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A Machine Learning Approach to Incorporating 
Industry Mortality Table Features Into a 
Company’s Insured Mortality Analysis 
 

This paper introduces a novel framework for leveraging the “architecture” of an industry 
mortality table within a company’s predictive analytics-based insured mortality analysis. The 
author shows that by reverse-engineering the industry mortality table into a series of higher-
dimensional features and then using those features as inputs to a nonlinear predictive model (in 
this case a neural net), a company can better model relationships between mortality cells across 
the full spectrum of ages and durations when faced with sparse experience data. One potential 
application of this approach is in the initial calibration of an industry mortality table, via its 
learned features, to a company’s own experience. 

Section 1: Introduction 
Best estimate insured mortality is most commonly represented by a series of tables (mortality 
tables) reflecting the mortality rates for policyholders with various combinations of issue age (age 
at policy issue), duration (time since policy issue), gender and smoker status. Other factors, such 
as face amount band, may also be modeled. The generally accepted approach to deriving the 
structure and content of these tables is via an in-depth experience analysis that involves 
populating the tables with raw mortality rates calculated from carefully prepared observed 
experience, extrapolating/extending rates to cells with little or no experience, smoothing the 
rates, assessing the appropriateness of the results (via Actual-to-Expected ratios (A/Es), 
monotonicity checks, etc.), and iterating back through the cycle as necessary. 

While the aforementioned first principles approach has proved effective in industry mortality 
table development, it can be challenging for individual companies with limited data and/or 
experience study resources to implement. Alternatives available to companies in developing 
mortality assumptions include (i) industry table adjustment approaches (e.g., factor-based 
adjustments or credibility blending) and (ii) predictive modeling approaches. It is this second 
alternative that we explore herein. 

The use of predictive models to develop best estimate insured mortality rates across the full 
spectrum of ages and durations has been met with limited success. Zhu et al. (2015) fit various 
logistic regression models to U.S. insured mortality experience yet ultimately elected not to 
publish the details of their modeled tables due to limitations with the fit. One of the main 
challenges that companies face when looking to leverage the predictive modeling approach is 
that it has no preconceived notion of what a mortality table should look like, leading to issues in 
fit where experience is sparse and to a lack of appreciation for generally accepted mortality 
relationships. Furthermore, the predictive modeling approach has historically been unable to 
leverage the degree of fine tuning, professional judgment and data credibility underlying an 
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industry table. The 2015 Valuation Basic Table U.S. industry study alone benefited from the 
expertise of more than 30 different individuals and consulting firms, as well as the experience 
data from more than 50 insurance companies. 

The author used neural nets as the primary predictive analytics/machine learning approach 
within this paper, both to reverse-engineer the industry mortality table and for out-of-sample 
prediction testing. The ability of neural nets to model integer variables (such as attained age and 
duration) as high-cardinality categorical variables in high-dimensional continuous space (called 
“entity embeddings” or simply “embeddings” herein), complemented by their ability to handle 
highly nonlinear behavior, were key to this decision. Furthermore, the author benchmarked the 
out-of-sample results from neural nets fitted with embeddings to two main effects logistic 
regression models based on the set of traditional features1 and to a neural net fitted exclusively 
with the set of traditional features. In all cases, mortality rate was the target variable of interest. 

We selected the U.S. 2015 Valuation Basic Table, age-nearest primary tables (referred to as “2015 
VBT” herein), as the industry basis for this project, given its recency and widespread use. The 
primary tables capture four dimensions in the select period (gender, smoker status,2 issue age, 
duration) and three dimensions in the ultimate period (gender, smoker status, attained age). The 
expectation is that the practitioner could extend the methodology herein to other industry or 
reference tables as required. 

The author completed core data preparation and modeling work in Python v3.6.8 (Anaconda 
Distribution) and leveraged a combination of the following well-known analytical libraries: 
NumPy, Pandas, SciPy, SciKit-Learn, StatsModels and Keras. 

An inventory of all files accompanying this report can be found in Appendix A. 

The remainder of this report is structured as follows: 

• Section 2 (Data Preparation for Feature Extraction) details the steps the author took to 
prepare the 2015 VBT rates for reverse-engineering. 

• Section 3 (Extraction of Industry Mortality Table Features) begins with an overview of 
neural nets, entity embeddings, and entity embedding neural nets. It then discusses the 
extraction of key features from 2015 VBT, including the design of the relevant entity 
embedding neural nets, the algorithm used to train these models, and the goodness of fit 
between the rates predicted from these models and the corresponding 2015 VBT rates. 

• Section 4 (Visualization and Validation of Extracted Features) presents the results of 
visualizing the high-dimensional mortality embeddings in low-dimensional space using t-
Distributed Stochastic Neighbor Embedding (t-SNE) and Principal Component Analysis 
(PCA). A key reason for visualizing the mortality embeddings is to ensure that they have 
internally consistent behavior; that is, to ensure that cells with more similar mortality 
characteristics are closer together in the embedding space. Internal consistency improves 
the likelihood that the mortality embeddings will be portable to related nonlinear 

                                                
1 For the purposes of this paper, the set of traditional features is defined to be gender as a categorical variable, smoker 
status as a categorical variable, duration as a continuous variable, and attained age as a continuous variable. 
2 Smoker status has three levels: smoker, nonsmoker and composite/unismoke. 
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predictive modeling problems, such as the modeling of company-specific best estimate 
insured mortality. 

• Section 5 (Case Study) discusses the specifications and results for a case study designed 
to demonstrate the value of the mortality embeddings within a nonlinear predictive 
modeling context. The case study leverages U.S. insured mortality experience collected 
by the Society of Actuaries (SOA) Individual Life Experience Committee (ILEC) for years 
2009–2015 and “sparsifies” these data to better reflect the gaps that a company may 
have in its own experience data. Both fit and generally accepted mortality relationships 
are assessed. 

• Section 6 (Conclusion) summarizes the key aspects of this project and the various levels 
on which the material herein can be leveraged. 
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Section 2: Data Preparation for Feature Extraction 
This section describes the steps the author took to import and reformat the 2015 VBT rates. 

2.1 2015 VBT DATA PREPARATION 

The process used to load and reformat the 2015 VBT rates consisted of four steps. 

Step 1: Load 2015 VBT Primary Tables, Age Nearest Basis (ANB) 

In this step, the author downloaded the relevant Excel files (2015-vbt-smoker-distinct-alb-
anb.xlsx and 2015-vbt-unismoke-alb-anb.xlsx) from the SOA site (www.soa.org/experience-
studies/2015/2015-valuation-basic-tables) and subsequently loaded the two-dimensional age 
nearest rates by issue age and duration for each of male nonsmoker (MNS), male smoker (MSM), 
male unismoke/unknown (MUNI), female nonsmoker (FNS), female smoker (FSM), and female 
unismoke/unknown (FUNI) into a series of Pandas dataframes. 

Step 2: Validate Data Load 

Here the author validated the imported data back to the source Excel files based on hash totals. 
The totals in Table 1 (sums of qx per thousand) calculated from the imported data were found to 
match back to the source files exactly: 

Table 1 
RESULTS OF DATA LOAD VALIDATION  

Table Hash Total Result 
MNS 177,590.48 Match 
MSM 197,317.89 Match 
MUNI 182,755.43 Match 
FNS 162,014.06 Match 
FSM 187,187.35 Match 
FUNI 167,845.31 Match 

 

Step 3: Reformat Data 

In this step, the author reformatted the data from a series of 2-D tables (i.e., select period rates 
by issue age and duration, followed by ultimate rates) to a single, columnar dataframe format. He 
also derived attained age as issue age + duration – 1. The top of the resulting dataframe is shown 
in Table 2. 

Table 2 
EXCERPT OF TRANSFORMED DATAFRAME 
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Step 4: Refine Select Period vs. Ultimate Period Boundaries 

The 2015 VBT tables have select periods that vary by gender, smoker status and issue age. Since 
this variability was not explicitly represented in the mortality tables imported above (i.e., all 
imported tables appeared to have a consistent 25-year select period based on their structure 
alone), the author needed to reflect this variability by appending information on select period 
length from the 2015 VBT report3 and then refining the select/ultimate period boundaries 
accordingly. Records outside the select period were reclassified as ultimate period records, and 
all duplicate ultimate period records resulting from this process were deleted. This step resulted 
in 9,174 unique 2015 VBT select and ultimate period records (or cells). 

2.2 CREATION OF DERIVED VARIABLES 

Once the 2015 VBT rates were loaded and appropriately reformatted, the author proceeded to 
define a series of derived variables for use in subsequent modeling work. These new variables 
included (i) risk class, derived as the concatenation of gender and smoker status; (ii) gender x 
duration, derived as the concatenation of gender and duration; and (iii) grouped attained age x 
grouped duration, derived as all relevant combinations of quinquennial attained age groupings 
and quinquennial duration groupings. 

2.3 ZERO-INDEXED ENCODINGS 

Many neural net software packages expect categorical variables to be represented as zero-
indexed integer variables, with the first level taking a value of zero, the second level taking a 
value of 1, and so on. Accordingly, the variables created in subsection 2.2 were converted to 
zero-indexed integer variables. Similarly, gender, smoker status and duration were also re-
encoded as zero-indexed integer variables. Attained age required no re-encoding because it was 
naturally zero-indexed. 

2.4 TRANSFORMATION OF DEPENDENT VARIABLE (MORTALITY RATE) 

As expected, the distribution of qx was found to be highly right skewed, with rates ranging from 
0.06 per thousand to 500 per thousand. Since the neural net models used to reverse engineer 
2015 VBT could have a hard time modeling skewed target variables, the author considered 
various transformations to make the target distribution more symmetric and standardized. 
Among the options considered was the family of Box-Cox transformations and the log-odds (logit) 
transform.4 In the end, the author decided on a natural log transform, followed by a min-max 
transform to [0, 1], which proved effective and easy to understand. The min-max transform to [0, 
1] was intended to mirror the possible range of output from the neural net models. The result of 
this double transform is shown in Figure 1. 

