbitrary Dt,

lim
t!1

V[rt] = T 2e�(
1
2�

2+2 limt!1Dt) 1
ln(1�F )

�
e�

1
2�

2 1
ln(1�F ) � 1

�
(2.3.8)

provided that F > 0 and similar conditions onDt hold as discussed in connection
with (2.2.14). When t ! 1 the general discrete case (2.3.1) with arbitrary
drift values Dt becomes

lim
t!1

V[rt] = T 2e

�
1
2�

2dt
(1�F )2dt

1�(1�F )2dt
+2dt

(1�F )dt

1�(1�F )dt
limt!1Dt

��
e
1
2�

2dt
(1�F )2dt

1�(1�F )2dt � 1
�

(2.3.9)
provided that F > 0 and similar conditions onDt hold as discussed in connection
with (2.2.13).
This completes the task of making the traditional mean-reverting lognormal

a completely open book. Formulas (2.2.5) or (2.2.11), whichever applies, can
give any moment you like for the real-world interest rate rt across scenarios at
any time t. They will simplify (if that�s the word) by geometric series just as
did the formulas for mean and variance.
Sections 2.1, 2.2 and 2.3 now serve both as a basis and as an ideal for

developing the regime-switching version of the mean-reverting lognormal.

2.4 Regime-Switching

As described in section 1.8 and 1.11 we introduced multiple possible values for
the mean-reversion target parameter T . Let Tt indicate the value of the mean-
reversion target parameter at time t. Then the backward di¤erence expression
(2.1.3) for ln(rt) becomes

d ln(rt) =
h
1� (1� F )dt

i
[ln(Tt)� ln(rt�dt)]

+ (1� F )dtDtdt+ (1� F )dt �
p
dtNt (2.4.1)
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and the continuous version (2.1.5), now a generalized Black-Karasinski, becomes

d ln(rt) = f� ln (1� F ) [ln(Tt)� ln(rt)] +Dtg dt+ �dWt (2.4.2)

Applying (2.4.1) recursively all the way back to ln(r0) gives the regime-switching
expression corresponding to (2.2.3):

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i t
dtX
s=1

ln(Tt�(s�1)dt) (1� F )(s�1)dt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.4.3)

Before randomizing the mean-reversion target parameter values Tt it will prove
convenient to change indexes in the second sum in (2.4.3) so that the target
parameter values appear in forward time sequence:

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i t
dtX
s=1

ln(Tsdt) (1� F )t�sdt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.4.4)

It also will be convenient to let ftjg be the (time-ordered) countable sequence
of times when the value of Tt changes and fTjg be the corresponding sequence
of values for Tt subsequent to each change. Then Tt is a function of t de�ned
by

Tt = Tj for all tj � t < tj+1 (2.4.5)

where we take t0 = 0 so that T0 unambiguously represents the initial value for
the mean-reversion target parameter. Then we can write

Tt =

1X
j=0

1[j;j+1)(t)Tj (2.4.6)

where 1[j;j+1)(t) is the cádlág indicator function for the half-open interval tj �
t < tj+1, equal to 1 when tj � t < tj+1 and equal to 0 otherwise. The functional
dependence of Tt on t is expressed through these indicator functions. De�nition
(2.4.5) also leads to the unusual-appearing (relative to 2.4.6) expression
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ln(Tt) =
1X
j=0

1[j;j+1)(t) ln(Tj) (2.4.7)

We can substitute the value for ln(Tt) given by (2.4.7) into equations (2.4.1),
(2.4.2), and (2.4.4), respectively, to get for the discrete case

d ln(rt) =
h
1� (1� F )dt

i24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt�dt)

35
+(1� F )dtDtdt+ (1� F )dt �

p
dtNt, (2.4.8)

for the continuous case

d ln(rt) =

8<:� ln (1� F )
24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt)

35+Dt
9=; dt+ �dWt,

(2.4.9)

and for the recursive resolution

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i t
dtX
s=1

1X
j=0

1[j;j+1)(sdt) ln(Tj) (1� F )t�sdt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt . (2.4.10)

Changing the order of summation in the double sum in (2.4.10) gives

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i 1X
j=0

ln(Tj)

t
dtX
s=1

1[j;j+1)(sdt) (1� F )t�sdt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.4.11)

The indicator functions (equal to just 0 or 1) allow a segmentation of the
inside sum:

21



ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+
h
1� (1� F )dt

i 1X
j=0

ln(Tj)

b(t^tj+1) 1dt )X
s= b(t^tj) 1dt )+1

(1� F )t�sdt

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.4.12)

where bu) is de�ned to be the largest integer with bu) < u (note the strict
inequality, so for an integer bn) = n � 1; cádlág in cádlág out). Now bring

the factor
h
1� (1� F )dt

i
inside the double sum. That makes the inner sums

telescope down to just di¤erences of the top and bottom terms

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+

1X
j=0

ln(Tj)
h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.4.13)

Equation (2.4.13) is the analogue of (2.2.4) in the simple mean-reverting
lognormal. The telescoping sums are the closest we can get here to the geo-
metric series that simpli�ed (2.2.4). Exponentiating it, which isn�t worth the
ink, would give the analogue of (2.2.5), namely a closed form expression for a
deterministic regime-switching mean-reverting lognormal. The stage is set to
randomize the regimes.

2.5 Randomizing the regimes

In sections 1.08, 1.10 and 1.11 we discussed the practitioner�s modeling decision
to randomize the mean-reversion target parameters as independent and iden-
tically distributed lognormals, also independent of the independent standard
normals Nt�(s�1)dt. Model this with independent normal random variables
ln(Tj) with common mean �T and variance �

2
T .

Still letting the regime-switching points in time ftjg be deterministic (in-
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cluding when we are conditioning on random ftjg) equation (2.4.13) becomes

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )t�b(t^t1)

1
dt )dt � (1� F )t

i
+

1X
j=1

ln(Tj)
h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.5.1)

(remember that T0 is a �xed initial value for the mean-reversion target parame-
ter, not a random variable.). Then ln(rt) is a normal random variable at each
point in time t with expected value

E [ln(rt)] = ln(r0) (1� F )t + ln(T0)
h
(1� F )t�b(t^t1)

1
dt )dt � (1� F )t

i
+�T

1X
j=1

h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= ln(r0) (1� F )t + ln(T0)
h
(1� F )t�b(t^t1)

1
dt )dt � (1� F )t

i
�T

h
1� (1� F )t�b(t^t1)

1
dt )dt

i
+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.5.2)

where the simpli�cation of the �T term comes from the facts that the sum
telescopes and that for some j large enough tj � t and all the terms after that
are just 1� 1 = 0.
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For the variance

V [ln(rt)] = �2dt

t
dtX
s=1

(1� F )2sdt

+�2T

1X
j=1

h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i2
= �2dt (1� F )2dt 1� (1� F )

2t

1� (1� F )2dt

+�2T

1X
j=1

h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i2
(2.5.3)

That geometric series marks the last exact simpli�cation we�ll see.
Of course, with (2.5.3) the mean and variance of rt at each point in time t

now can be expressed as

E [rt] = eE[ln(rt)]+
1
2V[ln(rt)] (2.5.4)

V [rt] = e2E[ln(rt)]+V[ln(rt)]
�
eV[ln(rt)] � 1

�
(2.5.5)

using the expressions from (2.5.2) and (2.5.3) to complete the formulae.
So far so good. Now what about the switching times?

2.6 Randomizing the switching times

In sections 1.08, 1.09, 1.11, and 1.12 we discussed the practitioner�s modeling
decision to randomize the mean-reversion target parameter switching times tj as
sums of independent and identically distributed Erlang interarrival times (i.e.
the tj+1 � tj are the Erlangs) also independent of the independent standard
normals Nt�(s�1)dt and the independent lognormal mean-reversion target pa-
rameter values Tj . (Except that the very �rst switching time t1 = t1 � 0 was
taken as an independently random point chosen within the �rst random Erlang
span, see section 1.12).
Substituted into (2.4.8) this gives the backward di¤erence expression for the

discrete case

d ln(rt) =
h
1� (1� F )dt

i24 1X
j=0

1[j;j+1)(t) ln(Tj)� ln(rt�dt)
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+(1� F )dtDtdt+ (1� F )dt �

p
dtNt, (2.6.1)

where ln(Tj) re�ect the random mean-reversion target parameter values de�ned
in section 2.5 and the indicator functions 1[j;j+1)(t) de�ned deterministically for
(2.4.6) now are random variables at each t de�ned by

1[j;j+1)(t) =1 if tj � t < tj+1 and 0 otherwise.
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where tj are the random switching times de�ned in the preceding paragraph.
For Monte Carlo simulations, the software implements (2.6.1) and the ran-

domized regime switching journey takes o¤, as described starting at section
1.11.

