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A year ago, the Joint Risk Management
Section of the Society of Actuaries
and the Casualty Actuarial Society

(as it then was) looked at the possibility of a new
nickname for the section, finding the foregoing
somewhat clumsy, and not given to a catchy
acronym. Dave Ingram’s Chairperson’s Corner
article in the July 2006 issue, “What’s in a
(Nick) Name,” discusses this. The name chosen
at the time was Enterprise Risk Management
Actuarial Professionals (ERMAP). For various
reasons, the name was not proceeded with, in
part because there were discussions about the
new risk management designation, and concern
over potential confusion between the designa-
tion and the name of the section. Since then, 
the section has added the Canadian Institute 
of Actuaries as a sponsoring organization, 
making the official name even more of a 
mouthful. As well, the new designation
Chartered Enterprise Risk Analyst (CERA) has
been developed and announced, and the name
is distinct enough that the use of ERMAP as a
moniker for the section is not a problem.
Therefore, we are pleased to announce that the
section will now be known as ERMAP (for all
but the most official purposes).

Does a name make a difference? Juliet’s point,
in Romeo and Juliet, is that a name should not
matter: “What’s in a name? That which we call a
rose By any other name would smell as sweet.”
The play goes on to demonstrate that, unfortu-
nately in that case, names and labels do matter,
at least to many people. Names are an important
part of communication, and communication is a
critical success factor of any initiative involving
groups of people. The name of the section is not
likely to make a significant difference in 
the ability to communicate our goals, but never-
theless can help to give a group an identity. It
also serves as a reminder of the broader impor-
tance of communication, and tools for improv-
ing communication and as a result the
effectiveness of organizations.

A more significant attempt to develop a tool for
communication in risk management is the re-
cent paper just published by the CAS-CIA-SOA
Risk Management Section Research Team on
risk management terminology. The study looks
at risk terminology across industries, and was
developed by a research team from the
University of Wisconsin-Madison. The motiva-
tion for the research was the desire to improve
communications among risk professionals both
within and across organizations. The study can
be found at http://www.soa.org/research/
risk-management/risk-mngt-terms.aspx.

Why is common terminology
important? 

It improves our ability to communicate about
risk management without having to clarify
meaning at each stage, or, more usually, assume
that meaning is clear without validating and
find out at a future stage that in fact different
parties understood things quite differently. 
The results can range from the inefficient (gaps
or duplication of work) to the dangerous (two
parties each assume the other is taking care 
of a particular threat when in fact neither is
doing so).

Common terminology is one of the building
blocks of a strong ERM framework. Other com-
ponents include a common currency (i.e. meas-
urement basis), a strong culture and aligned
incentives. A common terminology enables
communication among risk managers within an
organization. Different professions and even
different areas within the same profession often
develop their own language for dealing with
their specific issues. Often, significant insights
can be gained by learning from the experiences
of others in dealing with situations that have un-
derlying characteristics that are similar to those
that we are grappling with. Language differ-
ences, however, can make it difficult to get at the
common underlying issues—things may sound
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like two entirely different problems when in fact
they are very similar!

Common terminology also assists significantly
in taking a true enterprise-wide view of an 
organization by aggregating similar risks. If ter-
minology is different, it is much harder to iden-
tify when a risk should be aggregated 
with another. A common basis of risk classifica-
tion, applied consistently across an organiza-
tion, on the other hand, facilitates both
aggregation and understanding.

Communication with business managers and
finding ways to make business leaders aware of

risk management tools, methods and measures
is also critical. Common language, including
common terminology for risks and a common
risk classification, is one of the tools that can as-
sist in communicating with business managers. 

The actuarial profession has been criticized for
being less than fully effective in communica-
tion. This is an area that we must continue 
to work at proactively and in fact an area in
which we can make a significant contribution 
to the development of effective risk manage-
ment practices. ✦
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Update from the International Committee of ERMAP &
INARM
by David Ingram

T he International Committee is off to a
roaring start both because of outstand-
ing support from ERMAP member vol-

unteers and due to very warm international
responses. The activities have focused in three
areas: Newsletter translations, network build-
ing and joint projects. 

Thanks to the Canadian Institute of Actuaries
(CIA), the newsletter translation effort started
with one non-English edition, the French edi-

tion. This was produced for the
French speaking members of the
CIA and it has also been circulated
to actuaries in France. In addition,
Ken Seng Tan, the editor of the
newsletter has been working with
China Institute of Actuarial
Science, Central University of
Finance and Economics to pro-
duce an edition in Mandarin
Chinese. That edition should be
available in September and con-
sists of selected articles from the
past year that are thought to be of

high interest to non-North American actuaries
working in risk management. A third project is a
Spanish translation of summaries of the articles
from the newsletters. That translation is being
undertaken by the Mexican College of
Actuaries. We are in discussion with actuaries
in other parts of the world about possible trans-
lations of the international edition or the sum-
maries into other languages. 

Our efforts to form affiliations with other actuar-
ies around the world has had such enthusiastic
response that we decided to give the effort a
name. The International Network of Actuarial
Risk Managers (INARM) now has affiliates
from seven countries (Australia, China,
Germany, Hong Kong, Korea, Mexico, United

Kingdom) plus Canada and United States via
ERMAP and we are in active discussion with a
dozen more. Representatives for some of these
groups join our monthly working group calls and
others interact through an ERMAP volunteer
who acts at the ambassador. 

We are positioning this network similarly to the
standing of a section within the SOA—that is, as
a bottom-up membership driven group of volun-
teer practitioners and other interested parties.
We hope to augment the IAA Enterprise and
Financial Risk Committee (EFIRC) and are
working toward forming a statement of under-
standing regarding the relationship. We expect
to be able to support the IAA activities in risk
management, and in addition, to pursue mem-
ber initiated projects. We hope that this will
work just as SOA sections work with the SOA
and the AAA, recruiting volunteers for some
projects and taking complete responsibility for
others. 

We have started two projects already. The first is
a compilation of information about the status of
regulatory and actuarial roles regarding ERM
throughout the world. This project is being un-
dertaken for the IAA EFIRC and is being lead
by Ian Laughlin of Australia. The second is the
development of a Beginners guide to ERM, in
the form of an FAQ. This project is being con-
ducted via a web based tool and is lead by
Geraldine Kaye of the U.K. We are hoping to get
participation from as many different countries
as possible in both of these projects, whether
network affiliates or not. 

This is a truly amazing level of activity.
However, there is more that could be done. We
could use more volunteers to act as ambassadors
and volunteers to support projects and future
activities. We expect that future projects will be

David Ingram, FSA, CERA,

MAAA, is director of enterprise

riskmanagement with

Standard & Poor’s in New York,

N.Y. He can be reached at 

david_ingram@

standardandpoors.com.



developed from member and IAA requests, so if
you have any suggestions for future projects, we
would be happy to have those ideas as well.
Please note that our intention with the network
is to promote risk management developments as
our first priority. There is not a requirement that
volunteers have an international job or work for
an international company. Volunteers who are
interested in risk management and who would
be willing to cooperate with practitioners and
learners in other parts of the world are what we
are looking for. At this point in time, everyone
seems to agree that Risk Management is a bor-
derless discipline. There is not a unique U.S. or
Canadian or European or Chinese or Japanese
version of Risk Management. Through INARM,
we hope to continue to develop the unique actu-
arial contribution to risk management. The bor-
derless condition of risk management allows us
to work together to use all of our collective skills,
knowledge and experiences to build up the ac-
tuarial contribution. To volunteer, contact
david_ingram@standardandpoors.com or 
jwebber@soa.org.

Finally, we realize that not everyone is able to
volunteer. We would like to invite anyone who
would like to follow our efforts on a real time
basis to join an e-mail group that will get at least
monthly updates on INARM activities. This can
be done by connecting to the SOA Web site page
http://www.soa.org/news-and-publications/
listservs/list-public-listservs.aspx. There you can
sign up for the e-mail group. ✦
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Hurricane Katrina came ashore on

Aug. 29, 2005, wreaking havoc on the

Gulf States of Louisiana, Alabama,

and Mississippi. The huge storm and its de-

structive power shone a spotlight on the critical

relationship between operational risk manage-

ment and business continuity planning. 

Hurricane Katrina was a devastat-

ing natural disaster. Its effects—

physical, emotional, and

political—are still being felt al-

most two years later. The business

disruption experienced by many

companies in the area was com-

pounded by the personal hardships

of their employees.

Although no two disasters are pre-

cisely alike, all present a similar

core of critical issues. These in-

clude the challenges that a busi-

ness is likely to encounter during the crisis,

what a business continuity plan can and cannot

do, and how individuals typically respond, both

personally and professionally.

The ultimate business interrup-
tion

Hurricane Katrina exposed not only the frailty

of the people, but also the confusion and 

lack of leadership at many levels in 

government. It forced many companies to

change how they do business and reconsider

how they work internally.

Hurricane Katrina was three correlated 

events, one after another, occurring within a 

72-hour window:

1. On Sunday, Aug. 28, at 10:00 a.m., antici-

pating the storm, a total and mandatory

evacuation order of the entire city of New

Orleans was issued. 

2. On Monday morning, Aug. 29, Hurricane

Katrina made landfall as a Category III hur-

ricane with sustained winds of 125 mph and

storm surges up to 25 feet high. 

3. On Monday evening, three Lake

Pontchartrain levees in New Orleans began

to give way, and 80 percent of the city 

was under water at peak flooding, which in

some places was 20 to 25 feet deep by

Tuesday morning.

The combination of these three events wrapped

into one changed everything. During the first

few days, there was no information coming 

from anyone at the local, state or federal 

government as to when or how things would

begin to return to normal. There was simply no

similar precedent, and no clear plan where to

start recovery operations. 

As the disaster unfolded for many companies

based in the New Orleans area, their manage-

ment teams began to grasp that returning to nor-

mal operations from the home office could not

happen soon and would not be easy. The chal-

lenge presented itself starkly: how to operate the

enterprise without a home office for an extended

period of time with significantly reduced staff,

all of whom were themselves displaced and ex-

periencing severe personal hardship? A busi-

ness continuity plan designed around the

concept of a short-term evacuation would not

sustain the company for more than a few weeks.

Companies that had planned only for such

short-term events needed to change their 

approach and plan for a much longer “return 

to normalcy.”



For individual employees, the situation looked

bleak. There might not be a home to return to.

How can you live or work out of a cramped motel

for weeks or months—with the kids and maybe

extra relatives or even pets sharing the space—

when you never intended to stay there for more

than a few days? What about work and getting a

paycheck? Where will the kids go to school?

These questions were increasingly difficult to

answer as it became clear that the displacement

would go on indefinitely. 

How companies respond to a
business interruption

Any catastrophic event affects different people

in different ways. The same can be said about

businesses and companies, depending on the

type of business, how it operates, its size, where

it is located, and other factors. 

From the perspective of an insurance company,

the lessons from Hurricane Katrina provide a

reference point for planning, preparation 

and recovery. These lessons can be divided 

into internally and externally focused manage-

ment decisions:

• IInntteerrnnaall: Make sure you can continue to op-

erate and serve your clients. Internal man-

agement is directed at employees and the

processes needed to keep the business

whole. Internal activities relate to being

able to process new and existing business in

terms of handling new applications, premi-

ums, claims, paying commissions, invest-

ments, accounting, and actuarial matters.

• EExxtteerrnnaall:: Make sure the business keeps

coming in. External management extends to

vendors, suppliers and other organizations

that are crucial to a business’s ability to gen-

erate revenue. External activities are driven

by the need to make sure the company can

continue to receive new business and is able

to serve its existing clients.

A consistent and delicate balance of both is

needed to ensure the client continues to be

served. Focusing mostly internally might result

in employees capable and ready—but unable to

perform because of the lack of business coming

in. Likewise, focusing mostly externally will

leave critical weaknesses internally that even-

tually will disrupt the business coming in as

client service deteriorates and new business

goes elsewhere. 

Hurricanes and the Gulf region

In the Gulf region, when people think of disas-
ters, they think of hurricanes. As such, the plan-
ning at home typically includes three stages: 

• Evacuate for two or three days to a motel, to
a relative’s or friend’s home, or to some other
location out of the hurricane’s path.

• Return home; clean up the yard and repair
the house as needed.

• Go back to work; the kids go back to school. 

At work, the approach is typically more sophis-
ticated. In one particular instance, the business
continuity plan was based on a three-day regres-
sive countdown approach:
• Three days before a potential impact: Begin

to make basic preparations to evacuate
(making tape backups, shipping data to off-
site location, preparing basic office facili-
ties off-site). 

• Two days before potential impact: 
Start preparing essential personnel to leave
the city. 
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• One day before potential impact: Begin to
evacuate. 

A successful business continuity
plan

A disaster can be externally driven, such as a
hurricane, an earthquake, or a terrorist act; or it
can be internally driven, such as a fire, a system
failure, or a disgruntled employee that does
something to damage the organization.

Any basic business continuity plan must ad-
dress four essential elements: 

• OOppeerraattiinngg iinnffrraassttrruuccttuurree:: A remote facility
to operate the business. Such a facility will
likely have scaled-down capabilities (using
reduced staff); it requires well-documented
processes, policies and procedures, includ-
ing accounting processes that can document
extraordinary expenditures during the dis-
aster.

• IInnffoorrmmaattiioonn tteecchhnnoollooggyy iinnffrraassttrruuccttuurree::
Redundant networks with multiple points of
access. Data should be regularly and safely
backed up and stored remotely.