 

                                                
3 Society of Actuaries. 2018. 2015 Valuation Basic Table Report & Tables. Society of Actuaries, pages 37, 59, https://www.soa.org/experience-
studies/2015/2015-valuation-basic-tables (accessed on Aug. 5, 2019). 
4 logit(qx) = log(qx / (1- qx)) ≈ log(qx) for small qx 
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Figure 1 
TRANSFORMATION OF QX USING NATURAL LOG AND MIN-MAX TRANSFORMS TO PRODUCE A MORE 
SYMMETRICAL TARGET DISTRIBUTION WITH ALL VALUES IN [0, 1] 
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Section 3: Extraction of Industry Mortality Table Features 
This section begins with an overview of neural nets, entity embeddings and entity embedding 
neural nets (EENNs). The author then moves on to how he implemented these tools to extract 
mortality embeddings from 2015 VBT, including the principles followed in designing the relevant 
EENNs, the algorithm used to train these models, and ultimately the selected hyperparameters. 

3.1 NEURAL NETS5 

A neural net is a machine learning system that can be visualized as a network of connected 
“neurons” arranged in layers. Neurons in adjacent layers are connected by weights (or trainable 
parameters) that can be learned in a supervised manner. The first layer is called the “input layer,” 
while the last layer is called the “output layer.” Any layers in between are called “hidden layers.” 
The neurons in the hidden and output layers typically consist of a linear summation aggregation 
function, followed by a nonlinear activation function (e.g., logistic function, rectified linear unit or 
ReLU,6 etc.). More specifically, one can think of a neural net as a series of linear model (f(x) = 
∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖 +  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) and nonlinear activation function pairs, arranged in a tree-like structure. The 
greater the number of nodes in the middle layer(s), the greater the ability of the neural net to 
model nonlinear patterns. It is the ability of neural nets to model highly nonlinear phenomena 
that makes them good candidates for modeling complex natural behavior. 

Figure 2 depicts a sample neural net with four input nodes, two hidden nodes and one output 
node. For simplicity, the author assumed that this neural net does not include any bias (constant) 
terms and that both gender and smoker status are encoded as binary indicators. Note that each 
connection represents an independent weight, so in this example, there are a total of 10 weights 
or 10 trainable parameters. 

 

 

 

 

 

 

 

 

 

 

 

                                                
5 This section refers to standard feed-forward multilayer perceptron neural nets applied in a regression context. 
6 ReLU, or rectified linear unit, is the function g(x) = max(0, x). 
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Figure 2 
DIAGRAM OF A SAMPLE NEURAL NET WITH ONE HIDDEN LAYER 

 
Input  Layer          Hidden Layer       Output Layer 

 

 

The output from this neural net, ln(qx)’, which represents ln(qx) transformed to [0,1], can be 
thought of as being calculated according to the following steps: first, the inputs (e.g., attained 
age, duration, etc.) are multiplied by their corresponding weights and aggregated; second, the 
results from Step 1 are put though a ReLU; third, the results from the hidden nodes are multiplied 
by their corresponding weights and aggregated; and finally, the results from Step 3 are put 
through a standard logistic function whose output necessarily falls in [0, 1].7 Note that the 
activation functions used in the various layers need not be the same. 

Once the structure of the neural net has been defined—including the number of layers, number 
of nodes in each layer, and nature of the nonlinear activation function(s)—the network can be 
trained using a process called “backpropagation.” During this process, the trainable weights in the 
network are updated in an iterative fashion in an attempt to minimize the chosen loss function. 
Commonly used loss functions include mean-squared error and mean absolute error. 

Parameters that must be chosen by the practitioner prior to training are called 
“hyperparameters.” All parameters defining the structure of neural net, along with parameters 
that define how the backpropagation process unfolds—primarily the learning rate (a measure of 
how quickly the weights are updated during training) and the number of epochs (the number of 
times that the training set is passed through the network during training)—are hyperparameters. 

Unfortunately, there are no rules for determining the best hyperparameters to choose for a given 
problem. Practitioners tend to view neural net modeling as an art, with a lot of trial and error 
involved. That said, the practice of cross-validation—where the training set is split into training 
                                                
7The standard logistic function takes the form g(x) = 1/(1 + exp(-x)). 
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and validation subsets and the prediction error is measured on the out-of-sample validation 
subset(s)—can add rigor to the process of selecting hyperparameters by assessing the predictive 
accuracy of various hyperparameter combinations. 

Refer to Nisbet et al (2009) and Abbott (2014) for further details on basic neural nets. 

3.2 ENTITY EMBEDDINGS  

Entity embeddings (EEs) are representations of discrete categories in higher-dimensional 
continuous (Euclidean) space, with similar categories being closer together. 

For example, in natural language processing, word embeddings map words to a continuous 
semantic space. If (say) three words are represented in three-dimensional space by the vectors 
(2.5, 2.0, 3.1), (2.5, 1.5, 3.0) and (10.0, 10.0, 3.0), respectively, then the conclusion is that the first 
two words are much more similar in semantic usage to one another than either is to the third 
word. Similarly, in a mortality context, if two attained ages, durations or risk classes (or 
combinations thereof) are placed closer in continuous mortality space, the corresponding cells 
would be expected to have more similar mortality rates than if they were further apart. 

The more complex the relationship between categories, typically the higher the dimensionality 
required for a suitable embedding space. 

Embedding tables map each unique category of the original variable to its higher-dimensional 
representation. Table 3 shows what the embedding table, or “lookup” table, may look like for 
smoker status. If the desire is to use a richer representation of smoker status, one could replace 
the single variable smoker_status, with the two variables ee_ss_1  and ee_ss_2.8 In this way, NS 
would be replaced by (0.429039, -0.35202), SM by (-0.62347, 0.019604), and UNI by (0.357066, 
0.332035), wherever they appeared in the input dataset. Nonlinear models—such as neural nets, 
k-nearest neighbors, and random forests—can often take advantage of the richer structure 
offered by entity embeddings. 

 

Table 3  
SAMPLE EMBEDDING TABLE FOR SMOKER STATUS 

smoker_status ee_ss_1 ee_ss_2 
NS 0.429039 -0.35202 

SM -0.62347 0.019604 

UNI 0.357066 0.332035 

3.3 ENTITY EMBEDDING NEURAL NETS  

Entity embedding neural nets (EENNs) combine the features of neural nets, as discussed in 
subsection 3.1, with the ability to learn the entity embedding representation for one or more 
input categorical variables. It is important to note that these types of neural nets are structurally 
different from standard neural nets, since they explicitly incorporate the embedding table (or 
comparable lookup process) for each designated discrete variable. Whereas a standard neural 
                                                
8 The name ee_ss_1 stands for “entity embedding–smoker status–component 1.” 
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net could leverage an input dataset that includes embeddings (for example, once that includes 
ee_ss_1 and ee_ss_2 in place of smoker_status), it cannot generate the embedding itself; that is, 
it cannot populate the values in Table 3, for example. If the practitioner wishes to develop an 
embedding representation, the individual may use entity embedding neural nets. 

Figure 3 shows a sample entity embedding neural net. This neural net is similar to the one 
depicted in Figure 2 but includes the machinery to look up the embedding for each original 
variable. One other difference is that in Figure 3, it is assumed that smoker status has three 
levels, matching its representation in Table 3. Attained age and duration are each assumed to 
have embeddings with five dimensions (i.e., five components), while smoker status is assumed to 
have an embedding with two dimensions. There is no benefit to modeling gender with an 
embedding since it has only two levels; consequently, we depict only its original input. 

 

Figure 3 
DIAGRAM OF A SAMPLE ENTITY EMBEDDING NEURAL NET  

 

The entity embeddings can be thought of as an additional layer of weights that sits between the 
input layer of categorical variables and the first hidden layer. Each input record is effectively 
mapped to its corresponding entity embedding representation (i.e., vector of weights), before 
moving on to the first hidden layer. The weights in the entity embedding layer (denoted by “EE 
lookup” in Figure 3) can be learned in the same way as those in the other layers—that is, via 
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backpropagation. Consequently, for the network depicted in Figure 3, the total number of 
trainable parameters is equal to the number of connections (28) plus the number of values in the 
EE lookup tables (again, assuming no bias terms). 

For further details on entity embeddings and EENNs, refer to Guo and Berkhahn (2016). 

3.4 VALUE OF ENTITY EMBEDDINGS 

Once an entity embedding neural net has been trained, the weights in the embedding layer can 
be extracted and reused as a powerful high-dimensional representation of the relationship 
between categories in related applications. In this way, and as discussed in further detail in this 
report, the author could (1) train an EENN to predict the mortality rates from a benchmark table, 
(2) extract the learned mortality embeddings representing the “architecture” of the table, and (3) 
reuse the learned architecture in applications expected to have comparable, though not identical, 
behavior. The ability to feed the learned architecture of the industry table into a new (standard) 
neural net and train that new neural net to calibrate this mortality architecture to a company’s 
specific experience is one promising application of this novel framework. 

3.5 DESIGN PRINCIPLES FOR EENNs 

As discussed previously, designing and training a neural net is as much an art as it is a science. 
However, given that the search space is potentially unlimited, the author opted to put in place 
some high-level principles from the outset to guide the design of EENNs for use in reverse 
engineering 2015 VBT. These principles were developed based on the intended application of the 
derived embeddings (i.e., portability), as well as rules of thumb published by other practitioners. 
The five design principles that the author ultimately implemented are documented in Table 2. 

