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HUGH H. WOLFENDEN: 

In this interesting and mathematically detailed paper the reader is as- 
sumed to be quite familiar with Fourier analysis--a valuable portion of 
mathematical theory seldom employed by actuaries. Two important in- 
stances of its application, however, are to be found in Anderson and 
O'Brien's 1928 paper, "Notes upon Exper'~nents with Actuarial Functions 
and Fourier's Series" (JIA, LIX, 256), and Elphinstone's 1950 contribu- 
tion on "Summation and Some Other Methods of Graduation--the 
Foundations of Theory" (TFA, XX, 15). Anderson and O'Brien explored 
the possibility of applying Fourier's methods of trigonometrical expansion 
to "achieve a quick means of arriving at a, from ungraduated data, and 
possibly to get a joint-life a n n u i t y . . .  [and] coefficients for N ~- and l,"; 
but their conclusion was that "the results obtained were not all that they 
had hoped," so that the paper must be viewed, in the light of that state- 
ment and the valuable discussion which accompanied it, as an interesting 
though mainly discouraging investigation of the practicability of using 
trigonometrical instead of ordinary interpolation for the representation 
of actuarial functions. Elphinstone's highly original paper is, of course, 
the foundation on which Andrews and Nesbitt have built their further 
analysis of that author's ideas. I t  is therefore essential for the reader to be 
well informed concerning both the basis of Fourier's methods and Elphin- 
stone's applications of them to the problems of graduation in the special 
forms in which those problems usually present themselves to actuaries. 

Jean Baptiste Joseph Fourier, born in France in 1768, showed early in 
his life remarkable mathematical and teaching abilities; surviving the ter- 
rors of the French Revolution, and having accompanied Napoleon's ex- 
pedition to Egypt, he was appointed to the chair of mathematics at the 
]~cole Normale (created in 1794 through Napoleon's efforts) in Paris, and 
later taught at the Polytechnlque. In 1807 he submitted to the French 
Academy of Sciences his first memoir on the conduction of heat, and in 
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1812 won the Academy's Grand Prize (refereed, ~vith controversial criti- 
cisms, by Laplace, Lagrange, and Legendre) with his famous Th~orie 
Analytique de la Chaleur. In that work he developed the general problem 
of representing "any function whatever in an infinite series of sines or 
cosines of multiple arcs," and established his trigonometric "Fourier se- 
ries" by which an arbitrary functionf(x) in the interval -Tr to 7r can be 
expanded as 

½a0+ ~ ( a ,  cos n x +  b, sin nx); 

where (with certain restrictions) a0, an, and b~ are given by 

f_[/ • "a~, = (y )cos  mydy and ~'b,~ = y)s in  mydy.  

The important problems of determining the points x for which the series 
converges, and allied questions, are discussed in many mathematical texts 
(see, as examples, Courant's Differential and Integral Calculus, I, 447, and 
Rogosinski's Fourier Series). 

Other forms are shown in Andrews and Nesbitt's paper. The represen- 
tation of any finite sequence of n terms u 0 . . .  u,-a by such a Fourier sum 
is discussed well by Whittaker and Robinson in their chapter on practical 
Fourier analysis, while for a sequence of 2n + 1 terms u . . . . .  u,  the 
formulae are shown conveniently on p. 28 of Elphinstone's paper. 

The Fourier expansion reproducing a sequence of given values thus 
represents the sum of a set of superimposed sinusoidal waves, in which the 
relative intensities of the different sinusoids can be determined. When a 
linear compounding graduation process is then applied, using a coefficient- 
operator Gt at t, the ratios in which the waves of different periods are 
retained by the graduation can be measured by the values of the "periodo- 
gram function," shown by Elphinstone, p. 30, and by Andrews and Nes- 
bitt in their formula (9). 

