How Might Pandemic Flu Affect U.S. Life Insurers?

Tom Edwalds, FSA AVP – Mortality Research Munich American Reassurance Company

What is Pandemic Flu?

Epidemic: outbreak of infectious disease throughout geographic region Pandemic: global epidemic Flu: disease caused by influenza virus 3 Influenza pandemics in 20th century - 1918 Spanish Flu – 1957 Hong Kong Flu - 1968 Asian Flu

Risk for Life Insurers

 Weisbart (III) & Moody's published estimated loss costs for life insurers
 Issue is fundamentally actuarial
 SoA Committee on Life Insurance Research commissioned study

 POG chair: Tom Edwalds
 Researcher: Jim Toole

 Society of Actuaries Research Currently in Progress
Scope includes life & health insurance
Focus today is on mortality surge model
Describe & apply to industry aggregates
Show preliminary results
Highlight internal controversies

Focus on Mortality Surge Model

Model assumptions

- Model inputs
 - Insurance
 - Pandemic scenario
- Methodology
- Estimating aggregate inputs for US Life Insurers
- Pandemic scenario inputs selection
- Results

Model Assumptions

Mortality surge measured as excess deaths/1000 – NOT excess % of expected Marginal tax rate 35% - Can adjust Assume tax savings useful regardless of net income & surplus E.g. net operating loss carry forward

Model Inputs

Insurance

- Inforce by quin age
- Average reserve/1000 by quin age
- Reinsurance ceded by quin age
- Pandemic Scenario
 - Deterministic
 - Excess deaths/1000
 - Excess mortality curve shape

Methodology: Net Claims

Gross claims

Calculate excess mortality by quin age
= Excess deaths/1000 * shape % by quin age
Calculate gross claims by quin age
= insurance inforce * excess mortality

Net claims = Gross claims - reductions:

reserves released
reinsurance credit
tax savings

Methodology: Reductions

Reserves released by quin age = gross claims * avg reserve/1000 Reinsurance credit by quin age = reins ceded * excess mortality * reins credit % Will explain reinsurance credit % later Very controversial Tax savings by quin age = 35% * (gross claims – reserves released – reinsurance credit)

Estimating Aggregate Inputs for US Life Insurers

Inforce by Quin Age

 LIMRA Study
 US Census Bureau

 Reinsurance Ceded by Quin Age

 MARC Survey

 Average Reserve/1000 by Quin Age

 Estimated from data provided by POG

US Life Insurance Inforce Data Sources

LIMRA Study, 2004

- % owning individual life insurance
- % covered by group life insurance
- Average face amount, individual and group
- US Census Bureau
 - 7/1/04 US population estimate by quin age
 Projection from 2000 census

US Life Insurance Inforce Estimate by Quin Age Break LIMRA age bands down to guin age Separately for individual and group, by quin age: Inforce = population * % covered * avg face Sum tied to NAIC aggregate and LIMRA totals

US Life Reinsurance Ceded Estimate by Quin Age MARC survey - Total direct reinsurance ceded individual & group

- Tied to AM Best
- Data supplied by POG
 - Reinsurance distribution by quin age

Pandemic Scenario Inputs

Excess deaths/1000

- Excess pneumonia and influenza
- Seasonal flu kills 36,000 per year in US
- Excess mortality curve shape
 - Distribution of excess deaths by quin age
 - Expressed as % of scenario excess deaths/1000
 - 3 options built in to model: Flat, "U", and "W"
 - Can create custom shape

Pandemic Scenario Inputs: Excess Mortality Curve Shape Flat Same excess deaths/1000 used for all ages "U" (Similar to 1957 or 1968) Most deaths at ages 0-4 and 65+

- Few deaths at working ages
- "W" (Similar to 1918)
 - Most deaths at ages 0-4, 20-40, and 65+
 - Not identical to 1918 shape

Pandemic Scenario Inputs Selected

Two scenarios explored: – Moderate (similar to 1957) Excess mortality = 0.7 deaths/1000 "U" shape – Severe (similar to 1918) Excess mortality = 6.5 deaths/1000 ■"W" shape Stress test, not prediction No probabilities assigned

Reinsurance Credit %

Still working on this factor

Ratio of

- Identifiable reinsurer capital available
 - Statutory surplus
 - Mortality bond securitizations
 - Reserve redundancy
 - Offshore reinsurance (not yet included)
 - Other
- Scenario reinsurance death claims surge
 = reinsurance ceded * excess mortality

Maximum value is 100%

Results

Moderate Pandemic Scenario

\$7.8 B - Individual Life gross claims surge
\$2.0 B - Individual life net claims effect
\$3.9 B - Group Life gross claims surge

\$2.4 B - Group life net claims effect

\$3.6 B - Reinsurance claims surge

Reinsurance credit %: 100%

Results Severe Pandemic Scenario \$94 B - Individual Life gross claims surge \$43 B - Individual life net claims effect \$46 B - Group Life gross claims surge \$29 B - Group life net claims effect \$35 B - Reinsurance claims surge Reinsurance credit %: 64% – Not final, will be higher

Summary

Moderate pandemic scenario almost nonevent for life insurers financially

- Severe pandemic scenario unpleasant and uncomfortable
 - But life insurance industry capable of paying all claims!

Open Issues

Insured vs population mortality Model will have inputs for population mortality surge & relative mortality surge of portfolio Reinsurance Credit Offshore retrocession - Other available capital Asset losses May introduce input factor into model

Questions?

Thank you!