TABLE 4  
EENN DESIGN PRINCIPLES 

Principle Description Rationale 
1 Push as much information (in this case, 

information about the architecture of 2015 
VBT) from the hidden layer(s) to the 

embeddings as possible. 

The embeddings are the components of the EENNs that the 
author is looking to extract and leverage in a predictive 

modeling context. The EENN itself is discarded once it has 
served its purpose. The richer the embeddings, the more 

valuable they are likely to be in a predictive modeling context. 
2 Set the dimensionality for each embedding 

equal to min(5, (c+1)/2), rounded down to 
the nearest integer if applicable, where c 

denotes the cardinality9 of the original 
underlying variable. Ensure that the total 
dimensionality of all embeddings is within 

one-tenth of the total cardinality of all 
original variables. 

The author wanted to restrict the dimensionality of the 
embeddings to a reasonable number based on (i) the 

cardinality of the original variables and (ii) the complexity of 
the modeling problem. Embeddings with too high a 

dimensionality will be inefficient, while embeddings with too 
low a dimensionality will be ineffective. The formula shown is 
based on a rule of thumb from Jeremy Howard,10 with a cap 
of five. The author chose a cap of five given the small size of 

the 2015 VBT dataset. 
                                                
9 The cardinality of a categorical variable is the number of its unique levels. For example, if a variable has levels 
(smoker, nonsmoker, unismoke), it has a cardinality of three. 
10 Jeremy Howard is a founding member of fast.ai. He discusses this rule-of-thumb at the 56:50 mark in this lecture: 
Howard, J. 2017. Lesson 4: Deep Learning 2018. YouTube, Dec. 30. https://www.youtube.com/watch?v=gbceqO8PpBg 
(accessed Aug. 6, 2019). 



   16 

 

 Copyright © 2019 Society of Actuaries 

3 Keep the total number of neural net weights 
to within one-fourth of the total number of 

training records. 

The author wanted the EENN to learn the architecture of the 
mortality table, not simply reproduce it. The intent of this 

principle is to force the EENN to learn generalizable 
characteristics. 

4 Structure each subsequent layer to have 
fewer weights than the layer prior. 

The author enforced a funnel structure on the EENN to 
encourage the backpropagation algorithm to transmit 

meaningful weight changes upstream, all the way back to the 
embeddings themselves. 

5 Restrict the number of hidden layers to a 
maximum of two. 

Two or fewer hidden layers normally suffice for structured 
data problems such as this. Very few problems outside of 
computer vision and complex time series analyses benefit 

from more than two hidden layers.11 
 

3.6 TRAINING ALGORITHM FOR EENNs 

This subsection describes the 12-step algorithm used to train the EENNs (and, in turn, the 
embeddings themselves) to model 2015 VBT to within 5% mean absolute percentage error 
(MAPE). 

1. Split dataset containing 9,174 records into training (in-sample) and validation (out-of-sample) 
sets; randomly assign 95% for training and 5% for validation. 
 
To help visualize this step, imagine the two-dimensional age and duration mortality tables for 
each of the six risk classes (MNS, MSM, MUNI, FNS, FSM, FUNI) being stacked one on top of 
another to form a three-dimensional lattice. It then creates holes in this training lattice by 
randomly moving 5% of records (cells) to a validation set. The training/validation process 
forces the model(s) to fill in these holes based on information learned from similar cells. 
 
The purpose of splitting data into training and validation sets was to help with the selection 
of reasonable hyperparameters, in the spirit of cross-validation. Note that the author used all 
data when determining the final embeddings, per Step 11. He used a high training-to-
validation ratio due to the limited size of the 2015 VBT dataset. 
 
The author takes the view that a mortality table is greater than the sum of its parts. Since the 
author was interested in learning the entire architecture of 2015 VBT across all ages, 
durations, and risk classes, he explicitly avoided weighting the training sets toward one part 
of the table versus another. 
 

2. Select initial EENN design hyperparameters based on the design principles from subsection 
3.5. 
 

                                                
11 For example, see Heaton, Jeff. 2017. The Number of Hidden Layers. Heaton Research, June 1, 
https://www.heatonresearch.com/2017/06/01/hidden-layers.html (accessed Aug. 6, 2019). 
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3. Define and train the EENN in Python Keras. Optimizer: Adam; batch size: 128; loss: mean 
absolute error (MAE);12 activation function for hidden layer(s): ReLU; activation function for 
output layer: Sigmoid/Logistic. 

 
4. Record validation MAPE and training MAPE on the original (not transformed) qx basis. 

 
5. Repeat Steps 1–4 with different random seeds for a total of five runs. 

 
6. Average validation MAPE across runs. 

 
7. Average training MAPE across runs. 

 
8. Iteratively adjust the learning rate, number of epochs, number of nodes in first hidden layer, 

and number of nodes in second hidden layer parameters, in line with the design principles, 
until the average validation MAPE is less than or equal to 5%. 

 
9. Fine-tune the EENN hyperparameters; see whether further material performance 

improvements are possible. 
 

10. Confirm that the average training MAPE ≤  average validation MAPE ≤  5%. 
 

11. Train the EENN with the selected hyperparameters on the entire dataset. 
 

12. Extract the embeddings. 

3.7 SELECTED EENNs AND HYPERPARAMETERS 

This section documents the parameterization and performance of three EENNs, selected on the 
basis of the design principles and training algorithm documented above. Each subsequent model 
represents an evolution of the preceding model. The author has elected to show all three models 
for two reasons: First, seeing the evolution of results is informative; second, the practitioner may 
prefer a simpler set of embeddings (say, from the first model) to a more complex set (say, from 
the third model). Furthermore, the author is not suggesting that the selected EENNs and their 
associated hyperparameters are necessarily optimal; he selected them because they aligned with 
his design principles, met the performance criteria outlined in the training algorithm, and were 
found to be effective for the intended application. Three sets of detailed embeddings were 
extracted from these three models. 

 

 

 

                                                
12 In this case, MAE was calculated on the transformed qx basis. 
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EENN Model 1 
ln(qx)’ = EENN(risk class, attained age, duration)13 
 

This model includes embeddings for the main effects risk class, attained age and duration. While 
its embedding space is the simplest of the three models, it requires more complex hidden layers 
to meet the out-of-sample performance criteria. 

Table 5 shows the selected EE dimensions for each variable in Model 1. Note that the total EE 
dimensionality (13) is less than one-tenth of the total cardinality of the original variables (153). 

TABLE 5  
SELECTED EE DIMENSIONS FOR EENN MODEL 1 

Variable Values Cardinality EE Dimension 
Risk Class FNS, FSM, .., MUNI 6 3 

Attained Age 0, 1, …, 120 121 5 
Duration 1, 2, …, 25, ULT 26 5 

TOTAL N/A 153 13 
 

Table 6 shows the selected structure for this model. The +1 in the number of weights calculation 
for the hidden and output layers represents a bias term. The number of EE weights (753) is 
calculated as the sum product of cardinality and EE dimension from Table 5. Note that the total 
number of weights (2,078) is less than one-quarter of the total number of data records (9,174). 
Thinking of the weights as encoding information, only 36% (753/2,078) of this network’s weight 
information is contained in the EE layer. 

 

TABLE 6  
SELECTED STRUCTURE FOR EENN MODEL 1 

Layer # Nodes # Weights 
EE 13 753 

Hidden 1 50 700 = (50)(13+1) 
Hidden 2 12 612 = (12)(50+1) 
Output 1 13 = (1)(12+1) 
TOTAL 76 2,078 

 

Table 7 shows the MAPE for Model 1 when run with various combinations learning rate, number 
of epochs and random seed. The row highlighted in green indicates the ultimately selected 
model. The selection of this variant was based on a combination of performance and stability 
across runs. Note that the average out-of-sample MAPE for Model 1 was 3.7%, well below the 5% 
threshold. 

 

 

                                                
13 Throughout this document, ln(qx)’ denotes ln(qx) transformed to [0, 1]. 
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TABLE 7 
MAPE FOR EENN MODEL 1 (SELECTED VARIANT HIGHLIGHTED IN GREEN) 

 

  MAPE on Validation (Out-of-Sample) Set MAPE on Training (In-Sample) Set 

LR # 
Epochs 

Seed: 
123 

Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG Seed: 

123 
Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG 

0.0001 5,000 4.7% 3.3% 3.3% 3.6% 3.6% 3.7% 4.3% 2.6% 3.0% 3.2% 2.9% 3.2% 
0.001 500 3.9% 3.2% 3.7% 6.0% 3.9% 4.1% 3.8% 2.9% 3.1% 5.7% 3.8% 3.9% 
0.01 100 4.6% 4.3% 4.7% 5.8% 5.3% 4.9% 4.3% 3.8% 4.3% 5.5% 5.2% 4.6% 

 

EENN Model 2 
ln(qx)’ = EENN(risk class, attained age, duration, grouped attained age x grouped duration) 
 

Model 2 includes embeddings for the main effects risk class, attained age and duration, as well as 
for the interaction effect grouped attained age x grouped duration. It effectively takes Model 1 
and adds an age-duration interaction term. 

Table 8 shows the selected EE dimensions for each variable in Model 2. Note that the total EE 
dimensionality (18) is once again less than one-tenth of the total cardinality of the original 
variables (252). 