With regard to the desirable shape of a periodogram, Elphinstone 0b- 
served truly that "enough is known to make a wise man very cautious in 
interpreting a periodogram" (p. 29). He remarked that the periodogram 
values "should remain small for short periods and rise to 1 at infinity" 
(p. 33)--indicating an ability to suppress short waves and retain the over- 
all trend. He commended "a steady sweep without substantial negative 
values" (p. 38), and Professor Aitken similarly implied merit ff "smooth 
behavior" is found (p. 69). Andrews and Nesbitt of course interpret the 
periodograms in the same general manner, adding that clearly they may 
show negative values Which should not be large though "small values need 
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not be alarming." Nothing specific is said about what is meant by "small" 
and "large," except that Elphinstone expressed several judgments with 
respect to waves of periods 7, 9, etc., with some of the restricted list of 
graduation formulae which he examined. Absurdly shaped periodograms, 
like those exhibited by Elphinstone for his obviously unsound cases num- 
bered I, 2, and 7 (pp. 32-3? and 45-46), undoubtedly indicate rejection 
of those processes; but it is practically impossible, on the other hand, to 
choose with any confidence between the periodograms of Spencer's for- 
mula (which Elphinstone approves somewhat too readily), De Forest's, 
Whittaker's, and Andrews and Nesbitt's new summation form. The 
method embodies an a priori test for rejection rather than for confident 
acceptance. In its attempts to appraise, a priori, the virtues of competing 
graduation processes, closely similar (though slightly different) periodo- 
grams of various graduation methods do not give any really trustworthy 
indications of the relative effectiveness of those processes in practice. 

Elphinstone adopted the view, as Dr. Leon Solomon said in his pene- 
trating discussion (TFA, XX, 61), that "the strictly limited object of 
graduation by means of such [linear compounding] operators . . . is merely 
to remove the short-wave components of a mortality curve; we must re- 
move them, it seems, because we have an innate objection to them; that 
is all, the author concludes, that a graduation can do; any attempt to 
arrive at truth, to eliminate random errors, to appreciate underlying pat- 
terns--these fond hopes have been dashed..." (see also the remarks of 
J. W. Sntherland, p. 63). Solomon added the pertinent question: "I won- 
der whether waves are not given undue prominence in this theory simply 
because it uses harmonic analysis as its main tool" (p. 62). With mortality 
data it must be remembered that the total elimination of all waves may 
not be desirable when, as sometimes happens, certain waves are unques- 
tionably inherent in the data, and that the conflict between fit and 
smoothness (as indicated by the orders of differences) is not always easily 
resolved by distorting the graduation through undue suppression of 
inherent waves. 

The main defects of Elphinstone's stimulating paper which seemed 
evident to me when it appeared in 1950 were his concentration on the 
Schiaparelli-De Forest least-squares "fitting" R0 formulae (which again 
were erroneously called by Sheppard's name), and his surprising failure 
even to mention De Forest's greatly superior and more logical "smooth- 
ing" R4 formulae which minimize the mean-square error in the 4th dif- 
ferences whenj = 3 (see my paper on De Forest's work, TASA, XXVl, 
109). The results were tha t  the R0 formulae were held, almost  as if it were 
a new conclusion, to be infer ior-- though tha t  inferiority, except for fitting 
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only, was well known to De Forest and to others (see my paper, pp. 
103-4), because they aim to effect only a best fit without regard to smooth- 
ness; the failure to mention the much more important R4 smoothing for- 
mulae gave a seriously misleading impression of the scope and efficacy of 
De Forest's methods; and the paper approved too readily Whittaker's 
approach which brings together criteria for fit and smoothness by merely 
adding in an arbitrary proportion--an addition which prompted Solomon 
(in his discussion, p. 62) to record, as others like myself also have felt 
despite the rationale offered in Whittaker's book, his "especial difficulty 
in understanding why roughness and distortion can be balanced simply by 
adding." 

The paper by Andrews and Nesbitt now shows also the periodograms 
for De Forest's R4 formulae of 21 and 29 terms, and of the two R8 formulae 
of the same lengths (which, however, are relatively unimportant because 
obviously they have an inferior logical basis in minimizing the mean- 
square error in the 3d differences, instead of the 4th, when j = 3). The 
acceptability of those periodograms, as would be expected, is certainly in- 
dicated. Elphinstone's conclusion that only Spencer's and a Whittaker 
method are satisfactory is thus upset, as it should be. 