• HHuummaann rreessoouurrcceess:: Regular employee train-
ing to establish awareness on how to re-
spond, at least in the first few hours of a
disaster. These first few hours are critical.

• EExxeeccuuttiivvee ppaarrttiicciippaattiioonn:: Business continu-
ity cannot be merely an operational matter;
it is a strategic concern that should be dis-
cussed at the executive level. Senior deci-
sion-makers need to know where their
revenue-generating capability is most vul-
nerable and should plan to address these
vulnerabilities.

The plan can also be organized along functional
lines, such as operations and administration,
actuarial, accounting and investments, market-
ing, sales, and distribution. Regardless of how
the plan is organized, there are internally driven

and externally driven issues that need to be con-
sidered. This brings us to some considerations
with regard to risk management and business
continuity planning:

• Do not think it cannot happen to you or your
organization. A company can certainly take
steps to minimize internal sources of a po-
tential disaster, but it cannot control exter-
nal events.

• Do not dismiss planning under the pretext
that no amount of planning is perfect.
Although every disaster is different and
each situation is quite fluid, a complete 
lack of planning, even for basic and 
obvious steps, could lead to the collapse of
the company.

Key ingredients of a successful
business continuity plan

The essential components of any business con-
tinuity plan, regardless of the industry or the cir-
cumstances, must address three things that
could destroy or seriously damage a company.
These are:

1. LLoossss ooff iinntteelllleeccttuuaall ccaappiittaall.. Intellectual
capital is the collective know-how that de-
fines the company. This capital resides in
the data, in the systems, in the documented
processes, and in the minds of employees.

2. LLoossss ooff hhuummaann ccaappiittaall.. Human capital con-
sists of employees as well as all those who do
business with the company—those essen-
tial to maintaining the organization’s ability
to generate revenue. This includes external
relationships with producers, providers,
regulators, and rating agencies. 

3. LLeeaaddeerrsshhiipp aanndd ccoommmmuunniiccaattiioonn..
Leadership and communication make a
business continuity plan work during and in
the aftermath of a disaster. Communication
with those affected both internally and 

Operational Risk Management …
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externally is crucial to the resiliency of 
the business.

Internally, most employees are likely to be dis-
traught during a major crisis, experiencing loss
and lack of direction. They fear not only for their
potential personal losses, but also for their jobs.

Senior management has some sense of control as
it stays connected and makes decisions that af-
fect the organization; but for most employees, as
was the case during Hurricane Katrina, there is
a sense of isolation because they have been dis-
placed from their homes and jobs.

Employees need to hear from senior manage-
ment in order to get a sense of direction and be-
longing—and the sooner they hear from
business leaders, the better. Employees are
ready and willing to do whatever the company
asks of them that can validate their sense of
value to the company and give them a sense of
belonging to a greater effort, of being part of a
process and a team.

Externally, producers and providers also need
to hear from senior management to understand
what is really happening and whether or not it
makes sense to continue doing business with
the company. If senior management does not
talk to them promptly, the competitors will.

A business continuity plan needs to address
some basic elements aimed at recovering and
protecting the intellectual and human capital of
the company, and examine how to manage the
leadership and the communication process dur-
ing a crisis.

With regard to data and other vital information,
these basic elements include things such as re-
dundancy in systems and accessibility to them
from various points, as well as the alternative of
outsourcing certain functions, such as systems

administration or valuation processes, espe-
cially for a small or medium-sized company.
Business processes need to be documented and
maintained in more than one medium and ac-
cessible from more than one location.

With regard to human capital, the best way to
ensure business continuity is to maintain con-
nections among people. When Hurricane
Katrina hit, many companies lost their e-mail
systems for several days. Suddenly, they 
could not reach or communicate with their em-
ployees. Likewise, employees could not 
communicate with their employers to find out
what was happening. 

One way to preserve these connections in the
event of a disaster is to print wallet-sized 
cards for all employees with the following infor-
mation, to be used following a business 
interruption:

• A company Web site, which can be activated
during an event and which will provide in-
formation and updates to employees.

• A telephone conferencing call process, with
a different password by function area. A
conference call can be held every day at a
specific time following a disaster declara-
tion. Employees can dial in and obtain and
exchange information, and thus feel con-
nected with their peers.

Hurricane Katrina was unique in that the em-
ployees also suffered personal hardship on a
large scale, so companies had to deal with not
only how to facilitate a working environment in
alternative office space, but also how to help em-
ployees and their families with housing needs.

Finally, there is the question of leadership.
Senior management needs to lead and provide
examples. Managers should make decisions
based on the best facts available, and change
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them if the facts change. Senior management
needs to be seen and heard.

As for producers, providers and anyone the
company does business with externally, senior
management needs to communicate with them,
in person if possible, address their concerns,
communicate the desire to continue doing busi-
ness together, and extract a commitment to con-
tinue the relationship. External constituents
include regulators and rating agencies, who
may need some objective explanation of how
management is addressing the crisis.

In terms of communications, it is best to control
the message whenever possible by providing
timely, frequent updates. This extends not only
to customers but also to media. In certain in-
stances, effective communication may require
the company to dispel the image the media has
created of the disaster in general (by rational ex-
trapolation, people think a company is likely af-
fected, regardless of how the media has
portrayed the wider event). An objective, sim-
ple, and clear message needs to be consistently
delivered when addressing outside contacts.

Communication strategies must also be mindful
of the potential for limited access to usual
means of communication. Other means of com-
munication available need to be used: newspa-
per and radio ads, e-mails, conference calls,
business contacts, and even connections with
board members. 

Coming home

Nothing lasts forever. Eventually the crisis be-
gins to settle down, and the nature of the crisis
changes. In the case of Hurricane Katrina, after
three months of operating in remote locations,
the challenge for many companies was how to
start migrating back to the home office when
New Orleans began to reopen. But which func-
tions should they migrate back and in what
order should they do it? 

This challenge was not so simple to address.
After three months, many employees had “set-
tled” in alternative locations and were not able
or willing to move back or commute to the city.
Many of their children had been enrolled in new
local schools, and New Orleans schools were not
going to reopen anytime soon. For many em-
ployees, their homes in New Orleans were de-
stroyed or severely damaged, so they had no
place to live, even if they did want to go back to
work in the city.

Still, over the following months, local business-
es started to return and the city began to func-
tion with some sense of normalcy. For the
companies and businesses in the area, both
small and large, Hurricane Katrina was an event
that changed them in significant ways.
Hopefully, the lessons discussed here can be
applied to any business anywhere and can help
strengthen a company’s operational risk man-
agement practices for the future.✦
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T he Risk Premium Project (RPP) repre-
sented the most extensive, thorough
and up-to-date analysis of the theory

and empirics of risk assessment for property-
casualty insurance through 2000. The Project
began as a response by industry and academic
researchers to a request for proposals issued by
the Committee on the Theory of Risk (COTOR)
of the Casualty Actuarial Society (CAS) due
April 1, 1999.1 At the time, the discounting of
loss reserves was an important topic of debate
among casualty actuaries, and COTOR was in-
terested in providing the members of the CAS
with a review of the seemingly disparate aca-
demic and actuarial literature with the express
hope of revealing appropriate discount rates for
liabilities. The members of RPP proposed to ad-
dress the topic using a three phased approach: 

Phase I: Provide a compilation of the most
relevant academic and actuarial 
literature on risk assessment for the
prior 20  years, approximately 1980-
2000.

Phase II: Discuss the equilibrium pricing for
insurance risk in light of the Phase I
literature.

Phase III: Propose empirical projects to quan-
tify some of the Phase II theoretical
conclusions. 

COTOR accepted the RPP proposal on Aug. 13,
1999 and the researchers presented their final
report on Phases I and II to COTOR on June 30,
2000.2

Phase I produced an annotated
bibliography of 138 items consist-
ing of 14 referenced books and
124 articles and papers from 37 fi-
nancial and actuarial publica-
tions, including the Proceedings of
the Casualty Actuarial Society,
Journal of Finance, Journal of
Portfolio Management, the ASTIN
Bulletin, and National Bureau of
Economic Research working pa-
pers. The bibliography is search-
able by author, title and keyword online at
www.casact.org/cotor/index.cfm?fa=rpp. The
articles and papers are separated into themes
that cover general finance, asset pricing, insur-
ance risk, surplus allocation, the history of ap-
plications in finance and insurance and some
miscellaneous topics. 

The abstract of Phase II report is as follows:
This report summarizes the authors' review
of the actuarial and finance literature on
the subject of risk adjustments for discount-
ing liabilities in property-liability insur-
ance. The authors find that the actuarial
and financial views of risk priced in the
market are converging: systematic or non-
diversifiable risk still plays a central role in
equilibrium pricing, but non-systematic
costs arising from market frictions such as
taxes and financial risk management also
contribute to market valuations. Recent ad-
vances in risk assessment and capital allo-
cation techniques are noted. Several
empirical follow-up projects are identified.
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The specific conclusions the researchers
reached included:

(1) Although actuaries have long argued that
non-systematic (non-market) risk plays a
role in insurance pricing, financial econo-
mists have recently developed various theo-
ries that provide sound justification for this
conclusion. 

(2) Systematic risk plays a role in valuing liabil-
ities either because the loss cash flows are
contemporaneously correlated with market-
wide returns or because unexpected
changes in the interest rate used to discount
long-term liabilities is correlated across all
future cash flows in the economy. This latter
effect is expected to be a more important fac-
tor for longer duration insurance liabilities.3

(3) Returns to financial assets cannot be ade-
quately explained by the Capital Asset
Pricing Model (CAPM) beta. Additional
factors have been identified which signifi-
cantly enhance the explanatory power of the
models in general. Unfortunately, no such
research focuses on insurance company re-
turns.

(4) Equity capital can be allocated in a theoret-
ically consistent way. Unfortunately no such
research focusing on actual insurance com-
panies exists.

(5) The issue of insurance default should be
recognized in pricing.4

The Phase II report concluded with four specif-
ic suggestions for a follow-up Phase III empiri-
cal research that were focused on two broad
areas of inquiry. The proposed areas of inquiry
included studies to investigate the relevance of
the multi-factor asset pricing models for the
property-casualty insurance industry and to
empirically investigate the role of capital allo-
cation in insurance pricing given the recent the-
oretical advances in the literature. The projects
were recommended based upon the observa-
tions in the Report that recently developed
methods such as the Fame-French 3-factor ex-
tension of CAPM and the Myers-Read alloca-
tion of capital formulas allowed for new
empirical estimates of cost and allocation of
capital, both lacking for the property-casualty
industry as a whole.

Ultimately, two of the four proposed projects
were selected to be funded: one on cost of equi-
ty capital for insurers by-line of insurance and
one on allocation of capital for insurers.5 The re-
sult of the cost of capital study is a peer-re-
viewed paper that appeared in the Journal of
Risk and Insurance (Cummins and Phillips,
2005). The paper was recently awarded the CAS
prize for the best paper of interest to the CAS
members in the 2005 volume of the Journal of
Risk and Insurance. A session on the paper will
be scheduled for the joint CAS/ASTIN meetings
in June 2007 in Orlando, Fla. The second Phase
III study has resulted in a working paper
(Cummins, Lin, and Phillips, 2006). Both pa-
pers are available on the same CAS/RPP Web
site as the Phase I and II report. The principal
results of those two studies are discussed next.

3 As an example of the latter effect, the Phase II report cites research that shows supposedly “riskless” Treasury bonds have posi-

tive betas: 0.14 for intermediate maturity bonds and 0.42 for long-term maturities bonds (see Cornell, 1999).  

4 Insurer default is generally recognized as a pay-as-you-go system through guaranty funds.

5 The two studies were jointly funded by the Casualty Actuarial Society and the Insurance Research Council.
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Cost of Capital

The study estimates CAPM and Fama-French
cost of capital estimates for a sample of 117
companies writing property-casualty insurance
over the sample period 1997-2000. Cost of cap-
ital estimates are estimated for each year of the
sample period based on 60 monthly observa-
tions. The Fama-French model augments the
CAPM market systematic risk factor with two
additional factors, for firm size and financial
distress, respectively. The size factor is based
on the firm’s market capitalization (number of
shares multiplied by share price) and the finan-
cial distress factor is represented by the ratio of
the book value of equity to the market value of
equity.6 In addition, the cost of capital is esti-
mated specifically for the property-casualty,
automobile, and workers’ compensation insur-
ance lines of business using both the full infor-
mation industry and sum beta methodologies.
These methods are fully explained in Cummins
and Phillips (2005).7 The cost of capital esti-
mates are presented in several tables in the arti-
cle. The results of the study demonstrate the
statistical inadequacy of the single factor
CAPM in estimating the cost of capital for prop-
erty-casualty insurers. I.e., the study demon-
strates the importance of including the
Fama-French adjustments for size and financial
distress when estimating the cost of capital for
property-casualty insurers.8 In particular, the
CAPM tends to significantly under-estimate the
cost of capital for firms in this industry.

Although there is considerable empirical 
evidence supporting the use of the financial dis-

tress factor in asset pricing, researchers have
yet to agree on the rationale for the presence of
this effect. The financial distress effect is also
often called the value effect because the ratio of
book-to-market equity is often used to identify
so-called “value” stocks. Theoretically, the lit-
erature on the value effect seems to have split
into two camps: (1) The “rationalist” camp,
which argues that the value factor is a rational
pricing factor consistent with Merton’s inter-
temporal capital asset pricing model (ICAPM)
or Ross’ arbitrage pricing theory (APT). (2) The
“behavioralist” camp, which argues that the
value factor may be a behavioral effect reflect-
ing irrational investor behavior (e.g.,
Lakonishok, Schleifer and Vishny, JF 1994). 