 

TABLE 8 
SELECTED EE DIMENSIONS FOR EENN MODEL 2 

Variable Values Cardinality EE Dimension 
Risk Class FNS, FSM, .., MUNI 6 3 

Attained Age 0, 1, …, 120 121 5 
Duration 1, 2, …, 25, Ult 26 5 

Grouped Attained Age x 
Grouped Duration 

0-4xUlt, …, 35-39x1-5, 
35-39x6-10, …, 115-120xUlt 

99 5 

TOTAL N/A 252 18 
 

Table 9 shows the selected structure for this model. Relative to Model 1, note that this model 
carries significantly more weight information in its EE layer (67% = 1,248/1,849 vs 36%). The total 
number of weights (1,849) remains below one-quarter of the total number of data records 
(9,174). 
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TABLE 9  
SELECTED STRUCTURE FOR EENN MODEL 2 

Layer # Nodes # Weights 
EE 18 1,248 
Hidden 1 20 380 = (20)(18+1) 
Hidden 2 10 210 = (10)(20+1) 
Output 1 11 = (1)(10+1) 

   TOTAL 49 1,849 
 

Table 10 shows the MAPE for Model 2 when run with various combinations learning rate, number 
of epochs and random seed. The row highlighted in green indicates the ultimately selected 
model. The selection of this variant was based on a combination of performance and stability 
across runs. Note that the average out-of-sample MAPE for Model 2 was 3.3%, well below the 5% 
threshold. 

 

TABLE 10 
MAPE FOR EENN MODEL 2 (SELECTED VARIANT HIGHLIGHTED IN GREEN)  

 

  MAPE on Validation (Out-of-Sample) Set MAPE on Training (In-Sample) Set 

LR # 
Epochs 

Seed: 
123 

Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG Seed: 

123 
Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG 

0.0001 5,000 2.7% 3.6% 3.0% 4.7% 4.0% 3.6% 2.5% 3.2% 2.4% 3.9% 3.9% 3.2% 
0.001 700 3.1% 3.5% 3.4% 3.2% 3.1% 3.3% 2.8% 3.0% 3.0% 2.8% 2.8% 2.9% 
0.01 400 2.9% 3.6% 3.1% 3.7% 5.8% 3.8% 2.7% 3.1% 2.8% 3.4% 5.5% 3.5% 

 

EENN Model 3 
ln(qx)’ = EENN(smoker status, attained age, gender x duration, grouped attained age x grouped 
duration) 

Model 3 leverages embeddings for the main effects of smoker status and attained age, as well as 
for the interaction effects gender x duration and grouped attained age x grouped duration. It 
effectively takes Model 2 and splits duration by gender. The allowance for different select periods 
by gender is consistent with the structure of 2015 VBT. 

Table 11 shows the selected EE dimensions for each variable in Model 3. Note that the total EE 
dimensionality (17) remains less than one-tenth of the total cardinality of the original variables 
(270). 
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TABLE 11  
SELECTED EE DIMENSIONS FOR EENN MODEL 3 

Variable Values Cardinality EE Dimension 
Smoker Status NS, SM, UNI 3 2 
Attained Age 0, 1, …, 120 121 5 

Gender x Duration M1, M2, …, M25, MULT, F1, 
F2, …, F20, FULT 

47 5 

Grouped Attained Age x 
Grouped Duration 

0-4xUlt, …, 35-39x1-5, 35-
39x6-10, …, 115-120xUlt 

99 5 

TOTAL N/A 270 17 
 

Table 12 shows the selected structure for Model 3. This model carries 82% (1,341/1,628) of its 
weight information in its EE layer, versus 67% for Model 2 and 36% for Model 1. These ratios 
suggest that the embeddings from Model 3 carry the most information about the architecture of 
2015 VBT. The total number of weights (1,628) is well below one-quarter of the total number of 
data records (9,174). 

 

TABLE 12  
SELECTED STRUCTURE FOR EENN MODEL 3 

Layer # Nodes # Weights 
EE 17 1,341 

Hidden 1 12 216 = (12)(17+1) 
Hidden 2 5 65 = (5)(12+1) 
Output 1 6 = (1)(5+1) 
TOTAL 35 1,628 

 

Table 13 shows the MAPE for Model 3 when run with various combinations learning rate, number 
of epochs and random seed. The row highlighted in green indicates the ultimately selected 
model. As with Model 1 and Model 2, the selection of this variant was based on a combination of 
performance and stability across runs. Note that the average out-of-sample MAPE for Model 3 
was 3.6%, well below the 5% threshold. 

 

TABLE 13 
MAPE FOR EENN MODEL 3 (SELECTED VARIANT HIGHLIGHTED IN GREEN) 

 

  MAPE on Validation (Out-of-Sample) Set MAPE on Training (In-Sample) Set 

LR # 
Epochs 

Seed: 
123 

Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG Seed: 

123 
Seed: 
999 

Seed: 
16416 

Seed: 
97625 

Seed: 
742354 AVG 

0.0001 10,000 5.0% 4.1% 3.7% 3.7% 3.1% 3.9% 4.3% 3.2% 3.1% 2.9% 2.6% 3.2% 
0.001 2,000 3.4% 3.8% 3.5% 4.1% 3.3% 3.6% 3.1% 3.1% 2.9% 3.6% 2.9% 3.1% 
0.01 600 3.6% 3.5% 4.5% 3.3% 4.9% 4.0% 3.4% 3.1% 3.9% 3.2% 4.3% 3.6% 
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Embedding Dictionaries 

The embedding tables associated with EENN Model 1 and EENN Model 3 have been saved to two 
separate embedding dictionaries (Excel workbooks) that accompany this report. These 
embeddings are called the “detailed embeddings.” See Appendix A for further details.  



   23 

 

 Copyright © 2019 Society of Actuaries 

Section 4: Visualization and Assessment of Extracted Features  
Once the author selected and trained EENNs and extracted their embeddings, he proceeded to 
visualize the embeddings and assess their reasonableness. A key reason for visualizing the 
mortality embeddings was to ensure that they had internally consistent behavior; that is, to 
ensure that cells with more similar mortality characteristics were closer together in the 
embedding space. Internal consistency improved the likelihood that the mortality embeddings 
would be portable to similar, though not identical, nonlinear predictive modeling problems. 

Since it can be difficult to visualize objects in dimensions higher than two, the author used two 
different dimension-reduction techniques to help visualize the high-dimensional embeddings in 
low-dimensional space. The first technique, t-Distributed Stochastic Neighbor Embedding (t-SNE), 
discussed in van der Maaten and Hinton (2008), is a nonlinear technique that uses probabilistic 
similarity to keep the low-dimensional representation of similar datapoints close together. The 
second technique, PCA, further discussed in Abbott (2014), is a linear technique that keeps the 
low-dimensional representation of dissimilar datapoints far apart. Within the PCA toolkit, the 
author focused primarily on the PC1 score—that is, the result of projecting a given embedding 
onto its first principal component. 

The visualizations for the embeddings extracted from each of the aforementioned EENNs are 
now presented in turn. 

4.1 VISUALIZATION OF EMBEDDINGS FROM EENN MODEL 1 

 

EENN Model 1  
ln(qx)’ = EENN(risk class, attained age, duration) 

 

Risk Class Embedding 

Figure 4 shows the t-SNE plot for risk class. We see that gender is clearly separated, UNI is more 
similar (closer) to NS than to SM, and MNS/FNS is more similar than MSM/FSM. These 
relationships are consistent with those in 2015 VBT. 

 

 

 

 

 

 

 

 

 

 



   24 

 

 Copyright © 2019 Society of Actuaries 

Figure 4 
T-SNE PLOT FOR RISK CLASS EMBEDDING DERIVED FROM EENN MODEL 1 

 

 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 53%; PC2: 35%. Since the first principal component explains less than 75% of total 
variation, the author  elected not to show a visualization of the PC1 score, because it paints an 
incomplete picture. 

Attained Age Embedding 

Figure 5 shows the t-SNE plot for attained age. The points for juveniles (in green) display irregular 
behavior, whereas the points for core ages (in red) and older ages (in blue) display more regular 
and well-ordered behavior. Interestingly, the embedding has identified the rates for ages 112 and 
up (omega rates) as being different enough that it has separated them into their own cluster. 
These relationships are consistent with those in 2015 VBT. 
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Figure 5 
T-SNE PLOT FOR ATTAINED AGE EMBEDDING DERIVED FROM EENN MODEL 1 GREEN: JUVENILE (0-17); 
RED: CORE (18-59); BLUE: OLDER AGES (60-PLUS) 

 

 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 97%; PC2: 2%. Figure 6 shows a plot of the PC1 score. Note that the behavior 
represented in this plot is similar to that noted above (i.e., irregular juvenile behavior; more 
regular and well-ordered behavior for core ages and older ages). 
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Figure 6 
PLOT OF PC1 SCORE FOR ATTAINED AGE EMBEDDING DERIVED FROM EENN MODEL 1 

 

Duration Embedding 

Figure 7 shows the t-SNE plot for duration. All points are well-ordered. Note that the point 
labeled “ULT” represents the end of the average select period (across genders, ages, etc.). 

 

Figure 7 
T-SNE PLOT FOR DURATION EMBEDDING DERIVED FROM EENN MODEL 1 

 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 43%; PC2: 30%. Since the first principal component explains less than 75% of total 
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variation, the author elected not to show a visualization of the PC1 score, because it paints an 
incomplete picture. 

4.2 VISUALIZATION OF EMBEDDINGS FROM EENN MODEL 2 

 

EENN Model 2 
ln(qx)’ = EENN(risk class, attained age, duration, grouped attained age x grouped duration) 

 

EENN Model 2 has an interaction component in its embedding layer (grouped attained age x 
grouped duration). The presence of this interaction alters the interpretation of the remaining 
embeddings. As such, the author presented the visualization(s) for the interaction embedding 
ahead of those for the main effect embeddings. 

It may be helpful to think of the interaction embedding as identifying an appropriate mortality 
neighborhood for an arbitrary individual of a particular attained age and policy duration. The 
main effect embeddings then adjust the location for that individual’s specific risk class, attained 
age, etc. 