These periodogram analyses apply an abstrusely theoretical approach 
to what is eventually an essentially practical problem. In any graduation 
of mortality data it may be difficult to decide how closelyj = 3 (or even 
2 or 5) may be a justifiable assumption (having regard to the number of 
decimal places to be retained in the graduated results), and the suppres- 
sion of all waves may not always be desirable. The periodogram method of 
attempting a priori appraisals of linear compounding formulae, whether 
applied by summation, reduction of mean-square error, or difference- 
equation procedures, therefore cannot be expected to establish the in- 
evitable superiority of any of those processes, just as the a priori values of 
R0 and R4 (or even R~)--useful as they are--cannot be regarded as in- 
fallible guides. Every set of data has its own special characteristics, for 
which theoretical a priori assumptions must often be highly uncertain. 
Since every graduation method in every practical case should be selected 
with careful regard to the identifiable characteristics of the data, it must 
always be unwise to suppose that some summation formula (whether 
Hardy's, Spencer's, King's, Kenchington's, Vaughan's, Davidson's and 
Reid's, or the one now suggested by Andrews and Nesbitt), or De Forest's 
excellent R4 (or R0) formulae of some selected length, or some type of 
Whittaker's method, will necessarily yield superior results when those 
results are subjected to strict a posteriori tests of fit and smoothness. 
When extended comparable graduations of different setsof actuarial data 
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are made, it will almost always be found in practice that no one type of 
process can have any claim to be taken as a standard against which all 
others sbotfld be judged (see also my book The Fundamental Principles of 
Mathematical Statistics, pp. 147-48). For these reasons the periodogram 
approach, with its particular emphasis on the suppression of waves, seems 
likely to remain more of an interesting mathematical theory than a prac- 
tical working tool for selecting linear compounding methods in the gradu- 
ation of actuarial data. 

THO~S ~. v.. OR~.vrr.LE: 

Professors Andrews and Nesbitt are to be congratulated on a lucid and 
balanced presentation of periodogram analysis of graduation operators. 
I wish to thank them for their kind references to my work and for their 
acknowledgment of my role in bringing to their attention the important 
work of I. J. Schoenberg in this area. 

At the Mathematics Research Center (of which Schoenberg is also a 
member), I have been doing some research on smoothing formulae that 
has some relationship to the subject of this paper. In this discussion I 
shall refer briefly to two problems concerning characteristic functions of 
graduation operators that are not yet completely solved. 

I t  is evident that k-fold iteration (i.e., repeated application) of a gradu- 
ation formula is equivalent to a single formula of wider range. I t  is natural 
to inquire whether the (suitably normalized) coefficients corresponding to 
k-fold iteration of a given formula approach a definite limiting curve as k 
increases without limit. A graduation formula is called "stable" if it has 
this property. The question of stability of graduation formulas was first 
investigated in 1878 by E. L. De Forest (see Wolfenden's paper, TASA, 
XXVI, 116-18), who showed that certain formulae are indeed stable, and 
that if j = 1 ( j  being the degree of polynomial reproduced by the formula), 
the limiting curve is the normal frequency curve. In numerical experi- 
ments for larger values o f j  he obtained curves having the general appear- 
ance of the normal curve in the middle portion and that of a damped sine 
curve in the tails. 

For the case of a symmetrical graduation formula this problem was 
solved in 1948 by Schoenberg ("Some Analytical Aspects of the Problem 
of Smoothing," Studies and Essays Presented to R. Courant on His 60th 
Birthday [New York: Interscience]), who showed that such a formula is 
stable if and only if the characteristic function ~(u) satisfies the condi- 
tion [~(u)[ < 1 for 0 < u < 2~r, and gave an explicit formula for the 
limiting function. In the paper cited by Andrews and Nesbitt he showed 
also that the satisfaction of this condition insures that application of the 



D I S C U S S I O N  171 

formula will, in a certain sense, actually increase the smoothness of any 
sequence of data. This is therefore a reasonable requirement to impose on 
a graduation formula. His method of proof is easily extended to unsym- 
metrical formulae providedj remains odd. De Forest also investigated the 
case of unsymmetrical formulae with even j ;  his results are suggestive but 
inconclusive. This problem is still not fully solved (see my abstract in 
SIAM Review, VI, 92-93). 

Recently, Schoenberg proposed the problem of proving rigorously the 
conjecture that the minimum R0 formula is stable for all odd n (n being the 
number of terms) and for all odd j  < n. This turns out to be unexpectedly 
difficult. The conjecture is easily established fo r j  = 1 and fo r j  = n - 2, 
and I have obtained a recursive relation from which it would follow that 
all minimum R,~ formulae are stable (for m > 0) ff it could only be shown 
that all minimum R0 formulae are stable. If we define R~ = lira R=, it can 

be shown that R~o is given in terms of the characteristic function by 
Roo = [~(Ir) [, and a minimum R~ formula can be derived (for given n 
and j) .  This minimum R= formula has the interesting property that its 
characteristic function is never negative, and in the range (0, 2 ~r) is zero 
only at u = 7r. Thus, as might be expected, R= is actually zero for a 
minimum R,o formula.  