Principal Findings

(1)  Sum betas are larger than raw betas
As expected, sum beta estimates are consis-
tently larger than ordinary beta coefficients.
For the sample as a whole, the raw beta aver-
aged 0.677 versus the sum beta 0.836, or a
23 percent larger equity beta. The reason for
the increase in averages is the dominance of
smaller insurers with relatively infrequent
trading (which sum beta corrects) in the 117
company sample (see Table 2 of Cummins
and Phillips (2005)).

(2) The Fama-French market systematic risk
beta is about 1.0 for P&C Insurers
The overall market beta for P&C insurers,
with (1.04) or without (0.98) the sum beta
correction, is about the market average of
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6 The Fama-French cost of capital is obtained by adding the risk-free rate, usually the 30-day Treasury bill rate, to the market sys-

tematic risk beta multiplied by the market risk premium for systematic risk plus the size beta multiplied by the market risk premi-

um for size plus the financial distress beta multiplied by the market risk premium for financial distress. 

7 The current status of the asset pricing literature is reviewed in Fama and French (2004).

8 Additional specifications of multifactor models specific to insurer returns are discussed in the Recent Developments section here.
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1.0. This result indicates that the low raw
beta average (0.67) arises primarily from the
single simple factor regression omitted vari-
ables problem identified 10 years earlier by
financial researchers,9 size and financial
distress (see Table 3 of the Cummins and
Phillips (2005)).

(3) The FIIB market systematic risk beta for
auto insurance averages 0.92 based on un-
weighted regressions but averages 0.64
when the regressions are weighted by mar-
ket values.
Based on equally weighted regressions, the
market systematic risk betas are about the
same for automobile insurance (0.92) and
workers’ compensation (0.86). However,
based on market value weighted regres-
sions, the market systematic risk beta for
auto insurance (0.64) is significantly differ-
ent from the beta for workers’ compensation
(0.882) (see Table 8 of the Cummins and
Phillips (2005)). Because the market value
weighted regressions give greater weight to
larger insurers, the results provide clear ev-
idence that systematic risk betas vary by
firm size.

(4) The FIIB Fama-French market systematic
risk beta with the sum beta correction for
auto insurance is about 1.0 based on market
value weighted regressions.
Applying all methodologies to estimate the
underlying market equity beta yields a mar-
ket weighted average of 1.031 and a panel
estimate of 0.965, neither significantly dif-
ferent from 1.0, for automobile insurance.
The contrast with conclusion (3) indicates a

strong case for using the sum beta 
adjustment (see Table 9 of the Cummins and
Phillips (2005)).

(5)  The size factor in the FIIB Fama-French es-
timation is significantly different from zero
at about 1.6.
The FIIB Fama-French three-factor esti-
mates in Table 9 show size betas for auto in-
surance of 1.686.  Applying a size beta of 1.6
to the long-term excess market premium for
size of 2.35 percent yields an average size
adjustment of about 3.8 percent. Ibbotson
(2006, p. 31) graphically displays the differ-
ence in the realized return distributions be-
tween large company stocks and small
company stocks in general. Small stocks
have larger mean returns and a larger vari-
ance of returns. Of course, the notion that a
(non-systematic) small stock premium ex-
ists has been known since at least the 1980s.
The Cummins-Phillips extends that result
specifically to the insurance industry as a
whole and to property casualty insurers in
particular.

(6) The financial distress betas for property-
casualty insurance are substantially greater
than for firms on average from other 
industries.
Based on market value weighted regres-
sions, Table 7 of the Cummins and Phillips
(2005), shows financial distress betas of
0.917 for personal lines and 0.992 for com-
mercial lines. Based on the financial dis-
tress risk premium for 2000 (3.85 percent),
the financial distress factor adds more than
3 percent to the cost of capital. Based on es-

9 The fact that significant explanatory variables omitted in a structural regression can cause distorted results is well known in 

statistics (see, for example, Maddala (1992), pp. 161-64).

10 The risk premium puzzle is simply that realized market risk premiums excess of a risk free rate for some recent time periods would

relate to risk aversion coefficients in standard models that exceed all prior (reasonable) estimates. Of course, those simple risk

aversion/risk premium models could be misspecified just as the simple CAPM is misspecified with significant omitted variables.
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timates for other industries, financial dis-
tress or, conversely, proxies of the quality of
insurer risk management affects returns for
insurers much more significantly than for
most other firms in the economy.

Risk Premium Puzzle

The theoretical developments above paralleled
a flurry of papers that attempted to make
progress on the empirical estimation of the sys-
tematic or market factor risk premium used in
all the extended models. Known as the “risk
premium puzzle” since the mid-1980s,10 many
researchers promoted market risk premium es-
timates based on varieties of data series, both
U.S. and international, methods of interpreting
the data, and even surveys of “experts” such as
finance professors. Derrig and Orr (2004) sur-
veyed a representative sample of such efforts
and found a wide disparity of prospective mar-
ket risk premiums in the studies ranging from 
- 0.9 percent to 8.5 percent. A fair amount of the
numerical disparity was based on a lack of a
common definition for “the market risk premi-
um.” Rather, the risk premiums in the studies
varied by the use of real or nominal interest
rates, arithmetic or geometric averaging, short,
intermediate and long horizons, short or long
run averages, and conditional or unconditional
estimates. Put on a common definitional basis of
short horizon, long run, arithmetic, and uncon-
ditional risk premium, the appropriate basis for
valuation of quarterly flows in insurance pric-
ing, the range of risk premium estimates nar-
rowed considerably to 5.0 to 9.0 - percent. The
risk premium puzzle is now incorporated into
Part 8, Investments and Financial Analysis of
the CAS Fellowship Examinations.

Allocation of Capital 

The paper by Cummins, Lin, and Phillips
(2006) provides an empirical test of the theories
developed by Froot and Stein (1998), Froot

(2005), and Zanjani (2002).  The overall predic-
tion of these papers is that prices of illiquid, im-
perfectly hedgeable intermediated risk
products should depend upon firm capital
structure: the covariability of the risks with the
firm’s other projects, their marginal effects on
the firm’s insolvency risk, and negative asym-
metries of return distributions. In particular,
prices should be higher for lines of insurance
with higher covariability with the insurer’s over-
all insurance portfolio and for lines that have a
greater marginal effect on insurer insolvency
risk. Cummins, Lin, and Phillips (2006) provide
empirical tests of these theoretical predictions
using data from the U.S. property-casualty in-
surance industry. The strategy in the paper is to
estimate the price of insurance for a sample of
property-casualty insurers and then to regress
insurance price on variables representing firm
solvency risk, capital allocations by line, and
other firm characteristics. 

The empirical tests in Cummins-Lin-Phillips
are based on two pooled, cross-sectioned, time-
series samples of U.S. property-casualty insur-
ers over the sample period 1997-2004. The first
sample consists of the maximum number of in-
surers with usable data that report to the
National Association of Insurance
Commissioners (NAIC). The second sample
consists of the subset of insurance firms that
have traded equity capital. 

To measure the price of insurance, Cummins-
Lin-Phillips utilize the economic premium ratio
(EPR) suggested by Winter (1994). The EPR,
the ratio of the premium revenues net of expens-
es and policyholder dividends for a given insur-
er and line of insurance to the estimated present
value of losses for the line, provides a measure of
the insurer’s return for underwriting a line of in-
surance. Theory predicts that the EPR will be
related cross-sectionally to insurer capital
structure, the covariability among lines of in-
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surance and between insurance lines and as-
sets, and the amount of capital allocated to each
line of business. 

To estimate by line capital allocations,
Cummins, Lin and Phillips (2006) utilize the
methodology developed by Myers and Read
(2001). Myers and Read allocate capital mar-
ginally by taking the derivative of the firm's in-
solvency put option with respect to changes in
loss liabilities for each project or line of busi-

ness. The methodology provides a
unique allocation of 100 percent of
the firm’s capital. Although the Myers
and Read model is not dependent
upon specific distributional assump-
tions for the returns on the firm’s as-
sets and liabilities, distributional
assumptions are required to imple-
ment the methodology empirically.
Cummins, Lin, and Phillips (2006)
assume that assets and liabilities are
jointly lognormally distributed so that
capital allocation is based on the
Black-Scholes exchange option
model (Margrabe 1978).

Although the Myers-Read model clearly has
normative implications for insurance manage-
ment and regulation, Cummins-Lin-Phillips
hypothesize that it also has positive implica-
tions for insurance markets. That is, an implicit
underlying hypothesis in the paper is that 
cross-sectional differences in insurance prices
can be partially explained by Myers-Read capi-
tal allocations. In order for this hypothesis to be
correct, it is not necessary that insurance com-
panies actually allocate capital according to the
Myers-Read model. It is only necessary that,
through the operation of insurance markets,
risks are priced in such a way that prices reflect
the marginal burden that specific risks place on
the insolvency risk of insurers. This requires
only that markets are sufficiently rational so that

insurers are able to assess the riskiness of poli-
cies that are being priced and that their price
quotes reflect these insolvency risk assess-
ments. 

The Cummins-Lin-Phillips tests support the
theoretical predictions. The price of insurance
as measured by the EPR is inversely related to
insurer insolvency risk, consistent with prior re-
search (Phillips, et al. 1998). Moreover, prices
are directly related to the amount of capital allo-
cated to lines of insurance by the Myers-Read
model and thus are also directly related to the
covariability of losses across lines of insurance.
Thus, the results support the predictions of
Froot and Stein (1998) and the capital alloca-
tion literature (Myers and Read 2001, Zanjani
2002). The tests provide somewhat weaker evi-
dence that prices reflect negative asymmetries
of return distributions (Froot 2005). 
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Highlights from the 5th Annual ERM Symposium 
by Valentina A. Isakina and Max J. Rudolph

W ith sessions ranging from Decision
Making under Extreme Events
and Emerging Risks to

Dashboards to Environmental Impacts, the 5th
annual Enterprise Risk Management
Symposium covered a wide range of topics with
something for everyone interested in risk man-
agement. Over 500 attendees mingled with their
counterparts from the financial services, ener-
gy, government, and manufacturing industries.
The event is co-sponsored by the Joint Risk
Management Section (Casualty Actuarial
Society, Canadian Institute of Actuaries, and
Society of Actuaries) and Professional Risk
Managers’ International Association (PRMIA)
in collaboration with Georgia State University.
The attendees came to Chicago from across the
world to network and learn more about
Enterprise Risk Management (ERM) and how to
implement it in their venue. 

The first day featured three workshops, cover-
ing very distinct topics: 
• Operational Risk Management
• ERM Essentials for Decision Makers, and
• Banks and Insurers: Separate Paths But a

Common Destination

These daylong seminars allowed participants to
dive deeper into specific issues than a single
session allows. The Operational Risk workshop
was a particular success, having completely
sold out with standing room only.

The overarching goal of the symposium is to
show how ERM principles, tools, and tech-
niques compare across industries, allowing risk
managers to talk to and teach each other. In this
way, best practices can be shared and dissemi-
nated faster. 

Terrence Odean set the tone for the meeting as
he discussed behavioral finance and its link to
risk management. Only by knowing our own bi-
ases can we truly understand current and
emerging risks. Dr. Odean showed how in-
vestors generally act in the financial markets at

inopportune times, making it hard to optimize
their results.

Three other general sessions provided consis-
tency to the meeting:
• Leading off on the first day was a session dis-

cussing the convergence of ERM practices
internationally. 

• The View from the Top shared views about
how ERM is being implemented in board
rooms. 

• The Role of ERM in Regulation got the sec-
ond day off to an energetic start as represen-
tatives from rating agencies and others
familiar with the regulatory process spoke
about how ERM should be a by-product of
work already being done, not something
specifically created to check a regulator’s
proverbial box.

• The meeting concluded with a general ses-
sion discussing ERM perspectives from
practitioners as they discussed past, pres-
ent and future states of ERM.

In addition, 35 concurrent sessions were 
organized around six different tracks, including
a risk management research track organized 
by Georgia State University. All the sessions
were taped to mp3 format and are available,
along with the presentation slides, on
www.ermsymposium.org.

For the second year, the symposium featured a
call for scientific papers, along with a call for
presentations. Both had strong response rates,
and the symposium committees were chal-
lenged to choose those who would present. All of
the submitted papers can also be found at
www.ermsymposium.org.

The next symposium will be held in Chicago
April 14-16, 2008. By building off past sympo-
siums, keeping what worked, and bringing fresh
ideas into the mix, it will surely be a highlight 
of the year for ERM continuing education
events.✦
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T he 2006 ERM Symposium established
its first-ever annual call for ERM-re-
lated research papers to present the

very latest in ERM thinking and move forward
principles-based research. The overwhelming
response and success of this first effort, origi-
nally the brainchild of Max Rudolph, set into
motion high expectations for succeeding years.
In light of these lofty expectations, I am pleased
to report that the 2007 ERM Symposium
Scientific Paper did not disappoint. 

With over 40 abstracts submitted for review, the
level of response significantly ex-
ceeded the previous year’s and
again proves that ERM is some-
thing that companies ignore at
their own peril. The papers review
committee, chaired by Rudolph,
included returning members Mark
Abbott, Sam Cox, Emily Gilde,
Krzysztof Jajuga, Nawal Roy, Fred
Tavan, and Al Weller as well as
newcomers Maria Coronado, Steve
Craighead, Dan Oprescu,
Matthieu Royer, and Richard
Targett. Choosing from among the
40 abstracts for nine presentation
slots was no small task and given
the quality and number of ab-
stracts, the committee regretted that there were
only nine slots available.