 
Grouped Attained Age x Grouped Duration Embedding 

Table 14 shows the PC1 score organized by attained age and duration. Note that the PC1 score is 
generally well-ordered, in that it typically increases with attained age and duration, consistent 
with 2015 VBT. The percentage of variation explained by each of the first two principal 
components was as follows: PC1: 92%; PC2: 4%. 
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TABLE 14  
PC1 SCORE FOR INTERACTION EMBEDDING DERIVED FROM EENN MODEL 2 

 

 Duration      
Att. Age 1–5 6–10 11–15 16–20 21–25 Ult 
0–4           −1.91 
5–9           −2.24 
10–14           −1.96 
15–19 −0.89         −1.30 
20–24 −0.90 −0.78       −0.37 
25–29 −0.81 −0.60 −0.53     −0.79 
30–34 −0.72 −0.61 −0.62 −0.62   −1.06 
35–39 −0.46 −0.52 −0.46 −0.49 −0.44 −0.50 
40–44 −0.38 −0.36 −0.37 −0.38 −0.44 −0.43 
45–49 −0.46 −0.25 −0.24 −0.22 −0.23 −0.26 
50–54 −0.28 −0.23 −0.14 −0.09 −0.06 −0.12 
55–59 −0.19 −0.13 −0.07 −0.02 −0.07 −0.09 
60–64 −0.17 −0.05 0.01 0.07 0.04 0.08 
65–69 −0.09 0.07 0.17 0.18 0.21 0.16 
70–74 0.12 0.11 0.22 0.23 0.31 0.22 
75–79 0.21 0.31 0.33 0.37 0.43 0.42 
80–84 0.35 0.43 0.47 0.49 0.54 0.51 
85–89 0.35 0.60 0.55 0.62 0.74 0.64 
90–94 0.74 0.85 0.90 0.96 1.04 0.99 
95–99 1.02 0.93 0.99 1.10 1.20 1.20 
100–104           2.08 
105–109           2.89 
110–114           4.99 
115–120           9.83 

 

 

The author elected not to show the t-SNE plot for this interaction embedding because it is too 
complex to interpret. 
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Risk Class Embedding 

Figure 8 shows the t-SNE plot for risk class. As in the previous model, gender is clearly separated, 
UNI is more similar (closer) to NS than to SM, and MNS/FNS is more similar than MSM/FSM. 
These relationships are consistent with those in 2015 VBT. 

 

Figure 8 
T-SNE PLOT FOR RISK CLASS EMBEDDING DERIVED FROM EENN MODEL 2 

 

 
The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 63%; PC2: 28%. Since the first principal component explains less than 75% of total 
variation, the author elected not to show a visualization of the PC1 score, because it paints an 
incomplete picture. 
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Attained Age Embedding 

Figure 9 shows the t-SNE plot for attained age. Note the irregular juvenile behavior, clustering of 
similar ages within the core and older age groups (for example, 45–49, 65–69 and 112–120), and 
separation between the core ages and the older ages. 

 

Figure 9  
T-SNE PLOT FOR ATTAINED AGE EMBEDDING DERIVED FROM EENN MODEL 2 GREEN: JUVENILE (0-17); 
RED: CORE (18-59); BLUE: OLDER AGES (60-PLUS) 

 

 
The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 86%; PC2: 9%. Figure 10 shows a plot of the PC1 score. The saw-tooth pattern 
represents the embedding resetting every five years to account for the impact of the interaction 
embedding jumping from one quinquennial age bucket to the next. The saw-tooth pattern aside,  
note that the PC1 score displays a general upward trend for ages 18-plus.  
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Figure 10 
PLOT OF PC1 SCORE FOR ATTAINED AGE EMBEDDING DERIVED FROM EENN MODEL 2 

 

Duration Embedding 

Figure 11 shows the t-SNE plot for duration. There is evidence of clustering by quinquennial 
duration buckets. Note that the point labeled “Ult” represents the end of the average select 
period (across genders, ages, etc.). 

 

Figure 11 
T-SNE PLOT FOR DURATION EMBEDDING DERIVED FROM EENN MODEL 2 

 

 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 56%; PC2: 20%. Since the first principal component explains less than 75% of total 
variation, the author elected not to show a visualization of the PC1 score, because it paints an 
incomplete picture. 
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4.3 VISUALIZATION OF EMBEDDINGS FROM EENN MODEL 3 

EENN Model 3 
ln(qx)’ = EENN(smoker status, attained age, gender x duration, grouped attained age x grouped 
duration) 

EENN Model 3 has two interaction components in its embedding layer: grouped attained age x 
grouped duration, and gender x duration. The presence of the first interaction alters the 
interpretation of the main effect embeddings for attained age and duration. As such, we present 
the visualization(s) for the first interaction embedding ahead of the others. 

 
Grouped Attained Age x Grouped Duration Embedding 

Table 15 shows the PC1 score organized by attained age and duration. Note that the PC1 score is 
generally well-ordered, in that it typically increases with attained age and duration, consistent 
with 2015 VBT. The percentage of variation explained by each of the first two principal 
components was as follows: PC1: 91%; PC2: 6%. 

 

TABLE 15  
PC1 SCORE FOR AGE-DURATION INTERACTION EMBEDDING DERIVED FROM EENN MODEL 3 

 Duration      
Att. Age 1–5 6–10 11–15 16–20 21–25 Ult 
0–4           −2.40 
5–9           −3.60 
10–14           −3.77 
15–19 −1.96         −1.38 
20–24 −2.09 −1.49       −0.66 
25–29 −1.29 −1.14 −1.21     −0.46 
30–34 −1.04 −1.00 −1.09 −1.19   −0.74 
35–39 −0.88 −0.86 −0.81 −0.88 −0.61 −1.11 
40–44 −0.70 −0.67 −0.56 −0.65 −0.42 −0.96 
45–49 −0.72 −0.42 −0.41 −0.42 −0.47 −0.79 
50–54 −0.58 −0.39 −0.36 −0.38 −0.33 −0.48 
55–59 −0.45 −0.19 −0.19 −0.20 −0.18 −0.13 
60–64 −0.27 −0.10 −0.02 −0.03 0.02 −0.05 
65–69 −0.12 0.18 0.25 0.23 0.30 0.22 
70–74 0.01 0.29 0.41 0.44 0.50 0.44 
75–79 0.12 0.33 0.47 0.55 0.65 0.57 
80–84 0.33 0.63 0.90 0.87 0.98 0.90 
85–89 0.56 0.82 1.14 1.11 1.27 1.17 
90–94 0.94 1.30 1.56 1.49 1.65 1.57 
95–99 1.61 1.71 1.63 1.56 1.69 1.65 
100–104           2.69 
105–109           3.67 
110–114           6.21 
115–120           14.07 

 

 

G
enerally increasing w

ith age 

Generally increasing with duration 



   33 

 

 Copyright © 2019 Society of Actuaries 

The author elected not to show the t-SNE plot for this interaction embedding, because it is too 
complex to interpret. 

Smoker Status Embedding 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 75%; PC2: 25%. Table 16 contains the PC1 score for each of the three smoker 
statuses. Note that NS < UNI < SM, and that UNI is much closer to NS than it is to SM. These 
relationships are consistent with 2015 VBT. 

 

TABLE 16 
PC1 SCORE FOR SMOKER STATUS EMBEDDING DERIVED FROM EENN MODEL 3 

NS −0.46 
UNI −0.32 
SM 0.62 

 

The author elected not to show the t-SNE plot, because it is uninformative with only three points. 

 
Attained Age Embedding 

The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 85%; PC2: 9%. Figure 12 shows a plot of the PC1 score. The saw-tooth pattern 
represents the embedding resetting every five years to account for the impact of the age-
duration interaction embedding jumping from one quinquennial age bucket to the next. The saw-
tooth pattern aside, note how the PC1 score displays a general upward trend for ages 18-plus.  

 

Figure 12  
PLOT OF PC1 SCORE FOR ATTAINED AGE EMBEDDING DERIVED FROM EENN MODEL 3 

 

The author elected not to show the t-SNE plot for this embedding, because it is overly complex. 
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Gender x Duration Embedding 

Figure 13 shows the t-SNE plot for gender x duration. There is evidence of clustering by 
quinquennial duration buckets and clear separation of males (in blue) and females (in red). Note 
that the points labeled “Ult” represent the end of the “average” select period (i.e., across ages) 
within each respective gender. 

 

Figure 13 
T-SNE PLOT FOR GENDER-DURATION INTERACTION EMBEDDING DERIVED FROM EENN MODEL 3 
BLUE: MALES; RED: FEMALES 

 

 
The percentage of variation explained by each of the first two principal components was as 
follows: PC1: 52%; PC2: 22%. Since the first principal component explains less than 75% of total 
variation, the author has elected not to show a visualization of the PC1 score, because it paints an 
incomplete picture. 
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4.4 CONSTRUCTION OF SIMPLIFIED EMBEDDINGS 

A secondary use of the PCA toolkit was to generate simplified (i.e., dimensionally reduced) 
embeddings from the detailed embeddings. The author wanted to generate simplified 
embeddings because they may be more efficient in certain applications and/or predictive 
modeling environments. 

The process used to construct the simplified embeddings was as follows: 

• Where the percentage of variation explained by the first principal component was 75% or 
higher, the author used the PC1 score alone to represent the simplified version of the 
given embedding. 

• Where the percentage of variation explained by the first principal component was less 
than 75%, the author used both the PC1 and PC2 Scores to represent the simplified 
version of the given embedding. 
 

Table 17 summarizes the differences in dimensionality between the detailed and simplified 
embeddings.  