For analytic purposes, the recursive resolution developed in (2.4.13) or (2.5.1),
now with random switching times inserted, gives

ln(rt) = ln(r0) (1� F )t + �
p
dt

t
dtX
s=1

Nt�(s�1)dt (1� F )sdt

+ ln(T0)
h
(1� F )t�b(t^t1)

1
dt )dt � (1� F )t

i
+

1X
j=1

ln(Tj)
h
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

i

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.6.2)

where now the tj for j > 0 are the random variables just described. Forbidding.
But we can get a somewhat simpli�ed expression for the expected value

E [ln(rt)] at each t by conditioning on ftjg and using (2.5.2)

E [ln(rt)] = ln(r0) (1� F )t + ln(T0)
nh
E
h
(1� F )t�b(t^t1)

1
dt )dt

i
� (1� F )t

io
�T

nh
1� E

h
(1� F )t�b(t^t1)

1
dt )dt

iio
+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= ln(r0) (1� F )t + �T � ln(T0) (1� F )
t

+E
h
(1� F )t�b(t^t1)

1
dt )dt

i
[ln(T0)� �T ]

+dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt (2.6.3)

which thankfully involves only t1, although even that in a complicated way. The

expectation E
h
(1� F )t�b(t^t1)

1
dt )dt

i
in fact represents at each t just a constant

(1� F )t times the Laplace transform of the random variable
�
(t ^ t1) 1dt

�
eval-

uated at dt ln (1� F ). For t ! 1 and F > 0 it works out well so long as Dt
has a limiting value and the Laplace transform of the random variable

�
t1
dt

�
is
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�nite at dt ln (1� F ) :

lim
t!1

E [ln(rt)] = �T + lim
t!1

dt

t
dtX
s=1

Dt�(s�1)dt (1� F )sdt

= �T + dt
(1� F )dt

1� (1� F )dt
lim
t!1

Dt (2.6.4)

where the limit of the sum is the same thing we saw at (2.2.13) versus (2.2.6) and
where limt!1Dt may well be known, for example from (2.2.9) or (2.2.10) if the
"practitioner�s" drift compensation (2.2.8) has been chosen, or from whatever
other choice may have been made. The same discussion about Dt applies as
followed (2.2.13) and (2.2.14). The continuous version, comparable to (2.2.14),
is available, too. As dt! 0 (2.6.4) turns into

lim
t!1

E [ln(rt)] = �T + lim
t!1

R t
0
Dt�s (1� F )s ds

= �T � lim
t!1

Dt
1

ln (1� F ) (2.6.5)

if Dt has a limiting value.
So, at least the limiting values of E [ln(rt)] can be calculated and they are

what you would hope (after going through the simple mean-reverting lognormal
material, anyway). Unfortunately, to get E [rt], which the practitioner can
understand a lot better than E [ln(rt)], requires (even for its limiting value)
an expression for the variance V [ln(rt)] of its logarithm, see (2.5.5). And
conditioning on ftjg is not nearly so helpful for the variance.
Conditioning on ftjg and using (2.5.3)

V [ln(rt)] = �2dt (1� F )2dt 1� (1� F )
2t

1� (1� F )2dt

+�2T

1X
j=1

E
�n
(1� F )t�b(t^tj+1)

1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

o2�
,

(2.6.6)

which so far de�es closed form analysis, even in the limit at t ! 1. The
problem is that the random variablesn

(1� F )t�b(t^tj+1)
1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

o
(2.6.7)

are not independent. Only the tj+1 � tj are independent. Even for the
calculation of limiting values the random variablesn

(1� F )�btj+1
1
dt )dt � (1� F )t�b(t^tj)

1
dt )dt

o
(2.6.8)

are not independent. So nothing telescopes, no geometric series.
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If we could cope with V [ln(rt)] then (2.5.4), (2.5.5), and their extensions
to higher moments would give us all the moments of rt for each t just as we
had for the simple mean-reverting lognormal. Unfortunately, progress on exact
analysis so far dies at (2.6.6).
Many years worth of simulation trials using (2.6.1) give con�dence that the

perturbations coming from the failure of the random variables (2.6.7) and (2.6.8)
to be independent are small and controllable in practice. Having come so far, it
is a shame not to be able to conclude with a victory lap of closed form solutions.
And even practical "control" of the perturbations leaves a second order (much
smaller) version of the vexation described in section 1.15.

3 Illustrations

Organization of some of the output from those many years of simulation trial
results so as illustrate both the narrative of section 1 and the mathematics of
section 2 will come in the next version of this paper.
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