The final task of the committee was to select the
prize winning papers. This year, in addition to
the Actuarial Foundation ERM Research
Excellence Award for Best Overall Paper, 
two more prizes were awarded: the PRMIA
Institute New Frontiers in Risk Management
Award and the Risk Management Section 
Best Paper Award for Practical Risk
Management Applications. 

The award winners along with the paper ab-
stracts are shown below. Awards were presented
at the ERM Symposium General Luncheon ses-
sion held on March 30th. 

22000077 AAccttuuaarriiaall FFoouunnddaattiioonn EERRMM RReesseeaarrcchh
EExxcceelllleennccee AAwwaarrdd ffoorr BBeesstt OOvveerraallll PPaappeerr::
Mark Beasley, Don Pagach, and Richard 
Warr of North Carolina State University 
for “Information Conveyed in Hiring
Announcements of Senior Executives
Overseeing Enterprise-Wide Risk
Management Processes.” 

AABBSSTTRRAACCTT ((sseeee ppaaggee 2211 ooff tthhiiss nneewwsslleetttteerr ffoorr
aann aabbrriiddggeedd vveerrssiioonn ooff tthhee aarrttiiccllee))

Enterprise risk management (ERM) is the
process of analyzing the portfolio of risks facing
the enterprise to ensure that the combined effect
of such risks is within an acceptable tolerance.
While ERM adoption is on the rise, little aca-
demic research exists about the costs and bene-
fits of ERM. Proponents of ERM claim that
ERM is designed to enhance shareholder value;
however, portfolio theory suggests that costly
ERM implementation would be unwelcome by

Mark Beasley and Don Pagach accept second annual Actuarial Foundation

award from David Cummings. 



shareholders who can use less costly diversifica-
tion to eliminate idiosyncratic risk. This study
examines equity market reactions to announce-
ments of appointments of senior executive officers
overseeing the enterprise’s risk management
processes. Based on a sample of 120 announce-
ments from 1992-2003, we find that the univari-
ate average two-day market response is not
significant, suggesting that a broad definitive
statement about the benefit or cost of implement-
ing ERM is not possible. However, our multivari-
ate analysis reveals that market responses to such
appointments are significantly positively associ-
ated with a firm’s size and prior earnings volatil-
ity, and negatively associated with the amount of
cash on hand relative to liabilities and leverage
on the balance sheet. These results are confined to
non-financial firms, possibly due to the regulato-
ry requirements for enterprise risk management
that already exist for financial firms. We con-
clude that the costs and benefits of ERM are firm-
specific.

22000077 PPRRMMIIAA IInnssttiittuuttee AAwwaarrdd ffoorr NNeeww FFrroonnttiieerrss
iinn RRiisskk MMaannaaggeemmeenntt:: Klaus Böcker and
Claudia Klüppelberg of the Munich University
of Technology for “Multivariate Models for
Operational Risk.” 

AABBSSTTRRAACCTT ((sseeee ppaaggee 2266 ooff tthhiiss nneewwsslleetttteerr ffoorr
aann aabbrriiddggeedd vveerrssiioonn ooff tthhee aarrttiiccllee))

In Böcker and Klüppelberg (2005) we presented
a simple approximation of Op-Var of a single 
operational risk cell. The present paper derives
approximations of similar quality and simplicity
for the multivariate problem. Our approach 
is based on modelling of the dependence structure
of different cells via the new concept of a Lévy 
copula.

22000077 RRiisskk MMaannaaggeemmeenntt SSeeccttiioonn AAwwaarrdd ffoorr BBeesstt
PPaappeerr AAwwaarrdd ffoorr PPrraaccttiiccaall RRiisskk MMaannaaggeemmeenntt
AApppplliiccaattiioonnss:: Neil Bodoff of Willis for “Capital
Allocation by Percentile Layer.”

AABBSSTTRRAACCTT ((sseeee ppaaggee 3322 ooff
tthhiiss nneewwsslleetttteerr ffoorr aann aabbrriiddggeedd
vveerrssiioonn ooff tthhee aarrttiiccllee))

MMoottiivvaattiioonn.. Capital allocation
can have substantial ramifica-
tions upon measuring risk ad-
justed profitability as well as
setting risk loads for pricing.
Current allocation methods
that emphasize the tail allocate
too much capital to extreme
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events; “capital consumption” methods, which
incorporate relative likelihood, tend to allocate
insufficient capital to highly unlikely yet ex-
tremely severe losses.
MMeetthhoodd.. In this paper I develop a new formula-
tion of the meaning of holding capital equal to
the Value at Risk. The new formulation views the
total capital of the firm as the sum of many per-
centile layers of capital. Thus capital allocation
varies continuously by layer and the capital allo-
cated to any particular loss scenario is the sum of
allocated capital across many percentile layers.
RReessuullttss. Capital Allocation by Percentile Layer
produces capital allocations that differ signifi-
cantly from other common methods such as VaR,
TVaR, and coTVaR.
CCoonncclluussiioonnss.. Capital Allocation by Percentile
Layer has important advantages over existing
methods. It highlights a new formulation of
Value at Risk and other capital standards, recog-
nizes the capital usage of losses that do not extend
into the tail, and captures the disproportionate
capital usage of severe losses.

As of this writing, an online monograph is being
created to house the papers. A link to the mono-
graph, when completed, will be found on 
the ERM Symposium Web site at www.
ermsymposium.org. Papers that were not 
presented at the symposium will also be includ-
ed in the monograph. 

We encourage you to review the monograph and
read papers of particular interest to you. You
may not agree with everything you read in the
monograph; it was our intent to procure papers
that would not only inform, but also provoke dis-
cussion and spark debate. 

We wish to thank all the organizations and 
committee members for their support and for
making this a success. Planning for the 2008
ERM Symposium call for papers has already
begun. I invite you to contact me if you have
ideas or feedback for next year. Until then,
watch the ERM Symposium site for the latest
developments! ✦
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Editor’s note: This article represents an abridged

version of the submission to the 2007 ERM sympo-

sium, which receives the 2007 Actuarial

Foundation ERM Research Excellence Award for

Best Overall Paper. The full paper is forthcoming in

the Journal of Accounting, Auditing and Finance.

T here has been a dramatic change in the
role of risk management in corpora-
tions (Necco and Stulz, 2006). Recent

corporate financial reporting scandals and
evolving corporate governance requirements
are increasing the expectation that boards of 
directors and senior executives effectively 
manage the risks facing their companies
(Kleffner et. al., 2003). To meet these expecta-
tions, an increasing number of enterprises are
embracing an enterprise-wide risk manage-
ment approach (ERM). 

While there has been significant growth in the
number of ERM programs, little empirical re-
search has been conducted on the value of such
programs (Tufano, 1996; Colquitt et al., 1999;
Liebenberg and Hoyt, 2003; Beasley et. al.,
2005). In particular, there have been few chal-
lenges to the view that ERM provides a signifi-
cant opportunity for competitive advantage
(Stroh, 2005) and that ERM is designed to pro-
tect and enhance shareholder value. However,
modern portfolio theory suggests that an ERM
approach to risk management could be value de-
stroying, as shareholders, through portfolio di-
versification, can eliminate idiosyncratic risk in
a virtually costless manner. According to this
view, expending corporate resources to reduce
idiosyncratic risk will result in a reduction in
firm value and shareholder wealth. However,
there are circumstances, driven by market im-
perfections and agency issues, under which risk
management may have a positive net present

value (Stulz, 1996, 2003), and therefore the true
effect of ERM on shareholder value is uncertain. 

Background and Hypotheses
Development 

One of the challenges associated with ERM im-
plementation is determining the appropriate
leadership structure to manage the identifica-
tion, assessment, measurement, and response
to all types of risks that arise across the enter-
prise. For ERM to be successful, it is critical
that the whole organization understand why
ERM creates value (Necco and Stulz, 2006).
Senior executive leadership over ERM helps
communicate and integrate the entity’s risk phi-
losophy and strategy towards risk management
consistently throughout the enterprise. 

To respond to this challenge, many organiza-
tions are appointing a member of the senior ex-
ecutive team, often referred to as the chief risk
officer or CRO, to oversee the enterprise’s risk
management process (Economist Intelligence
Unit, 2005). Indeed, some argue that the ap-
pointment of a chief risk officer is being used to
signal both internally and externally that senior
management and the board is serious about in-
tegrating all of its risk management activities
under a more powerful senior-level executive
(Lam, 2001). In fact, rating agencies, such as
Standard and Poor’s, explicitly evaluate organi-
zational structure and authority of the risk man-
agement function as part of their assessment of
strength and independence of the risk manage-
ment function (Standard & Poor’s, 2005). 

Recent empirical research documents that the
presence of a CRO is associated with a greater
stage of ERM deployment within an enterprise,
suggesting that the appointment of senior exec-
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utive leadership affects the extent to which
ERM is embraced within an enterprise (Beasley
et. al., 2005). Despite the growth in the appoint-
ment of senior risk executives, little is known
about factors that affect an organization’s deci-
sion to appoint a CRO or equivalent, and
whether these appointments create value.

Because corporations disclose only minimal de-
tails of their risk management programs
(Tufano, 1996), our focus on hiring announce-
ments of senior risk officers attempts to measure
the valuation impact of the firm’s signaling of an
enterprise risk management process. 

The basic premise that ERM is a value creating
activity actually runs counter to modern portfo-
lio theory. Portfolio theory shows that under cer-
tain assumptions, investors can fully diversify
away all firm (or idiosyncratic) risk (Markowitz,
1952). This can usually be achieved costlessly
by randomly adding stocks to an investment
portfolio. Because investors can diversify away
firm-specific risk, they should not be compen-
sated for bearing such risk. As a result, in-
vestors should not value costly attempts by
firms to reduce firm-specific risk, given an in-
vestor’s costless ability to eliminate this type of
risk. While portfolio theory might suggest a lack
of value associated with ERM implementation,
markets do not always operate in the manner
presented by Markowitz (1952). Stulz (1996,
2003) presents arguments under which risk
management activities could be value increas-
ing for shareholders in the presence of agency
costs and market imperfections. The motivation
behind Stulz’s work is to reconcile the apparent
conflict between current wide-spread corporate
embrace of risk management practices and
modern portfolio theory. 

Stulz (1996, 2003) argues that any potential
value creation role for risk management is in the
reduction or elimination of “costly lower-tail
outcomes.” Lower tail outcomes are those

events in which a decline in earnings or a large
loss would result in severe negative conse-
quences for the firm. Thus, when a firm is faced
with the likelihood of lower tail outcomes, en-
gaging in risk management that reduces the
likelihood of real costs associated with such
outcomes could represent a positive net present
value project. Only firms facing an increased
likelihood of these actual negative conse-
quences associated with lower tail events are
expected to benefit from risk management,
(Stulz, 1996, 2003).

Our study of equity market responses to an-
nouncements of appointments of CROs builds
upon Stulz (1996, 2003) to examine firm-specif-
ic variables that reflect the firm’s likelihood of
experiencing a lower-tailed event. These vari-
ables reflect firm-specific factors that finance
theory suggests should explain the value effects
of corporate risk management. These variables
are described more fully below, and include
several factors that may impact earnings volatil-
ity such as the extent of the firm’s growth op-
tions, intangible assets, cash reserves, earnings
volatility, leverage, and firm size. 

GGrroowwtthh OOppttiioonnss.. Firms with extensive growth
options require consistent capital investment
and may face greater asymmetric information
regarding their future earnings (Myers, 1984;
Myers and Majluf, 1984). When in financial
distress, growth options are likely to be under-
valued and that distress may lead to underin-
vestment in profitable growth opportunities. We
hypothesize that the firms with greater growth
options will have a positive abnormal return
around hiring announcements of CROs.

IInnttaannggiibbllee AAsssseettss.. Firms that have more opaque
assets, such as goodwill, are more likely to ben-
efit from an ERM program because these assets
are likely to be undervalued in times of financial
distress (Smith and Stulz, 1985). Although this
benefit directly accrues to debtholders, stock-
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holders should benefit through lower interest
expense charged by the debtholders. We hy-
pothesize that the firms with a large amount of
intangible assets will have a positive abnormal
return around hiring announcements of CROs:

CCaasshh RRaattiioo:: Firms with greater amounts of cash
on hand are less likely to benefit from a risk
management program, as these firms can pro-
tect themselves against a liquidity crisis that
might result from some lower tail outcomes.
Less cash on hand can increase the likelihood of
financial distress for levered firms (Smith and
Stulz, 1985). We hypothesize that firms with
greater amounts of cash will have a negative ab-
normal return around announcements of CRO
appointments.

EEaarrnniinnggss VVoollaattiilliittyy:: Firms with a history of
greater earnings volatility are more likely to
benefit from ERM. Firms that have large
amounts of earnings volatility have a greater
likelihood of seeing a lower tail earnings out-
come, missing analysts’ earnings forecasts, and
violating accounting based debt covenants
(Bartov, 1993). In addition, managers may
smooth earnings to increase firm’s share prices
by reducing the potential loss shareholders may
suffer when they trade for liquidity reasons
(Goel and Thakor, 2003). We hypothesize that
firms experiencing a high variance of earnings
per share (EPS) will have a positive abnormal
return around hiring announcements of CROs.