 
TABLE 17  
COMPARISON OF DIMENSIONALITY FOR DETAILED AND SIMPLIFIED EMBEDDINGS 

EENN  
Model Embedding 

Detailed EE 
Dimensionality 

Simplified EE 
Dimensionality 

1 Risk Class 3 2 
Attained Age 5 1 

Duration 5 2 
2 Risk Class 3 2 

Attained Age 5 1 
Duration 5 2 

Grouped Attained Age x 
Grouped Duration 

5 1 

3 Smoker Status 2 1 
Attained Age 5 1 

Gender x Duration 5 2 
Grouped Attained Age x 

Grouped Duration 
5 1 

 

The author has saved the simplified embedding tables associated with EENN Model 1 and EENN 
Model 3 to two separate embedding dictionaries (Excel workbooks) that accompany this paper. 
See Appendix A for further details. 
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Section 5: Illustrative Case Study 
In this section, the author presents an illustrative case study designed to demonstrate the value 
of the previously derived mortality embeddings. This case study is not intended to represent a 
formal experience study or rigorous table development initiative; rather, it is intended to 
illustrate the following features of the previously derived embeddings when calibrated to 
experience within a neural net environment: 

• Strong fit across the full spectrum of ages and durations; and 
• The ability to reflect generally accepted mortality relationships. 

These features imply that one potential application of this framework is in the initial calibration of 
an industry mortality table to a company’s own experience. It is the initial calibration, because 
steps like smoothing, calibrating the very ends of the table to industry experience and best 
practice, and monotonicity adjustments may still be required. Various factors, including the 
volume and coverage of training data, as well as the intended application of the output, will 
determine the extent to which these additional processing steps are required. 

At a high level, this case study leverages U.S. insured mortality experience collected by the SOA’s 
Individual Life Experience Committee (ILEC) for 2009–2015 and “sparsifies” these data to better 
reflect the gaps that a company may have in its own experience data. The author then 
benchmarked the out-of-sample results from neural nets fitted with the 2015 VBT mortality 
embeddings to comparable results from other documented models. Finally, the author projected 
the entire mortality table from the top-performing neural net model with embeddings for two 
risk classes (MNS and FNS) to demonstrate the framework’s ability—within the limits of the 
training data—to reflect generally accepted mortality relationships. 

For the purposes of this case study, the author considered the following four embedding sets: 

• Detailed embeddings derived from EENN Model 1 (detailed main effect embeddings). 
• Detailed embeddings derived from EENN Model 3 (detailed main and interaction effect 

embeddings). 
• Simplified embeddings derived from EENN Model 1 (simplified main effect embeddings). 
• Simplified embeddings derived from EENN Model 3 (simplified main and interaction 

effect embeddings). 

5.1 CASE STUDY SPECIFICATIONS 

The specifications for the illustrative case study were as follows: 

• Data: ILEC 2009–2015 dataset.14  
 

• Data Filters: Exclude (i) post-level term business, (ii) records from companies contributing 
in fewer than five of seven years, and (iii) business with issue ages above 95. 
 

                                                
14 Society of Actuaries. 2018. 2009–2015 Individual Life Insurance Mortality Experience Report & Supporting Files. Society of Actuaries, 
https://www.soa.org/resources/research-reports/2019/2009-2015-individual-life-mortality (accessed on Aug. 5, 2019). 
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• Training/Test: Place first four years in training and last three years in test (held out for 
final testing). 
 

• Mortality Basis: By count. 
 

• Age Basis: Age nearest (Note: For the purposes of this case study, the author combined 
both age nearest and age last experience without adjustment and treated the combined 
result as being on an age nearest basis). 
 

• Select Period Basis: As defined by 2015 VBT. 
 

• Mortality Improvement: Not explicitly modeled. 
 

• Smoker Status Adjustments: The reported smoker status was only considered reliable for 
records with (i) issue year from 1980 onward and (ii) issue ages 18-plus; in all other cases, 
the smoker status was assumed to be UNI (unknown). 
 

• Performance Metrics: A/E and weighted MAPE at a suitably aggregated level.15 
 

• Calibration Framework: Neural nets.16 
 
The principles the author used to select the neural net hyperparameters for use within the case 
study are as follows: 

• Instead of using cross-validation, the author leveraged all available insight from the 
EENNs parameterized in Section 3. Those EENNs were set up for a similar type of 
problem (insured mortality modeling). 

• The author structured the neural nets to be less complex (i.e., have fewer hidden nodes) 
than their closest analog in Section 3. The author wanted relatively constrained models 
to ensure that they leveraged the architecture encoded in the embeddings. 

• The author kept the total number of trainable parameters (weights) in the neural nets to 
fewer than one-quarter the number of training records. That principle is analogous to 
EENN Design Principle 3 in subsection 3.5. 

 

Details on the selected hyperparameters can be found in Appendix B. Note that these 
hyperparameters were selected for illustrative purposes only and, as such, have not been 
optimized. 

                                                
15 See the tables in Appendix C for an example of the level of aggregation; all weightings are by exposure count. 
16 In this case study, the author calibrated the mortality embeddings to actual experience using neural nets. Other 
nonlinear possibilities would have included k-nearest neighbor regression, gradient boosted regression trees, and 
random forest regression. The use of these alternative nonlinear models for calibration is a possible area for further 
research. The author did not find the embeddings to be effective in logistic regression models and suspected that the 
same would be true for other linear predictive models. 
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For the purposes of benchmarking fit, the author selected two main effects logistic regression 
models, as well as a neural net trained on the set of traditional features alone. The selection of 
the two main effects logistic regression models was based on the published work of Zhu et al. 
(2015). In their paper, they write: “The [main effects] models may be enhanced with various 
techniques such as adding interactions or applying variable transformations. However, our tests 
reveal that only minimal model performance improvement would be achieved for our [insured 
mortality] study data.” On the basis of their detailed work with main effects logistic regression for 
insured mortality and the above commentary, the author decided to include logistic regression 
models parameterized exclusively with main effects for illustrative benchmarking purposes. 

5.2 CASE STUDY DATA SUMMARY 

This subsection provides more detail on the case study data itself, including the changes in the 
data as a result of the filters applied and the nature of the final training and test sets. Note that, 
unlike in a formal experience study, the author has used these data without detailed review and 
validation. 

Table 18 shows the impact of the data exclusions on record count, death count and exposure 
count. In total, the data filters resulted in 62,154 (1.8%) death count exclusions and 10,857,483 
(3.1%) exposure count exclusions. 

 

TABLE 18  
DATA EXCLUSIONS 

Step Description Observed 
Change in 

Record 
Count 

Record 
Count at 
Step End 

Observed 
Change in 

Death 
Count 

Death 
Count at 
Step End 

Observed 
Change in 
Exposure 

Count 

Exposure 
Count at 
Step End 

1 Import ILEC 
2009–2015 
dataset (7 
calendar 

years) 

30,631,099 30,631,099 3,443,319 3,443,319 352,500,854 352,500,854 

2 Remove 
post-level 

term 
business 

−1,929,331 28,701,768 −35,227 3,408,092 -6,940,009 345,560,845 

3 Remove 
records 

from 
companies 

contributing 
in fewer 

than five of 
seven years 

−2,158,112 26,543,656 -26,735 3,381,357 -3,916,950 341,643,895 

4 Remove 
records with 

issue age 
above 95 

−415 26,543,241 −192 3,381,165 −524 341,643,371 
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Table 19 shows the characteristics of the training and test sets, after all data exclusions but prior 
to sparsification. 

 

TABLE 19  
CHARACTERISTICS OF TRAINING AND TEST SETS PRIOR TO SPARSIFICATION 

Dataset 

Number 
of 

Mortality 
Cells 

Death 
Count 

Exposure 
Count 

Training 9,024 1,741,402 174,287,796.1 
Test 9,037 1,639,763 167,355,574.5 
Total N/A 3,381,165 341,643,371 

 

Table 20 shows the characteristics of the training and test sets following sparsification. For the 
purposes of this case study, the author sparsified the training set by deleting cells with fewer than 
25 deaths. The intent of sparsification was to simulate the holes that an individual company may 
have in its own experience data. The author reasoned that by removing cells found to have 
limited credibility within the industry dataset designated for training, he could more realistically 
simulate the holes likely to be present in a typical company’s experience. The other significant 
benefit of using a sparsified training set was that it enabled the author to get a more realistic 
picture of each model’s true out-of-sample performance, by forcing the model to predict 
mortality rates for previously unseen mortality cells. This latter ability is key to mortality table 
modeling. 

 

TABLE 20  
CHARACTERISTICS OF TRAINING AND TEST SETS AFTER SPARSIFICATION 

Dataset 

Number 
of 

Mortality 
Cells 

Death 
Count 

Exposure 
Count 

Training 3,674 1,704,519 147,426,516.3 
Test 9,037 1,639,763 167,355,574.5 
Total N/A 3,344,282 314,782,091 

 

5.3 CASE STUDY RESULTS FOR FIT 

In this subsection, the author begins by presenting a summary of the overall out-of-sample 
performance, based on weighted MAPE, for each of the models under consideration. Recall that 
weighted MAPE is calculated at a grouped cell level and weighted by exposure count. The author 
then detailed A/E results for the top-performing neural net with mortality embeddings, as well as 
for the top -performing main effects logistic regression model. 
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Weighted MAPE 

Table 21 presents a summary of the out-of-sample (test set) performance for each of the seven 
models in scope for the case study. Models A through C represent benchmark models, while 
Models D through G represent models with embeddings. All models were trained on the 
sparsified training set, with Models C through G using exposure count as their training sample 
weights. The author calculated the weighted MAPE metric for each model on the complete test 
set. 