The following table shows 7-term minimum Rm formulae for j = 3 and 
m = 0,  4, and co, together with the values of Ro, R4, and R~o in each case. 

m Minimum R,~ Formula Ro R4 Rao 

O. P - - l - -  ,}8~-- ~f~s .577 .181 .238 
4 . .  ~ 18 4 12  6 P -  1 - - ~  - - ~ r 6  .602 .006 .044 

/v= I _ ~ * _  ~(~8 .640 .127 0 

As might be expected, the minimum Ro~ formula is a more "gentle" 
smoothing formula than the others. As measured by the value of R4, it is a 
better smoothing formula than the minimum R0. 

SA_RWOOD ROSSER : 

This is not the first time that Dr. Nesbitt has lent at least his name to 
publication in the Transactions, in curtailed form, of a doctoral disserta- 
tion. This is mutually advantageous to the Society and to the primary 
author. The latter gets a broader exposure for the results of his research 
than just his faculty adviserl 

The members of the Society, in turn, have the results of recent research 
in more accessible form, in two senses. Elphinstone's 1951 paper, cited by 
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the authors, contains much of the theory, including some graphs; but the 
Transactions of the Faculty of Actuaries has very limited circulation in this 
hemisphere. Like a true Scot, he mentions Whittaker, but not Henderson--  
an omission remedied by today's authors, as well as by one of Elphin- 
stone's reviewers, A. C. Aitken. The latter individual's opening comments 
on Elphinstone express admirably my feeling about the current paper- -  
in fact, about both: 

This p a p e r . . ,  is not, I feel, a paper to be commented upon at any shorter 
notice than two or three months. My own perusal of it is very recent; I should 
really like more time to form an opinion. Some parts of it I have not fully 
grasped. 

Having considerable interest in music, and hence in the physics of 
sound, I was aware that Fourier series were quite useful in the analysis of 
the composite effect of waves of different frequencies--in one of the 
simpler cases, that of a single tone plus all its overtones. Before these two 
papers, it would never have occurred to me that a series of points to be 
graduated bore any resemblance to the auditory image of a vibrating 
string. I t  now appears that a proper graduation formula will have an 
effect analogous to suppressing, or substantially damping, all overtones 
beyond, say, the second octave, whose frequency is four times that of the 
primary note. (I believe such things can now be done electronically. How- 
ever, the principle involved does not depend, for its validity, upon actual 
physical realization in the realm of sound, or elsewhere.) 

The Fourier analysis enables us to measure the degree of reduction of 
waves of various lengths. The periodogram of a graduation formula is 
simply a table, in the form of a graph, of such results. A value of 1 on the 
vertical scale would mean that  the corresponding wavelength is repro- 
duced intact by the graduation process. 

For the reader who peruses the discussions before he tackles a paper 
seriously--a frequent practice with me- -and  who probably will not read 
every word of either, I suggest first a look at the Introduction, then one 
at the graphs in Appendix B, and, finally, a glance at "Interpretation of 
Periodograms," on page 14, particularly the first two paragraphs. A key 
sentence is this: 

Thus the values of the periodogram are weights and indicate to what extent 
waves of a given length are preserved by the graduation. 

These weights are not to be confused with the multipliers of surrounding 
terms, when the graduation is put into linear compound form. 

Generally, Par t  I I I  Will receive more attention than the other two 
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parts. From the standpoint of readability, this might have been put first; 
but then the results would have preceded the requisite theoretical devel- 
opment, which is a little like popping the question at the beginning of a 
courtship. Andrews and Nesbitt have already, through the use of ap- 
pendices, made substantial concessions to the average reader of these 
pages. This is part of what I meant above, when I spoke of "more acces- 
sible form." Let  any dissenter turn to the original paper (No. 2 of the 
"References")! 