LLeevveerraaggee : Greater financial leverage in-
creases the likelihood of financial distress.
Under financial distress, firms are likely to
face reductions in debt ratings and conse-
quently higher borrowing costs. More robust
ERM practices may lead to lower financing
costs. We hypothesize that the firms with
high leverage will have a positive abnormal
return around hiring announcements of
CROs. 

SSiizzee:: Research examining the use of financial
derivatives finds that large companies make
greater use of derivatives than smaller compa-
nies. Such findings confirm the experience of
risk management practitioners that the corpo-
rate use of derivatives requires considerable
upfront investment in personnel, training and
computer hardware and software, which might
discourage smaller firms from engaging in their
use (Stulz, 2003). We hypothesize that larger
firms will have a positive abnormal return
around hiring announcements of CROs. 

Data and Results

Our study method examines the impact of firm-
specific characteristics on the equity market re-
sponse to announcements of appointments of
CROs within the enterprise. We searched the
period of 1992 through 2003 and identified 120
unique observations. Each observation is
unique to a firm, in that it represents a firm’s first
announcement during the period searched,
subsequent announcements by a firm are ex-
cluded. By starting our search in 1992, we hope
to capture the initial creation of a CRO position,
as the presence of CRO positions became more
prevalent in the later 1990s. 

The security market’s response is measured by
examining the cumulative abnormal return
(CAR) to the CRO announcement. Our study 
focuses on the cross-sectional firm characteris-
tics previously discussed that we hypothesize
may determine the value of effects of risk 
management. In addition, due to the large 
number of financial service firms in our sample,
we disaggregate our sample into financial 
service industry firms and non-financial service
industry firms.  

To examine whether there are cross sectional
differences in our hypothesized associations
between firm-specific characteristics and the
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equity market reaction to announcements of ap-
pointments of CROs, we use multivariate re-
gression analysis.  Specifically, the general form
of the model is the following:

Given the large portion (39.1 percent) of our
sample is from the financial services industries
and that these firms have different regulatory
expectations with respect to ERM, we examine
whether the predicted associations described
by our hypotheses differ from non-financial
service firms. The results of this analysis are re-
ported separately in Table 1.

We find that of the six independent variables only
the cash ratio variable is found to be significantly
associated with the market reaction to announce-
ments of appointments of CROs for the financial
services firms in our sample, with the overall model
not significant. This result is consistent with the be-
lief that regulatory pressures and requirements
drive financial services institutions to embrace en-
terprise-wide risk management processes, not
firm-specific financial characteristics. 

In contrast, the results shown in Table 1 for the
sample of firms in industries other than finan-
cial services indicate that, in the absence of reg-
ulatory expectations, several of the firm’s
financial characteristics may explain the firm’s
value enhancement due to ERM adoption. 

For our sample non-financial firms, we find that
announcement period market returns are posi-
tively associated with the firm’s prior earnings
volatility and size, while negatively associated
with the extent of cash on hand and leverage.
There is no statistical association between the
announcement period returns and the firm’s
growth or extent of intangible assets. 

While the results for earnings volatility, size and
cash on hand are consistent with our expectations,
the findings for leverage are opposite our expecta-
tions. One explanation for this result is that share-
holders of highly leveraged firms may not want
risk reduction as it reduces the value of the option
written to them by debtholders. In this case, the
option value outweighs the dead weight costs of
bankruptcy that are increased with high leverage. 

Conclusions and Limitations

This study provides evidence on how the perceived
value of enterprise risk management processes
varies across companies. While ERM practices are
being widely embraced within the corporate sector,
not all organizations are embracing those practices
and little academic research exists about the bene-
fits and costs of ERM. 

CAR(0,+1) =  a0 + a1Market/Book + a2Intangibles 
+  a3Cash Ratio  +  a4EPS Vol  +  a5Leverage  +  a6Size  +  e
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In cross section analysis, we find that a firm’s
shareholders respond largely in accordance
with our expectations and value ERM where the
program can enhance value by overcoming mar-
ket distortions or agency costs. Specifically, we
find that shareholders of large firms that have
little cash on hand value ERM. Furthermore,
shareholders of large non-financial firms, with
volatile earnings, low amounts of leverage and
low amounts of cash on hand also react favorably
to the implementation of ERM. These findings
are consistent with the idea that a well imple-
mented ERM program can create value when it
reduces the likelihood of costly lower tail out-
comes such as financial distress. 
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Abstract: Simultaneous modelling of opera-
tional risks occurring in different event type/busi-
ness line cells poses the challenge for operational
risk quantification. Invoking the new concept of
Lévy copulas for dependence modelling yields
simple approximations of high quality for multi-
variate operational VAR.

A required feature of any advanced
measurement approach (AMA) of
Basel II for measuring operational

risk is that it allows for explicit correlations 
between different operational risk events. The
core problem here is multivariate modelling 
encompassing all different event type/business
line cells, and thus the question how their 
dependence structure affects a bank's total 
operational risk. The prototypical loss distribu-
tion approach (LDA) assumes that, for each cell

the cumulated operational loss 
up to time t is described by an aggregate 
loss process

(1.1)

where for each i the sequence are inde-
pendent and identically distributed (iid) positive
random variables with distribution function 
describing the magnitude of each loss event
(loss severity), and counts the number
of losses in the time interval [0, t] (called fre-
quency), independent of . The bank’s
total operational risk is then given as:

(1.2)

The present literature suggests to model de-
pendence between different operational risk
cells by means of different concepts, which ba-
sically split into models for frequency depend-

ence on the one hand and for severity depend-
ence on the other hand.

Here we suggest a model based on the new con-
cept of Lévy copulas (see e.g. Cont & Tankov
(2004)), which models dependence in frequen-
cy and severity simultaneously, yielding a
model with comparably few parameters.
Moreover, our model has the same advantage as
a distributional copula: the dependence struc-
ture between different cells can be separated
from the marginal processes for .
This approach allows for closed-form approxi-
mations for operational VAR (OpVAR). 

Dependent Operational Risks
and Lévy Copulas

In accordance with a recent survey of the Basel
Committee on Banking Supervision about AMA
practices at financial services firms, we 
assume that the loss frequency processes in
(1.1) follows a homogeneous Poisson process
with rate . Then the aggregate loss (1.1)
constitutes a compound Poisson process and is
therefore a Lévy process (actually, the com-
pound Poisson process is the only Lévy process
with piecewise constant sample paths).

A key element in the theory of Lévy processes is the
notion of the so-called Lévy measure. A Lévy meas-
ure controls the jump behaviour of a Lévy process
and, therefore, has an intuitive interpretation, in
particular in the context of operational risk. The
Lévy measure of a single operational risk cell
measures the expected number of losses per unit
time with a loss amount in a prespecified interval.
For our compound Poisson model, the Lévy meas-
ure of the cell process is completely deter-
mined by the frequency parameter and
the distribution function of the cell’s severity:

[0, t] (called frequency), independent of (X i
k)k∈N. The bank’s total operational risk is then

given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (1.2)

The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency de-
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Here we suggest a model based on the new concept of Lévy copulas (see e.g. Cont

& Tankov (2004)), which models dependence in frequency and severity simultaneously,

yielding a model with comparably few parameters. Moreover, our model has the same

advantage as a distributional copula: the dependence structure between different cells can

be separated from the marginal processes Si for i = 1, . . . , d. This approach allows for

closed-form approximations for operational VAR (OpVAR).
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parameter λi > 0 and the distribution function Fi of the cell’s severity: Πi([0, x)) :=

λiP (X i ≤ x) = λiFi(x) for x ∈ [0,∞). The corresponding one-dimensional tail integral

is defined as

Πi(x) := Πi([x,∞)) = λiP (X i > x) = λiF i(x) . (2.1)

Our goal is modelling multivariate operational risk. Hence, the question is how dif-

ferent one-dimensional compound Poisson processes Si(·) =
∑Ni(·)

k=1 X i
k can be used to

construct a d-dimensional compound Poisson process S = (S1, S2, . . . , Sd) with in general

dependent components. It is worthwhile to recall the similar situation in the case of the
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the compound Poisson process is the only Lévy process with piecewise constant sample
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given as
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has an intuitive interpretation, in particular in the context of operational risk. The Lévy

measure of a single operational risk cell measures the expected number of losses per unit

time with a loss amount in a prespecified interval. For our compound Poisson model,
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Abstract

Simultaneous modelling of operational risks occurring in different event type/business

line cells poses the challenge for operational risk quantification. Invoking the new
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[0, t] (called frequency), independent of (X i
k)k∈N. The bank’s total operational risk is then

given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (1.2)

The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency de-

pendence on the one hand and for severity dependence on the other hand.

Here we suggest a model based on the new concept of Lévy copulas (see e.g. Cont

& Tankov (2004)), which models dependence in frequency and severity simultaneously,

yielding a model with comparably few parameters. Moreover, our model has the same

advantage as a distributional copula: the dependence structure between different cells can

be separated from the marginal processes Si for i = 1, . . . , d. This approach allows for

closed-form approximations for operational VAR (OpVAR).

2 Dependent Operational Risks and Lévy Copulas

In accordance with a recent survey of the Basel Committee on Banking Supervision about

AMA practices at financial services firms, we assume that the loss frequency processes Ni

in (1.1) follows a homogeneous Poisson process with rate λi > 0. Then the aggregate loss

(1.1) constitutes a compound Poisson process and is therefore a Lévy process (actually,

the compound Poisson process is the only Lévy process with piecewise constant sample

paths).

A key element in the theory of Lévy processes is the notion of the so-called Lévy

measure. A Lévy measure controls the jump behaviour of a Lévy process and, therefore,

has an intuitive interpretation, in particular in the context of operational risk. The Lévy

measure of a single operational risk cell measures the expected number of losses per unit

time with a loss amount in a prespecified interval. For our compound Poisson model,

the Lévy measure Πi of the cell process Si is completely determined by the frequency

parameter λi > 0 and the distribution function Fi of the cell’s severity: Πi([0, x)) :=

λiP (X i ≤ x) = λiFi(x) for x ∈ [0,∞). The corresponding one-dimensional tail integral

is defined as

Πi(x) := Πi([x,∞)) = λiP (X i > x) = λiF i(x) . (2.1)

Our goal is modelling multivariate operational risk. Hence, the question is how dif-

ferent one-dimensional compound Poisson processes Si(·) =
∑Ni(·)

k=1 X i
k can be used to

construct a d-dimensional compound Poisson process S = (S1, S2, . . . , Sd) with in general

dependent components. It is worthwhile to recall the similar situation in the case of the

2

[0, t] (called frequency), independent of (X i
k)k∈N. The bank’s total operational risk is then

given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (1.2)

The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency de-

pendence on the one hand and for severity dependence on the other hand.

Here we suggest a model based on the new concept of Lévy copulas (see e.g. Cont
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The corresponding one-dimensional tail inte-
gral is defined as

(2.1)

Our goal is modelling multivariate operational
risk. Hence, the question is how different one-
dimensional compound Poisson processes

can be used to construct a
d-dimensional compound Poisson process

with in general dependent
components. It is worthwhile to recall the simi-
lar situation in the case of the more restrictive
setting of static random variables. It is well-
known that the dependence structure of a ran-
dom vector can be disentangled from its
marginals by introducing a distributional copu-
la. Similarly, a multivariate tail integral

can be constructed from the marginal tail inte-
grals (2.1) by means of a Lévy copula. This rep-
resentation is the content of Sklar’s theorem for
Lévy processes with positive jumps, which basi-
cally says that every multivariate tail integral

can be decomposed into its marginal tail in-
tegrals and a Lévy copula according to

For a precise formulation of this Theorem we
refer to Cont & Tankov (2004), Theorem 5.6.
Now we can define the following prototypical
LDA model.

DDeefifinniittiioonn 22..11.. 
[Multivariate Compound Poisson model]

(1) All aggregate loss processes
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which basically says that every multivariate tail integral Π can be decomposed into its

marginal tail integrals and a Lévy copula Ĉ according to
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which basically says that every multivariate tail integral Π can be decomposed into its

marginal tail integrals and a Lévy copula Ĉ according to
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well-known Clayton copula for distribution functions and parameterized by ϑ > 0 (see

Cont & Tankov (2004), Example 5.5):
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Ĉ‖(u, v) = min(u, v). We decompose now the two cells’ aggregate loss processes into

3

[0, t] (called frequency), independent of (X i
k)k∈N. The bank’s total operational risk is then

given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (1.2)

The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency de-

pendence on the one hand and for severity dependence on the other hand.

Here we suggest a model based on the new concept of Lévy copulas (see e.g. Cont

& Tankov (2004)), which models dependence in frequency and severity simultaneously,

yielding a model with comparably few parameters. Moreover, our model has the same

advantage as a distributional copula: the dependence structure between different cells can

be separated from the marginal processes Si for i = 1, . . . , d. This approach allows for

closed-form approximations for operational VAR (OpVAR).

2 Dependent Operational Risks and Lévy Copulas

In accordance with a recent survey of the Basel Committee on Banking Supervision about

AMA practices at financial services firms, we assume that the loss frequency processes Ni
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has an intuitive interpretation, in particular in the context of operational risk. The Lévy
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measure. A Lévy measure controls the jump behaviour of a Lévy process and, therefore,
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measure of a single operational risk cell measures the expected number of losses per unit

time with a loss amount in a prespecified interval. For our compound Poisson model,
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dependent components. It is worthwhile to recall the similar situation in the case of the
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more restrictive setting of static random variables. It is well-known that the dependence

structure of a random vector can be disentangled from its marginals by introducing a

distributional copula. Similarly, a multivariate tail integral

Π(x1, . . . , xd) = Π([x1,∞) × · · · × [xd,∞)) , x ∈ [0,∞]d , (2.2)

can be constructed from the marginal tail integrals (2.1) by means of a Lévy copula. This

representation is the content of Sklar’s theorem for Lévy processes with positive jumps,

which basically says that every multivariate tail integral Π can be decomposed into its

marginal tail integrals and a Lévy copula Ĉ according to

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)) , x ∈ [0,∞]d . (2.3)

For a precise formulation of this Theorem we refer to Cont & Tankov (2004), Theorem 5.6.