 

TABLE 21  
ILLUSTRATIVE OUT-OF-SAMPLE WEIGHTED MAPE RESULTS 

Model 
ID 

Description Weighted 
MAPE 

A Logistic regression with traditional features, main effects, 
full model 

23.3% 

B Logistic regression with traditional features, main effects, 
subset models 

24.4% 

C Neural net with traditional features, main effects 12.1% 

D Neural net with detailed main effect embeddings 7.2% 

E Neural net with detailed main and interaction effect 
embeddings 

6.5% 

F Neural net with simplified main effect embeddings 8.1% 

G Neural net with simplified main and interaction effect 
embeddings 

11.1% 

 

Based on the results in Table 21, the author made the following observations: 

• Models D through G performed better than benchmark Models A through C, confirming 
the effectiveness of embeddings (i.e., by leveraging the structure from an industry table, 
the predictive accuracy was improved relative to predictive models with traditional 
features). 

• Model E performed the best overall. Detailed A/E results for Model E are presented 
below. 

• Of the main effects logistic regression models, Model A performed the best. Detailed A/E 
results for Model A are presented below. 

• Model F performed similarly to Model D, suggesting that the detailed set of main effect 
embeddings may be overspecified (i.e., have unnecessary dimensions). 

• Model G performed worse than Model E, suggesting that the simplified set of main and 
interaction effect embeddings may be missing key information present in the detailed 
set. 
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In addition to the results in Table 21, the author estimated the MAPE of 2015 VBT on the test set 
to be approximately 13%. The VBT results serve as another point of validation and act as an 
objective benchmark against which the calibrated results (Models D–G) can be judged. 

Since the results for Models D–G were lower than this 13% baseline, the author was able to 
confirm that calibration of the embedding architecture to the case study data had indeed taken 
place. Had the embeddings or their implementation been ineffective, the author would have 
expected to see performance results no better than 2015 VBT, on which the embeddings 
themselves are based.17 

A/E Results for Model A 

Table 22 shows the select period A/Es for Model A, the main effects logistic regression model 
fitted with all four traditional features. Note the challenged fit throughout the table; only 11 
grouped cells (highlighted in green) have an absolute error under 10%.  

  

                                                
17 Note that the calibration process had to bridge differences in age basis, count vs. amount basis, and time period, 
among others. These differences exist between the data used to develop 2015 VBT (and hence the embeddings) and 
the data used in the case study. 
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TABLE 22  
SELECT PERIOD A/ES (BY COUNT) FOR MODEL A (GROUPED CELLS WITH AN ABSOLUTE ERROR UNDER 10% 
HIGHLIGHTED IN GREEN) 

  Duration 

Risk Class Issue Age 1–5 6–10 11–15 16–20 21–25 All 

MNS 18–39 178.8% 119.3% 97.5% 99.6% 88.0% 101.0% 
  40–59 88.8% 83.6% 80.9% 85.0% 87.0% 84.8% 
  60+ 84.8% 99.9% 112.4% 121.1% 116.3% 103.8% 
  All 93.6% 93.6% 92.6% 95.8% 87.8% 92.4% 

MSM 18–39 242.4% 145.6% 133.7% 128.2% 108.5% 125.6% 
  40–59 130.8% 127.6% 125.2% 116.9% 101.8% 113.6% 
  60+ 132.0% 131.8% 115.7% 104.1% 103.0% 118.4% 
  All 145.8% 131.2% 124.3% 116.7% 103.7% 117.0% 

MUNI 18–39 1269.9% 717.9% 332.2% 350.4% 232.5% 296.1% 
  40–59 382.0% 385.3% 299.6% 253.4% 152.9% 201.0% 
  60+ 197.8% 273.5% 196.4% 147.1% 121.2% 154.8% 
  All 333.2% 309.1% 229.4% 185.5% 144.6% 180.4% 

FNS 18–39 132.4% 113.3% 100.6% 103.9%   107.7% 
  40–59 85.2% 86.0% 81.6% 82.2%   83.3% 
  60+ 79.2% 103.9% 115.1% 104.4%   100.9% 
  All 85.7% 97.3% 96.8% 90.6%   93.4% 

FSM 18–39 175.2% 157.7% 132.1% 119.8%   131.9% 
  40–59 138.5% 131.2% 125.4% 117.2%   123.7% 
  60+ 125.8% 131.3% 120.8% 113.2%   122.3% 
  All 136.0% 133.8% 124.6% 116.9%   124.4% 

FUNI 18–39 455.2% 450.7% 240.8% 321.8%   316.3% 
  40–59 201.4% 357.2% 281.6% 198.5%   229.9% 
  60+ 161.8% 223.2% 168.7% 134.8%   152.0% 
  All 194.2% 241.9% 184.5% 146.6%   165.5% 
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Table 23 shows the ultimate period A/Es for Model A. While perhaps better overall than the 
results for the select period, these ultimate period results show a pronounced curvature (higher 
A/Es at the ends). 
 

TABLE 23  
ULTIMATE PERIOD A/ES (BY COUNT) FOR MODEL A (GROUPED CELLS WITH AN ABSOLUTE ERROR UNDER 
10% HIGHLIGHTED IN GREEN) 

 

 Attained Age 

Risk Class 0–17 18–29 30–39 40–49 50–59 60–69 70–79 80–89 90+ All 

MNS       144.3 97.2% 91.8% 101.3% 124.2% 139.0% 113.3% 

MSM       127.7% 119.0% 100.5% 98.3% 92.5% 76.8% 96.9% 

MUNI 351.8% 532.0% 273.9% 176.8% 127.9% 92.1% 89.4% 101.2% 107.2% 101.1% 

FNS     164.2% 107.0% 82.7% 75.1% 83.8% 111.2% 138.6% 101.9% 

FSM     100.8% 109.7% 98.5% 94.3% 97.5% 88.2% 81.5% 91.9% 

FUNI 286.4% 253.5% 175.3% 138.9% 102.4% 80.3% 86.7% 101.1% 112.4% 100.3% 

All 323.0% 411.8% 231.8% 147.4% 107.0% 88.0% 90.1% 103.5% 111.8% 101.6% 
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A/E Results for Model E 

This section presents analogous A/E results for Model E, the neural net fitted with the detailed 
set of main and interaction effect embeddings. In Tables 24 and 25, note not only the significantly 
improved relative fit over Model A but also the strong absolute fit. Recall that this model (as well 
as the others) was trained on data from only 3,674 cells from one time period and subsequently 
asked to predict mortality rates for 9,037 cells from a different time period. 

 
TABLE 24  
SELECT PERIOD A/ES (BY COUNT) FOR MODEL E (GROUPED CELLS WITH AN ABSOLUTE ERROR UNDER 10% 
HIGHLIGHTED IN GREEN) 

  Duration 

Risk Class Issue Age 1–5 6–10 11–15 16–20 21–25 All 

MNS 18–39 106.3% 100.4% 93.9% 97.8% 97.7% 98.2% 
  40–59 104.7% 96.9% 90.8% 89.7% 97.3% 94.7% 
  60+ 102.8% 99.1% 93.3% 105.9% 93.4% 99.2% 
  All 104.1% 98.3% 92.1% 95.3% 97.3% 96.6% 

MSM 18–39 74.6% 62.6% 83.7% 99.5% 96.9% 88.9% 
  40–59 70.6% 94.2% 101.0% 105.0% 101.5% 98.2% 
  60+ 136.5% 112.8% 96.5% 102.3% 100.2% 108.6% 
  All 85.2% 91.7% 96.4% 103.2% 100.1% 97.3% 

MUNI 18–39 143.9% 316.4% 204.1% 228.6% 144.4% 169.4% 
  40–59 298.0% 284.9% 231.2% 223.6% 166.6% 196.3% 
  60+ 209.9% 220.3% 160.9% 141.8% 114.8% 142.0% 
  All 196.7% 238.7% 181.8% 170.5% 137.2% 161.5% 

FNS 18–39 83.2% 90.1% 96.4% 104.7%  95.9% 
  40–59 111.8% 96.9% 93.9% 96.7%  97.7% 
  60+ 97.4% 94.4% 95.3% 104.2%  96.4% 
  All 100.0% 94.8% 94.9% 100.0%  96.9% 

FSM 18–39 69.5% 71.5% 75.6% 94.5%  82.2% 
  40–59 84.6% 89.5% 99.7% 109.1%  99.7% 
  60+ 129.9% 105.4% 105.4% 111.5%  110.6% 
  All 96.3% 92.3% 97.5% 106.4%  99.5% 

FUNI 18–39 100.5% 208.0% 135.0% 216.4%  170.6% 
  40–59 200.6% 284.6% 261.2% 194.3%  218.8% 
  60+ 146.7% 169.9% 128.6% 123.3%  129.6% 
  All 145.0% 183.4% 143.1% 134.8%  142.0% 

 
The poor overall fit to MUNI and FUNI experience in the select period was likely driven by data 
limitations (data credibility and data quality), given that the corresponding results when E = 2015 
VBT were found to be similarly poor.  
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TABLE 25  
ULTIMATE PERIOD A/ES (BY COUNT) FOR MODEL E (GROUPED CELLS WITH AN ABSOLUTE ERROR UNDER 
10% HIGHLIGHTED IN GREEN) 

 Attained Age 

Risk Class 0–17 18–29 30–39 40–49 50–59 60–69 70–79 80–89 90+ All 

MNS    103.5% 104.6% 101.3% 100.8% 103.8% 111.5% 103.9% 

MSM    86.9% 117.0% 100.5% 92.3% 94.8% 80.8% 95.7% 

MUNI 95.0% 102.3% 111.9% 97.5% 106.6% 98.0% 97.8% 99.2% 101.0% 99.5% 

FNS   116.6% 105.0% 107.8% 97.5% 99.9% 99.9% 109.6% 102.1% 

FSM   63.1% 95.2% 101.5% 98.2% 97.7% 90.5% 84.1% 93.8% 

FUNI 86.4% 104.5% 103.7% 101.4% 105.9% 92.9% 97.3% 99.5% 96.9% 98.1% 

All 91.5% 102.8% 109.1% 99.1% 106.7% 97.6% 98.0% 99.5% 100.5% 99.5% 
 

To get a better sense of the data credibility by grouped cell in the test set, refer to the 
distribution of deaths in Appendix C. 

5.4 CASE STUDY RESULTS FOR MAINTENANCE OF RELATIONSHIPS 

Appendix D contains the projected mortality tables for MNS and FNS from Model E fit to the 
sparsified training dataset. In practice, one would typically reintroduce any held-out data into 
training prior to such a projection; however, for consistency with results from previous parts of 
the case study, the author has elected not to do so. 

Based on these projections, the author observed that Model E more often than not reflected the 
following generally accepted mortality table relationships encoded in 2015 VBT: 

• For a given duration, mortality rates should not decrease with issue age.18 
• For a given issue age, mortality rates should not decrease with duration. 
• Mortality rates should not decrease with attained age.19 
• For a given issue age and duration in the select period or a given attained age in the 

ultimate period, female mortality should not be greater than male mortality. 

5.5 CASE STUDY RECAP 

In this case study, the author has demonstrated that mortality embeddings derived from 2015 
VBT, when calibrated to a sparse experience dataset within a neural net environment, can result 
in mortality projections that (1) provide a strong relative and absolute fit across the full spectrum 
of ages and durations and (2) more often than not reflect the generally accepted insured 
mortality relationships encoded in the industry table. 

These features imply that one potential application of this framework is in the initial calibration of 
an industry mortality table to a company’s own experience. Recall that it is initial calibration 
because steps like smoothing, calibrating the very ends of the table to industry experience and 

                                                
18 Only applicable for attained ages 30-plus. 
19 Only applicable for attained ages 30-plus. 



   46 

 

 Copyright © 2019 Society of Actuaries 

best practice, and monotonicity adjustments may still be required. Various factors, including the 
volume and coverage of training data, as well as the intended application of the output, will 
determine the extent to which these additional processing steps are required. 
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Section 6: Conclusion  
The use of predictive models to develop best estimate insured mortality rates as an alternative to 
the data- and resource-intensive traditional first principles table construction approach has 
historically been met with limited success. One of the main challenges faced by companies 
looking to leverage the predictive modeling approach is that it has no preconceived notion of 
what a mortality table should look like, leading to issues in fit where experience is sparse and to a 
lack of appreciation for generally accepted mortality relationships.  

In this paper, the author has introduced a novel framework for leveraging the architecture of an 
industry mortality table within a company’s predictive analytics-based insured mortality analysis. 
He has shown that by reverse-engineering the industry mortality table into a series of higher-
dimensional features and then using those features as inputs to a nonlinear predictive model (in 
this case a neural net), the author can better model generally accepted mortality relationships (1) 
within a predictive modeling paradigm and (2) under the constraint of sparse experience data. 
One promising application of this approach is in the initial calibration of an industry mortality 
table, via its learned features, to a company’s own experience. 

Recognizing that readers may be coming at this content from different perspectives and 
backgrounds, the author wishes to emphasize that the material in this paper can be leveraged on 
at least three different levels. The first level is conceptual—readers could take away the key ideas 
in the paper, including the notion of being able to reverse-engineer a mortality basis and reuse 
that structure elsewhere. The second level is application focused—readers could potentially 
leverage the mortality embeddings accompanying this paper in their nonlinear mortality 
modeling work. Instructions on how to append the accompanying embeddings to their own 
predictive modeling dataset can be found on the first tab of each embedding dictionary’s 
workbook. The third level is development centric—readers could generate new embeddings for 
alternative mortality bases using the machinery discussed herein. The code used to develop the 
mortality embeddings for 2015 VBT accompanies this paper, and knowledgeable Python users 
could modify it to suit their needs.  
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Appendix A: Inventory of Accompanying Files  
 

Base Data Files 

# Filename Description 
1 2015-vbt-smoker-distinct-alb-

anb.xlsx 
2015 VBT smoker distinct mortality 

rates 
2 2015-vbt-unismoke-alb-anb.xlsx 2015 VBT unismoke mortality rates 
3 2015_VBT_select_period_table.csv 2015 VBT select period lengths by 

issue age, gender and smoker status 
 

Additional Input Files Required for Visualization of Embeddings 

# Filename Description 
1 Model 1 Embeddings.xlsx Detailed Embeddings from EENN 

Model 1 
2 Model 2 Embeddings.xlsx Detailed Embeddings from EENN 

Model 2 
3 Model 3 Embeddings.xlsx Detailed Embeddings from EENN 

Model 3 
 

Additional Input Files Required for Case Study 

# Folder / Filename Description 
1 case_study_train.txt Case study data—training set 
2 case_study_test.txt Case study data—test set 
3 Detailed Embeddings - Main Effects 

Only 
 

Folders containing embeddings in 
long form (i.e., in a form suitable for 

appending) 
4 Simplified Embeddings - Main 

Effects Only 
5 Detailed Embeddings - Main & 

Interaction Effects 
6 Simplified Embeddings - Main & 

Interaction Effects 
7 2015_VBT_df.csv 2015 VBT in dataframe format 
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Code Files 

# Filename Description 
1 Code to Generate 2015 VBT Mortality 

Embeddings.ipynb 
Code corresponding to Sections 2 and 3 of this 

document 
2 Code to Visualize Results for EENN 

Model 1.ipynb 
Code corresponding to Section 4 of this 

document 
3 Code to Visualize Results for EENN 

Model 2.ipynb 
4 Code to Visualize Results for EENN 

Model 3.ipynb 
5 Code for Case Study.ipynb Code corresponding to Section 5 of this 

document 
 

Embedding Dictionaries 

# Filename Description 
1 Dictionary of Detailed Embeddings - 

Main Effects Only.xlsx 
Detailed Embeddings from EENN Model 1 

2 Dictionary of Simplified Embeddings - 
Main Effects Only.xlsx 

Simplified Embeddings from EENN Model 1 

3 Dictionary of Detailed Embeddings - 
Main & Interaction Effects.xlsx 

Detailed Embeddings from EENN Model 3 

4 Dictionary of Simplified Embeddings - 
Main & Interaction Effects 

Simplified Embeddings from EENN Model 3 
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Appendix B: Neural Net Hyperparameters for Case Study 
 

TABLE B.1: Neural Net Hyperparameters 

   # Nodes  
Model ID # Epochs Learning 

Rate 
Input Layer First Hidden 

Layer 
Second 

Hidden Layer 
# Trainable 
Weights20 

C 500 0.001 6 25 6 338 
D 500 0.001 13 25 6 513 
E 2000 0.001 17 10 4 229 
F 500 0.001 5 25 6 313 
G 2000 0.001 5 10 4 109 

 

Others: 

All Neural Net models have one output node. 

  

                                                
20 This is a consequence of the other hyperparameters, not a hyperparameter itself; this is shown for information 
purposes. 
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Appendix C: Distribution of Death Counts in Case Study Test Data 
 

TABLE C.1: Actual Deaths—Select Period 

  Duration 
Risk Class Issue Age 1–5 6–10 11–15 16–20 21–25 All 

MNS 18–39 2,628 3,209 4,518 5,829 9,492 25,676 

  40–59 7,528 12,382 16,834 16,488 22,810 76,042 

  60+ 8,096 12,264 12,508 8,981 652 42,501 

  All 18,252 27,855 33,860 31,298 32,954 144,219 

MSM 18–39 773 715 1,177 2,013 3,712 8,390 

  40–59 1,612 2,640 3,817 5,319 8,623 22,011 

  60+ 1,179 1,411 1,504 1,561 114 5,769 

  All 3,564 4,766 6,498 8,893 12,449 36,170 

MUNI 18–39 119 91 180 326 786 1,502 

  40–59 101 302 723 1,182 2,146 4,454 

  60+ 147 857 1,342 1,799 2,142 6,287 

  All 367 1,250 2,245 3,307 5,074 12,243 

FNS 18–39 1,460 2,208 3,263 4,139  11,070 

  40–59 4,319 6,899 9,210 9,494  29,922 

  60+ 5,913 9,521 10,007 3,258  28,699 

  All 11,692 18,628 22,480 16,891  69,691 

FSM 18–39 214 321 556 1,047  2,138 

  40–59 857 1,377 2,199 3,587  8,020 

  60+ 780 1,095 1,457 968  4,300 

  All 1,851 2,793 4,212 5,602  14,458 

FUNI 18–39 39 46 93 205  383 

  40–59 57 285 876 1,613  2,831 

  60+ 122 1,353 3,471 6,104  11,050 

  All 218 1,684 4,440 7,922  14,264 
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TABLE C.2: Actual Deaths—Ultimate Period 

 Attained Age 
Risk 
Class 

0–17 18–29 30–39 40–49 50–59 60–69 70–79 80–89 90+ All 

MNS 
   

822 7,647 18,500 28,296 58,950 19,456 133,671 

MSM 
   

464 3,216 7,984 10,781 11,469 2,338 36,252 

MUNI 847 4,482 4,295 6,107 19,172 55,819 139,67
1 

288,90
4 

167,08
6 

686,383 

FNS 
  

17 1,466 7,190 13,923 23,444 51,922 27,542 125,504 

FSM 
  

8 559 2,765 6,819 11,618 14,030 4,139 39,938 

FUNI 542 1,621 1,995 2,973 7,957 23,386 55,519 138,18
3 

94,794 326,970 

All 1,389 6,103 6,315 12,39
1 

47,947 126,43
1 

269,32
9 

563,45
8 

315,35
5 

1,348,71
8 
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Appendix D: Sample Mortality Tables Projected from Model E  
 

This appendix contains sample mortality tables, as projected from Model E (calibrated to the 
sparsified training set), for the following risk classes: 

• MNS 
• FNS 

For tables see Appendix D Tables.xlsx 
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