Now we can define the following prototypical LDA model.

Definition 2.1. [Multivariate Compound Poisson model]

(1) All aggregate loss processes Si for i = 1, . . . , d are compound Poisson processes with

tail integral Πi(·) = λiFi(·).

(2) The dependence between different cells is modelled by a Lévy copula Ĉ : [0,∞)d →

[0,∞), i.e., the tail integral of the d-dimensional compound Poisson process S = (S1, . . . , Sd)

is defined by

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)).

3 The Bivariate Clayton Model

A bivariate model is particularly useful to illustrate how dependence modelling via Lévy

copulas works. Therefore, we now focus on two operational risk cells as in Definition 2.1(1).

The dependence structure is modelled by a Clayton Lévy copula, which is similar to the

well-known Clayton copula for distribution functions and parameterized by ϑ > 0 (see

Cont & Tankov (2004), Example 5.5):

Ĉϑ(u, v) = (u−ϑ + v−ϑ)−1/ϑ , u, v ≥ 0 .

This copula covers the whole range of positive dependence. For ϑ → 0 we obtain in-

dependence and then, as we will see below, losses in different cells never occur at the

same time. For ϑ → ∞ we get the complete positive dependence Lévy copula given by

Ĉ‖(u, v) = min(u, v). We decompose now the two cells’ aggregate loss processes into
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dependence and then, as we will see below, losses in different cells never occur at the

same time. For ϑ → ∞ we get the complete positive dependence Lévy copula given by

Ĉ‖(u, v) = min(u, v). We decompose now the two cells’ aggregate loss processes into

3

different components (where the time parameter t is dropped for simplicity):

S1 = S⊥1 + S‖1 =

N⊥1∑

k=1

X1
⊥k +

N‖∑

l=1

X1
‖l ,

S2 = S⊥2 + S‖2 =

N⊥2∑

m=1

X2
⊥m +

N‖∑

l=1

X2
‖l ,

(3.1)

where S‖1 and S‖2 describe the aggregate losses of cell 1 and 2 that is generated by

“common shocks”, and S⊥1 and S⊥2 describe aggregate losses of one cell only. Note that

apart from S‖1 and S‖2, all compound Poisson processes on the right-hand side of (3.1)

are mutually independent. The frequency of simultaneous losses is given by

Ĉϑ(λ1, λ2) = lim
x↓0

Π‖2(x) = lim
x↓0

Π‖1(x) = (λ−θ
1 + λ−θ

2 )−1/θ =: λ‖ ,

which shows that the number of simultaneous loss events is controlled by the Lévy copula.

Obviously, 0 ≤ λ‖ ≤ min(λ1, λ2),where the left and right bounds refer to ϑ → 0 and

ϑ → ∞, respectively. Consequently, in the case of independence, losses never happen at

the same instant of time.

Also the severity distributions of X1
‖ and X2

‖ as well as their dependence structure are

determined by the Lévy copula. To see this, define the joint survival function as

F ‖(x1, x2) := P (X1
‖ > x1, X

2
‖ > x2) =

1

λ‖

Ĉϑ(Π1(x1), Π2(x2)) (3.2)

with marginals

F ‖1(x1) = lim
x2↓0

F ‖(x1, x2) =
1

λ‖

Ĉϑ(Π1(x1), λ2) (3.3)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖

Ĉϑ(λ1, Π2(x2)) . (3.4)

In particular, it follows that F‖1 and F‖2 are different from F1 and F2, respectively. To

explicitly extract the dependence structure between the severities of simultaneous losses

X1
‖ and X2

‖ we use the concept of a distributional survival copula. Using (3.2)–(3.4) we

see that the survival copula Sϑ for the tail severity distributions F ‖1(·) and F ‖2(·) is the

well-known distributional Clayton copula; i.e.

Sϑ(u, v) = (u−ϑ + v−ϑ − 1)−1/ϑ, 0 ≤ u, v ≤ 1 .

For the tail integrals of the independent loss processes S⊥1 and S⊥2. we obtain for

x1, x2 ≥ 0

Π⊥1(x1) = Π1(x1) − Π‖1(x1) = Π1(x1) − Ĉϑ(Π1(x1), λ2) ,

Π⊥2(x2) = Π2(x2) − Π‖2(x2) = Π2(x2) − Ĉϑ(λ1, Π2(x2)) ,

so that λ⊥1 = λ1 − λ‖ , λ⊥2 = λ2 − λ‖.
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well-known Clayton copula for distribution functions and parameterized by ϑ > 0 (see

Cont & Tankov (2004), Example 5.5):
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4 Analytical Approximations for Operational VAR

In this section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in (1.2). Our goal is to provide some general insight to multivariate operational

risk and to find out, how different dependence structures (modelled by Lévy copulas)

affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.

Since for every compound Poisson process with intensity λ > 0 and positive jumps

with distribution function F , the tail integral is given by Π(·) = λF (·), it follows from
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In this section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in (1.2). Our goal is to provide some general insight to multivariate operational

risk and to find out, how different dependence structures (modelled by Lévy copulas)

affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :
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i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.
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Ĉϑ(Π1(x1), λ2) (3.3)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
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Ĉϑ(Π1(x1), λ2) (3.3)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
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determined by the Lévy copula. To see this, define the joint survival function as

F ‖(x1, x2) := P (X1
‖ > x1, X

2
‖ > x2) =

1

λ‖
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Ĉϑ(Π1(x1), λ2) (3.3)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
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the sequel this approximation, which can be
written as
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This result proves now useful to determine a bank’s total operational risk consisting of

several cells. Before doing that, recall the definition of OpVAR for a single operational

risk cell (henceforth called stand-alone OpVAR.) For each cell, stand-alone OpVAR at

confidence level κ ∈ (0, 1) and time horizon t is the κ-quantile of the aggregate loss

distribution, i.e. VARt(κ) = G←t (κ) with G←t (κ) = inf{x ∈ R : P (S(t) ≤ x) ≥ κ}.

In Böcker & Klüppelberg (2005, 2006, 2007) it was shown that OpVAR at high con-

fidence level can be approximated by a closed-form expression, if the loss severity is

subexponential, i.e. heavy-tailed. As this is common believe we consider in the sequel this

approximation, which can be written as

VARt(κ) ∼ F←
(

1 −
1 − κ

EN(t)

)
, κ ↑ 1 , (4.4)

where the symbol “∼” means that the ratio of left and right hand side converges to

1. Moreover, EN(t) is the cell’s expected number of losses in the time interval [0, t].

Important examples for subexponential distributions are lognormal, Weibull, and Pareto.

Here, we extend the idea of an asymptotic OpVAR approximation to the multivariate

problem. In doing so, we exploit the fact that S+ is a compound Poisson process with

parameters as in (4.3). In particular, if F+ is subexponential, we can apply (4.4) to

estimate total OpVAR. Consequently, if we are able to specify the asymptotic behaviour

of F
+
(x) as x → ∞ we have automatically an approximation of VARt(κ) as κ ↑ 1.

To make more precise statements about OpVAR, we focus our analysis on Pareto

distributed severities with distribution function

F (x) =
(
1 +

x

θ

)−α

, x > 0 ,

with shape parameters θ > 0 and tail parameter α > 0. Pareto’s law is the prototypical

parametric example for a heavy-tailed distribution and suitable for operational risk mod-

elling. As a simple consequence of (4.4), in the case of a compound Poisson model with

Pareto severities (Pareto-Poisson model) the analytic OpVAR is given by

VARt(κ) ∼ θ
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λ t
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)1/α

− 1

]
∼ θ
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, κ ↑ 1 . (4.5)

To demonstrate the kind of results we obtain by such approximation methods we

consider a Pareto-Poisson model, where the severity distributions Fi of the first (say)
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4 Analytical Approximations for Operational VAR

In this section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in (1.2). Our goal is to provide some general insight to multivariate operational

risk and to find out, how different dependence structures (modelled by Lévy copulas)

affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.

Since for every compound Poisson process with intensity λ > 0 and positive jumps

with distribution function F , the tail integral is given by Π(·) = λF (·), it follows from
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affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.

Since for every compound Poisson process with intensity λ > 0 and positive jumps

with distribution function F , the tail integral is given by Π(·) = λF (·), it follows from

5

Page 29 ◗

September 2007 ◗ Risk Management

continued on page 30 ◗

2 4 6 8 10
x1

2

4

6

8

10

x2

Figure 4.1. Decomposition of the domain of the tail integral Π
+
(z) for z = 6 into a

simultaneous loss part Π
+

‖ (z) (orange area) and independent parts Π⊥1(z) (solid black

line) and Π⊥2(z) (dashed black line).

4 Analytical Approximations for Operational VAR

In this section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in (1.2). Our goal is to provide some general insight to multivariate operational

risk and to find out, how different dependence structures (modelled by Lévy copulas)
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risk and to find out, how different dependence structures (modelled by Lévy copulas)

affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.

Since for every compound Poisson process with intensity λ > 0 and positive jumps

with distribution function F , the tail integral is given by Π(·) = λF (·), it follows from

5

(4.2) that the total aggregate loss process S+ is again compound Poisson with frequency

parameter and severity distribution

λ+ = lim
z↓0

Π
+
(z) and F+(z) = 1 − F

+
(z) = 1 −

Π
+
(z)

λ+
, z ≥ 0 . (4.3)

This result proves now useful to determine a bank’s total operational risk consisting of

several cells. Before doing that, recall the definition of OpVAR for a single operational

risk cell (henceforth called stand-alone OpVAR.) For each cell, stand-alone OpVAR at

confidence level κ ∈ (0, 1) and time horizon t is the κ-quantile of the aggregate loss

distribution, i.e. VARt(κ) = G←t (κ) with G←t (κ) = inf{x ∈ R : P (S(t) ≤ x) ≥ κ}.

In Böcker & Klüppelberg (2005, 2006, 2007) it was shown that OpVAR at high con-

fidence level can be approximated by a closed-form expression, if the loss severity is

subexponential, i.e. heavy-tailed. As this is common believe we consider in the sequel this

approximation, which can be written as

VARt(κ) ∼ F←
(

1 −
1 − κ

EN(t)

)
, κ ↑ 1 , (4.4)

where the symbol “∼” means that the ratio of left and right hand side converges to

1. Moreover, EN(t) is the cell’s expected number of losses in the time interval [0, t].

Important examples for subexponential distributions are lognormal, Weibull, and Pareto.

Here, we extend the idea of an asymptotic OpVAR approximation to the multivariate

problem. In doing so, we exploit the fact that S+ is a compound Poisson process with

parameters as in (4.3). In particular, if F+ is subexponential, we can apply (4.4) to

estimate total OpVAR. Consequently, if we are able to specify the asymptotic behaviour

of F
+
(x) as x → ∞ we have automatically an approximation of VARt(κ) as κ ↑ 1.

To make more precise statements about OpVAR, we focus our analysis on Pareto

distributed severities with distribution function

F (x) =
(
1 +

x

θ

)−α

, x > 0 ,

with shape parameters θ > 0 and tail parameter α > 0. Pareto’s law is the prototypical

parametric example for a heavy-tailed distribution and suitable for operational risk mod-

elling. As a simple consequence of (4.4), in the case of a compound Poisson model with

Pareto severities (Pareto-Poisson model) the analytic OpVAR is given by

VARt(κ) ∼ θ

[(
λ t

1 − κ

)1/α

− 1

]
∼ θ

(
λ t

1 − κ

)1/α

, κ ↑ 1 . (4.5)

To demonstrate the kind of results we obtain by such approximation methods we

consider a Pareto-Poisson model, where the severity distributions Fi of the first (say)
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plete dependence between different cells,
meaning that losses within different business
lines or risk categories always happen at the
same instants of time.

Very often, the simple-sum OpVAR (4.7) is
considered to be the worst case scenario and,
hence, as an upper bound for total OpVAR in
general, which in the heavy-tailed case can be
grossly misleading. To see this, assume the
same frequency in all cells also for the inde-
pendent model, and denote by and

can be grossly misleading. To see this, assume the same frequency λ in all cells also for

the independent model, and denote by VAR+
‖ (κ) and VAR+

⊥(κ) completely dependent and
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whereas VAR+
‖ (κ) is given by (4.7). Then, as a consequence of convexity (α > 1) and

concavity (α < 1) of the function x 7→ xα,

VAR+
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< 1 , α > 1

= 1 , α = 1

> 1 , α < 1 .

(4.10)

This result says that for heavy-tailed severity data with F i(xi) ∼ (xi/θi)
−α as xi → ∞,

subadditivity of OpVAR is violated because the sum of stand-alone OpVARs is smaller

than independent total OpVAR.
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b ≤ d cells are tail equivalent with tail parameter α > 0 and dominant to all other cells,

i.e.

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d . (4.6)

In the important cases of complete positive dependence and independence, closed-form

results can be found and may serve as extreme cases concerning the dependence structure

of the model.

Theorem 4.2. Consider a compound Poisson model with cell processes S1, . . . , Sd with

Pareto distributed severities satisfying (4.6). Let VARi
t(·) be the stand-alone OpVAR of

cell i.

(1) If all cells are completely dependent with the same frequency λ for all cells, then S+

is compound Poisson with parameters

λ+ = λ and F
+
(z) ∼

(
b∑

i=1

θi

)α

z−α , z → ∞ ,

and total OpVAR is asymptotically given by

VAR+
‖t(κ) ∼

b∑

i=1

VARi
t(κ), κ ↑ 1 . (4.7)

(2) If all cells are independent, then S+ is compound Poisson with parameters

λ+ = λ1 + · · ·+ λd and F
+
(z) ∼

1

λ+

b∑

i=1

(
θi

z

)α

λi , z → ∞ , (4.8)

and total OpVAR is asymptotically given by

VAR+
⊥t(κ) ∼

[
b∑

i=1

(
VARi

t(κ)
)α
]1/α

, κ ↑ 1 . (4.9)

On the one hand, Theorem 4.2 states that for the completely dependent Pareto-Poisson

model, total asymptotic OpVAR is simply the sum of the dominating cell’s asymptotic

stand-alone OpVARs. Recall that this is similar to the new proposals of Basel II, where

the standard procedure for calculating capital charges for operational risk is just the

simple-sum VAR. To put it another way, regulators implicitly assume complete depen-

dence between different cells, meaning that losses within different business lines or risk

categories always happen at the same instants of time.

Very often, the simple-sum OpVAR (4.7) is considered to be the worst case scenario

and, hence, as an upper bound for total OpVAR in general, which in the heavy-tailed case
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approximation, which can be written as

VARt(κ) ∼ F←
(

1 −
1 − κ
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)
, κ ↑ 1 , (4.4)

where the symbol “∼” means that the ratio of left and right hand side converges to

1. Moreover, EN(t) is the cell’s expected number of losses in the time interval [0, t].

Important examples for subexponential distributions are lognormal, Weibull, and Pareto.

Here, we extend the idea of an asymptotic OpVAR approximation to the multivariate

problem. In doing so, we exploit the fact that S+ is a compound Poisson process with

parameters as in (4.3). In particular, if F+ is subexponential, we can apply (4.4) to

estimate total OpVAR. Consequently, if we are able to specify the asymptotic behaviour

of F
+
(x) as x → ∞ we have automatically an approximation of VARt(κ) as κ ↑ 1.

To make more precise statements about OpVAR, we focus our analysis on Pareto

distributed severities with distribution function

F (x) =
(
1 +

x

θ

)−α

, x > 0 ,

with shape parameters θ > 0 and tail parameter α > 0. Pareto’s law is the prototypical

parametric example for a heavy-tailed distribution and suitable for operational risk mod-

elling. As a simple consequence of (4.4), in the case of a compound Poisson model with

Pareto severities (Pareto-Poisson model) the analytic OpVAR is given by

VARt(κ) ∼ θ

[(
λ t

1 − κ

)1/α

− 1

]
∼ θ

(
λ t

1 − κ

)1/α

, κ ↑ 1 . (4.5)

To demonstrate the kind of results we obtain by such approximation methods we

consider a Pareto-Poisson model, where the severity distributions Fi of the first (say)
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b ≤ d cells are tail equivalent with tail parameter α > 0 and dominant to all other cells,

i.e.

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d . (4.6)

In the important cases of complete positive dependence and independence, closed-form

results can be found and may serve as extreme cases concerning the dependence structure

of the model.

Theorem 4.2. Consider a compound Poisson model with cell processes S1, . . . , Sd with

Pareto distributed severities satisfying (4.6). Let VARi
t(·) be the stand-alone OpVAR of

cell i.

(1) If all cells are completely dependent with the same frequency λ for all cells, then S+

is compound Poisson with parameters

λ+ = λ and F
+
(z) ∼

(
b∑

i=1

θi

)α

z−α , z → ∞ ,

and total OpVAR is asymptotically given by

VAR+
‖t(κ) ∼

b∑

i=1

VARi
t(κ), κ ↑ 1 . (4.7)

(2) If all cells are independent, then S+ is compound Poisson with parameters

λ+ = λ1 + · · ·+ λd and F
+
(z) ∼

1

λ+

b∑

i=1

(
θi

z

)α

λi , z → ∞ , (4.8)

and total OpVAR is asymptotically given by

VAR+
⊥t(κ) ∼

[
b∑

i=1

(
VARi

t(κ)
)α
]1/α

, κ ↑ 1 . (4.9)

On the one hand, Theorem 4.2 states that for the completely dependent Pareto-Poisson

model, total asymptotic OpVAR is simply the sum of the dominating cell’s asymptotic

stand-alone OpVARs. Recall that this is similar to the new proposals of Basel II, where

the standard procedure for calculating capital charges for operational risk is just the

simple-sum VAR. To put it another way, regulators implicitly assume complete depen-

dence between different cells, meaning that losses within different business lines or risk

categories always happen at the same instants of time.

Very often, the simple-sum OpVAR (4.7) is considered to be the worst case scenario

and, hence, as an upper bound for total OpVAR in general, which in the heavy-tailed case
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can be grossly misleading. To see this, assume the same frequency λ in all cells also for

the independent model, and denote by VAR+
‖ (κ) and VAR+

⊥(κ) completely dependent and

independent total OpVAR, respectively. In this case we obtain from (4.9) in the situation

(4.6) from Theorem 4.2(2)

VAR+
⊥(κ) ∼

(
λ t

1 − κ

)1/α
(

b∑

i=1

θα
i

)1/α

, κ ↑ 1 ,

whereas VAR+
‖ (κ) is given by (4.7). Then, as a consequence of convexity (α > 1) and

concavity (α < 1) of the function x 7→ xα,

VAR+
⊥(κ)

VAR+
‖ (κ)

=

(∑b
i=1 θα

i

)1/α

∑b
i=1 θi






< 1 , α > 1

= 1 , α = 1

> 1 , α < 1 .

(4.10)

This result says that for heavy-tailed severity data with F i(xi) ∼ (xi/θi)
−α as xi → ∞,

subadditivity of OpVAR is violated because the sum of stand-alone OpVARs is smaller

than independent total OpVAR.
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Böcker, K. and Klüppelberg, C. (2005) Operational VAR: a closed-form solution. RISK

Magazine, December, 90-93.
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holds the chair of Mathematical Statistics at the Center for Mathematical Sciences of the

Munich University of Technology. The opinions expressed in this article are those of the

authors and do not reflect the views of HypoVereinsbank.

References

Böcker, K. and Klüppelberg, C. (2005) Operational VAR: a closed-form solution. RISK

Magazine, December, 90-93.
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Klaus Böcker is senior risk controller at HypoVereinsbank in Munich. Claudia Klüppelberg
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T he goal of this paper is to propose a new
approach to capital allocation within a
financial conglomerate. 

Context 
What motivates a financial firm (e.g., a commer-
cial bank, insurance company, hedge fund, in-
vestment bank, etc.) to allocate capital?
Usually, the firm comprises many business
units, products, asset managers, traders, under-
writers, etc.; the firm desires to measure the
profitability of these various components.
However, because these units engage in activi-
ties of varying degrees of risk, the firm wishes to
deploy a methodology that accounts for risk
when measuring profitability. Thus, the chal-
lenge of capital allocation usually arises within
the context of a firm wishing to measure “risk-
adjusted profitability.” Additionally, imple-
menting a framework to measure profitability
retrospectively can ultimately lead to its inte-
gration into prospective situations. In other
words, the methodology for measuring prof-
itability can also become part and parcel of how
a firm’s business units set prices. Thus, capital
allocation can affect both pricing methodology
as well as profitability measurement.

Scope
In this paper we will narrow the scope in order to
streamline the discussion. Therefore, we make
the following assumptions:

• The financial firm we will deal with is a pub-
licly traded insurance company that writes 
property catastrophe business.

• The company writes only single year policies.

• The company’s regulators, rating agencies,
and investors demand that the firm holds cap-
ital equal to Value-at-Risk (VaR) at the 99th
percentile (with a one-year time horizon).

• The company’s investors demand that the firm
achieve profit from its underwriting activities;
the required profit equals the amount of the
firm’s capital multiplied by a required per-
centage rate of return.

Therefore, while there is in theory an important
question of how much capital a firm should hold,
we assume that the operating environment (reg-
ulators, rating agencies, investors) imposes an
answer. Similarly, while there is in theory an im-
portant question regarding what should be the
required rate of return on capital, we assume
that the operating environment (investors) im-
poses an answer. Thus, forces external to the
firm require it both to hold an amount of capital
and also to achieve a required rate of return on
this capital. Thus, the questions of how much
capital to hold and what rate of return to earn on
this capital are outside the scope of our discus-
sion; the only question we seek to address is how
the firm should allocate capital.

Background
Mango1, among others, has highlighted that all of
the capital of the firm is available to pay any one
claim of any single insurance policy. Therefore,
by definition, all of the capital relates to the total
firm and cannot be allocated to its components.
This concept has two important ramifications.
First, as Kreps 2 has clarified, when we talk about
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allocating capital we are really talking about tak-
ing the cost of the total firm’s capital and allocating
this cost. Essentially, we are taking the required
rate of return on capital and allocating it to compo-
nents of the firm; we say “capital allocation”
merely as shorthand. 

Second, because capital relates to the total firm,
any discussion of risk, capital and capital alloca-
tion must relate to loss scenarios for the total
firm. For example, many existing methods of
capital allocation begin by measuring capital for
each business unit on a standalone basis and
then attempt to somehow “roll up” all of these
capital amounts into a total capital figure.
Essentially, all of these methods are inappropri-
ate because they fail to measure risk and capital
in the proper context of the loss to the total firm. 

On the other hand, some capital allocation meth-
ods do properly account for the fact that individ-
ual business units or other components of the
firm must be evaluated based upon their contri-
bution to the total firm loss. One notable example
of such an approach is the “co-measures” frame-
work developed by Kreps3. Essentially, Kreps re-
quires that one evaluate risk and capital for each
scenario of total loss to the firm and, simultane-
ously, keep track of which components con-
tribute to the total firm loss. Once capital is
allocated to loss scenario at the total firm level, it
can then be further allocated to those business
units, perils, policies, product types, etc. that are
the “culprits” that contribute to these loss sce-
narios. The question that remains, then, is how
one should allocate the cost of capital to the var-
ious “total firm loss scenarios.” In particular,
what about our situation in which the firm holds
capital based upon VaR (99 percent)?

Current Approach
Here one often encounters the following logic.
When a firm holds capital based upon VaR (99
percent), it means the firm is holding capital for
the 99th percentile loss scenario, or the “1-in-100
year” loss scenario. Therefore, we allocate the
cost of capital to those business units, products,
perils, policies, underwriters, etc. that produce

losses that contribute to this loss scenario. Or,
similarly, if the firm is holding capital based
upon Tail Value at Risk (TVaR (99 percent)),
then it means that the firm is holding capital for
the average loss beyond the 99th percentile;
therefore, according to this reasoning, allocate
capital to those business units that contribute to
these loss scenarios beyond the 99th percentile.
The result is to allocate capital to components of
the firm only to the extent that they contribute to
extremely severe losses in the “tail” of the distri-
bution.

Problems with Current Approach
As Mango has pointed out, however, there are
many different loss scenarios that are less severe
than the 99th percentile loss that require the use
of the company’s capital. For example, if the
company holds 900 million of capital based upon
VaR (99 percent), consider the scenario in which
the firm sustains only a “moderately severe”
downside scenario, a loss of 500 million. While
this loss scenario is not a 99th percentile loss, it
certainly requires, uses and “consumes” capital.
Shouldn’t we allocate, therefore, at least some
portion of the cost of the firm’s capital to these loss
scenarios and the units that contribute to them?

A New Formulation of the
Meaning of VaR
It therefore appears that we need to clarify what
it means for a firm to hold capital equal to VaR.
The conventional wisdom suggests that when a
firm holds capital based upon VaR (99 percent),
the firm is holding capital “for the 99th percentile
loss.” This imprecise formulation leads to the
flawed assumption that the firm is holding capi-
tal “only for the 99th percentile loss” and leads to
the inappropriate allocation of capital only to the
components of the firm that contribute to the 99th

percentile loss. I believe, however, that a better
formulation of the meaning of the VaR capital re-
quirement is that the firm holds sufficient capital
“even for the 99th percentile loss.” In other
words, much of a firm’s capital is intended not
only for the 99th percentile loss scenario, but for
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other moderately severe losses as well. Similarly,
we can also apply this logic to TVaR; using TVaR
(99 percent) to set capital means we are holding
capital “even for the average loss beyond the 99th

percentile,” but not “only for” these events.

Ramifications of New
Formulation of VaR
Based upon our new formulation that the firm
holds capital “even for” the 99th percentile loss,
we can begin to develop a new approach to allo-
cating the cost of capital. Why does the firm hold
capital equal to the 99th percentile rather than the
lesser amount of the 98th percentile? For most
losses, capital equal to the 98th percentile would
be sufficient. Only loss scenarios (for the total
firm) that exceed the 98th percentile require that
the firm holds more capital than VaR (98 per-
cent). Therefore, we can see that the incremental
difference between capital at the 99th percentile
and the 98th percentile is solely attributable to
loss scenarios that exceed the 98th percentile. By
similar logic, the amount of capital equal to the
98th percentile minus the 97th percentile can be
allocated only to the loss scenarios that exceed
the 97th percentile. Let’s call this difference be-
tween capital amounts at sequential percentiles
a “percentile layer of capital.” One can apply
this procedure sequentially to all “percentile
layers of capital” and thus allocate the entire
capital of the firm.
The key to the allocation procedure is to view the
firm’s capital as the sum of many granular pieces
of capital, or “layers of capital.” Each layer of
capital is needed and potentially used by a dif-
ferent set of loss scenarios. Therefore, we must
allocate each layer of capital individually to
those loss scenarios that will use each layer of
capital—in other words, to those loss scenarios
that exceed the lower bound of the layer of capi-
tal (which can also be described as hitting the
layer or penetrating the layer). Of course, many
layers of capital will be potentially used by many
different loss scenarios. In such a case, we can
use conditional probability to allocate the layer
of capital to the various loss scenarios. In other

words, for any given layer of capital, each loss
scenario receives allocation based upon: 
1) probability of loss scenario exceeding the
lower bound of the layer of capital or 2) probabil-
ity of all loss scenarios exceeding the lower
bound of the layer.

Graphical Depiction and
Numerical Example
A numerical example, together with a graphical
depiction, may help clarify the approach. The
graph below (also known as a “Lee Diagram”
based upon the contribution of Lee4, plots 20 loss
scenarios in size order from smallest to largest (in
the continuous case, this is the inverse of the cu-
mulative distribution function). The loss amount
is plotted on the Y-axis:

In Exhibit 1 there are 20 loss scenarios and we’ll
assume the firm holds capital equal to the 19th

worst loss scenario, 360 million Why is it that the
firm needs to hold 360 million of capital rather
than just 100 million of capital? It appears that
loss scenarios one through 10, which are all less
than or equal to 100 million, do not require this
layer of capital. In contradistinction, loss sce-
narios 11 through 20, which exceed 100 million,
clearly do utilize this layer of capital in excess of
100 million. Examining in further detail, we see
that all of scenarios 11 through 20 utilize the
1million  x 100 million layer, but not all of them
require the 1 million x 200 million layer, and
even fewer require the 1 million x 300 million
layer. Thus, we must allocate each individual
layer of capital to the loss events that penetrate
the layer in proportion to the relative usage of the
layer of capital; i.e., in proportion to the relative
exceedance probability, as per Exhibit 2:
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Numerical example:
• Loss scenario #19 is one of two events (scenar-

ios 19 and 20) that require the 35 million x 325
million layer of capital.
o Thus scenario #19 receives 1/2 allocation

of this 35 million of capital.

• Loss scenario #19 also is one of five events (sce-
narios 16 through 20) that require the firm to hold
the 25 million x 230 million layer of capital.
o Thus it receives 1/5 allocation of this 25 

million of capital.

• Apply the procedure to all layers, allocate to
all loss events that exceed the lower bound of the
layer via conditional exceedance probability.

Note that a loss scenario tends to receive a larg-
er percentage allocation in the upper layers than
in the lower layers for two reasons:

1) In the upper layers, we are allocating a full
layer of capital to fewer loss events (i.e., the
exceedance probability decreases as the loss
amount increases); therefore, each loss sce-
nario gets a larger share of the “overhead” of
the total layer of capital.

2) In the upper layers, we are allocating a wider
layer of capital because the severity of each
loss scenario tends to outstrip the prior loss
scenario by a greater amount (i.e., the per-
centile layer of capital tends to widen as the
loss amount increases). There can be situa-
tions, however, in which this relationship be-
tween layers is not the case; this behavior
depends on the particular shape of the size of
loss distribution.

Implementation
The methodology described above, “Capital
Allocation by Percentile Layer,” can easily be
implemented using loss scenario output within
several common contexts. One example is using
simulated loss output from a property catastro-
phe model (e.g., one has annual aggregate losses
for one year). Another example is loss output from
a DFA model or other simulation engine. Of
course, the capital allocation procedure de-
scribed here relates only to allocating total firm
capital to each total loss scenario; but once we al-
locate capital to each total loss scenario, we can
then (per Kreps, others) further allocate the capi-
tal for each total loss scenario to those individual
components (operating units, lines of business,
insurance policies, etc.) that are the “culprits”
that contribute to each total loss scenario.

Additional Areas of Application
The application highlighted here focuses on
property catastrophe risk and allocating the cost
of equity capital, but the reformulation of the
meaning of VaR should have ramifications in
other areas as well. 

1) Assets–risk and capital for assets such as eq-
uities and fixed income securities have tradi-
tionally been defined based upon VaR
metrics; as a result, methods that allocate
capital among various asset classes and op-
erating units may benefit from implementing
capital allocation by percentile layer.

2) Other sources of capital–capital allocation by
percentile layer may also be germane when
the firm’s total capital does not reside in one
“indivisible bucket of equity capital,” but
rather is split into different types of capital.

a. Multiple tranches of capital–firms often
have sources of capital beyond equity cap-
ital, sometimes in the form of tranches.
Because these tranches sustain capital de-
pletion in a predetermined sequential
order and, as a result, carry different cost of
capital rates, it would seem appropriate to
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allocate capital with a procedure that ex-
plicitly accounts for the varying layers of
capital and their costs. Thus, capital alloca-
tion by percentile layer, which provides a
framework for explicitly allocating capital
by layer, appears to offer an appealing alter-
native to almost all traditional methods
(VaR, TVaR, TCE, coTVaR, etc.), which do
not seem to adapt well to such a situation
(with the notable exception of transformed
probability functions).

b.In addition, alternative forms of capital that
apply on a “layered” basis (e.g., excess of
loss reinsurance) and their costs (e.g., the
amount of “risk load” or “margin” in the
reinsurance price) would also appear to be
candidates for capital allocation by per-
centile layer.

Interpretation and Comments
The procedure for capital allocation by per-
centile layer outlined above generates alloca-
tions that are different than many other methods,
with ramifications for measuring the relative risk
and profitability of various lines of business. Tail
based methods, such as coTVaR, tend to allocate
the overwhelming amount of capital only to per-
ils that contribute to the very worst scenarios;
capital allocation by percentile layer, however,
recognizes that when the firm holds capital even
for an extremely catastrophic scenario, some of
the capital also benefits other, more likely, more
moderately severe downside events. On the
other hand, other methods (e.g., Mango’s “capi-
tal consumption,” XTVaR at the mean, etc.) allo-
cate capital to a broader range of loss events that
consume capital; the allocation varies propor-
tionately based upon conditional probability.
These methods, however, often allocate insuffi-
cient capital to unlikely yet most severe events.
They fail to note that the potentially extreme loss
of such scenarios causes firms to hold an amount
of capital that far outstrips the amount required
by other loss events; although the actual occur-
rence of one of these events is very unlikely, the
cost of holding precautionary capital is quite def-
inite. Capital allocation by percentile layer, on

the other hand, appropriately allocates more
capital cost to those unlikely, severe events that
require the firm to hold additional capital.

Capital allocation by percentile layer as delin-
eated above assumes that required capital is
based upon VaR, but a similar model can also
apply to TVaR. In other words, we can view TVaR
as saying we want to hold enough capital “even
for {the 99th percentile loss + the average amount
by which losses above the 99th percentile tend to
exceed the 99th percentile}.” In such a case, cap-
ital allocation by layer would be nearly the same,
allocating capital up to the 99th percentile. The
only additional step would then be to allocate one
additional layer of capital (i.e., TVaR – VaR) to
the losses that exceed the TVaR threshold.
Consistent with TVaR’s meaning as well as the
layer allocation approach, this additional layer
of capital should be allocated to loss events in
proportion to each event’s average amount of loss
excess of the TVaR threshold.

Extension to Continuous
Formulas
The approach to capital allocation discussed
above essentially entails allocating capital on
many discrete layers of capital, from zero to
VaR(99 percent). By viewing the width of each
layer of capital to be infinitesimally small, we
can express Capital Allocation by Percentile
Layer in continuous formulas.

First we will take the perspective of allocating a
layer of capital to the various loss scenarios that
potentially use this capital. Let x represent the
amount of the loss scenario and let y represent
the capital. First we take an infinitesimally small
layer of capital spanning from y to y+dy and allo-
cate it across loss scenarios. The amount of cap-
ital we wish to allocate, the “width” of the layer,
is dy. We allocate this capital based upon each
loss scenario’s conditional probability of “pene-
trating the layer,” namely, exceeding the 
lower bound of the layer. Thus the allocation
weight to a loss scenario, given that 
equals . 
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The sum of all allocation weights on this partic-
ular layer of capital is then 

Note that the allocation weights sum to 100 per-
cent. Then we perform this procedure for all lay-
ers of capital, from y = 0 to y = total capital =
VaR(99 percent): 
The sum equals VaR(99 percent).

We now can realize that each loss scenario of
amount x receives allocations of varying por-
tions from many different layers of capital. We
can express the total capital allocated to a loss
scenario of amount x as follows:

As before, the allocation weight to a loss 
scenario on a layer of capital, given 
that equals . Now, if we
sum across all layers of capital that the loss sce-
nario penetrates, we have

Of course, we remember that if the loss amount x
exceeds the total capital amount of VaR(99 per-
cent), then (because the firm’s capital is a finite
amount), the formula for the loss scenario’s total
allocated capital must be amended to:

In general, though, for loss amounts below the
VaR threshold, we can say that the Allocated
Capital to Loss Amount x = 

According to this equation, the procedure of cap-
ital allocation by percentile layer says that any
loss scenario’s allocated capital depends upon:
1) The probability of the event occurring (i.e., f(x))
2) The severity of the loss event, or the extent to

which the loss event penetrates layers of cap-
ital (i.e., the upper bound of integration is x,
the loss amount)

3) The loss event’s inability to share the burden
of its required capital with other loss events

We can think of this factor as
a mathematical measurement of the loss sce-

nario’s “dissimilarity” in severity to other po-
tential loss scenarios.

We can also formulate the allocated cost of cap-
ital as a utility function. If we let r = required
percent rate of return on capital, then the cost of
capital equals r multiplied by allocated capital.
Then the cost of capital associated with loss sce-
nario of amount x =

Of course, the loss scenario also contributes ex-
pected loss of f(x) * x, so the total cost attributa-
ble to a loss scenario of amount x is

We note that f(x) is simply the probability of the
loss scenario occurring. Using conditional
probability, we can then say that conditional on
the loss scenario, or “given” the loss scenario,
the utility of a loss amount x equals:

Conclusion
Capital Allocation by Percentile Layer has sever-
al advantages, both conceptual and functional,
over existing methods for allocating capital. It
emerges organically from a new formulation of
the meaning of holding Value at Risk capital; al-
locates capital to the entire range of loss events,
not only the most extreme events in the tail of the
distribution; tends to allocate more capital, all
else equal, to those events that are more likely;
tends to allocate disproportionately more capital
to those loss events that are more severe; renders
moot the question of which arbitrary percentile
threshold to select for allocation purposes by
using all relevant percentile thresholds; pro-
duces allocation weights that always add up to
100 percent; explicitly allocates the entire
amount of the firm’s capital, in contrast to other
methods that allocate based upon the last dollar
of “marginal” capital; and provides a framework
for allocating capital by layer and by tranche.

Capital Allocation by Percentile Layer has the
potential to generate significantly different allo-
cations than existing methods, with ramifica-
tions for calculating risk load and for measuring
risk adjusted profitability. ✦
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A Full Line-Up of ERMAP Sponsored Sessions is
Slated for the Annual Meeting in Washington, D.C. 
by Todd Henderson

E RMAP (the Joint Risk Management
Section) is planning an exciting pro-
gram for the 2007 Annual Meeting

that will be held at the Marriott Wardman Park
Oct. 14-17. The sessions for this year’s meeting
cover current, timely topics that will be useful to
the risk management professional as well as
those interested in learning more about ERM.
Current thought leaders from within the actuari-
al profession, in addition to other experts, will
discuss a range of issues from current pandemic
research to economic capital to defining and
classifying operational risks.

Look For …

Pandemic Research Study
A panel of industry experts will discuss the find-
ings of the recently (summer of 2007) released
Pandemic Research Project sponsored by the
Society of Actuaries. Attendees will gain a fo-
cused insight into the pandemic threat and better
understand how this risk can affect earnings,
balance sheets and operations of their organiza-
tions.

Economic Capital Models
This session discusses current trends for devel-
oping company-specific EC, as well as best prac-
tices for its uses and applications. Panelists will
cover recent changes in the regulatory and rating
agency landscape for determining capital ade-
quacy, 

Effective Stress Testing
What are those scenarios that should be keeping
us up at night? How will your company fair
should they materialize? In this session you’ll
learn about identifying and modeling the outly-
ing possibilities and correlated events. Also dis-
cussed will be how to model the impact of these

scenarios on your organization, as well as how to
incorporate this analysis into your risk manage-
ment framework.

Operational Risk of Hedging Programs
Hedging programs are put in place to hedge risk,
but there are many aspects of the execution
which put the effectiveness of the program at
risk. In this session you’ll learn about the key,
practical considerations to understand when
modeling these programs, how to quantify the as-
sociated operational risk, and most importantly
how to manage it.

Defining and Classifying Operational Risk
In this session you’ll learn the true nature of the
word risk, the fundamental characteristics of op-
erational risk, the differences in definitional
standards, the evolution of this field over the past
decade, and different approaches and methods
used in an advanced measurement and manage-
ment framework.

ERMAP is also sponsoring a Hot Breakfast and
the Chief Risk Officer’s Forum. See you in DC. ✦
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