As an intellectual exercise, Dr. Nesbitt and his prot6g6 have produced a 
21-term summation formula which, they suggest, may put the British to 
shame. This might be more evident at a glance if they had superimposed 
its periodogram upon that of Spencer's summation formula of the same 
length, shown by Elphinstone. I attempted a visual comparison to con- 
firm their remarks, without much success. I t  would be interesting to see 
values of P~, for m = 0, 3, and 4, for this new formula, to compare with 
those for Spencer's formula and for the 21-term minimum R0 ~ formula 
(Sheppard's), shown on page 35 of Elphinstone's paper. Even so, I would 
not consider it a practical formula until expressed in linear compound 
form. None of these values is theoretically difficult to obtain, but the 
computation is laborious for a 21-term formula. 

Being one of the latter-day apostles of the linear compound form,* I 
was most happy to see recognition of Greville's excellent but neglected 
work on minimum R~ graduation formulae (Nos. 4 and 5 of the "Refer- 
ences"). In this he gives coefficients, for a wide range of terms, which in- 
clude those shown at the bottom of page 32 of Miller's monograph on 
graduation. In addition, he has given a solution to the notorious end-of- 
series problem, which I believe the authors failed to note. With his tables, 
graduation by electronic computer becomes relatively simple. The chief 
problem is whether to select a given length, such as, say, nine terms, and 
use the resulting program on an all-purpose basis, or to have a choice of 
formula lengths. I t  is not necessary to be familiar with Tchebycheff poly- 
nomials in order to use Greville's results. The first four graphs of periodo- 
grams are for this type of graduation, and they are seen to be quite satis- 
factory. 

The major value of the paper for actuaries is not a new 2J-term formula 
but the insight it offers into existing graduation methods. For instance, 
the fifth graph, showing Q6 and Q6, shows the periodograms for the Whit- 
taker-Henderson " A "  formula with k = 1 and k = 20, respectively. The 
authors' formula (25) corresponds to (5.31) in Miller's monograph, if we 

* Cf. Proceedings of the Conference of Actuaries in Public Practice, XlI, 298. 
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replace their u~ by u'~', their ~ by u~, and set g = k = 0. I t  corresponds to 
Miller's (5.51), if their u, is replaced by q~', their v~ by q~, and g = h -- 0. 
This is the case shown in the graph. The greater emphasis on smoothness 
in Qe produces a greater tendency to eliminate short waves. 

Using still other values in (25), the authors go on to examine the mixed 
difference case, and to illustrate it in the sixth graph. Again, the periodo- 
grams help in drawing conclusions. 

Before leaving difference-equation graduation, it is worth noting that 
this is one type where the linear compound form is not necessarily the best 
for actual computation. This is due to the fact that, in this form, the 
number of coefficients is usually not limited but actually represents an 
infinite series. While convergence is usually rapid, this introduces com" 
plications. Hence other approaches are usually preferable. This means 
that each graduated point is a function of every  ungraduated point, rather 
than of a certain number of points. In practice, the effect of distant points 
is normally lost in the rounding off. The breaking point, however, tends 
to be difficult of prediction. 

The last graph has already been commented upon. 
In summary, this is an excellent paper, but not an easy one. Elphinstone 

said, on his opening page, that " a  paper on graduation always seems to 
arouse controversy . . . .  " I trust I have not taken the authors to task 
unduly. On the other hand, I hope that this paper will attract, if not con- 
troversy, at least some of the notice that the very substantial labor of the 
writers deserves. To the Education and Examination Committee, I would 
make a strong recommendation: that they abstract, for Part  5 Study 
Notes, the notion of periodogram, including some of the graphs. In so 
doing; perhaps they can give belated recognition to Greville's excellent 
and practical work, mentioned above. 

(AUTHORS' REVIEW OF DISCUSSION) 

GEORGE H. A~rDREWS AND CECIL J. ~rESBIrT: 

First we should like to thank Mr. Wolfenden, Dr. Greville, and Mr. 
Rosser for their informative and illuminating discussions. Also, we were 
pleased to receive by letter some reactions of Professor James Hickman to 
our paper. 

Mr. Wolfenden has given much interesting background for the paper, 
both in the notes concerning Fourier and the series which bears his name, 
and in the remarks concerning Elphinstone's paper. The remarks provide 
insight into the concept of periodogram and its limitations as a practical 
working tool for graduation purposes. His criticisms concerning the 
a priori nature of the periodogram appraisal of a linear compounding for- 
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mula are echoed in Professor Hickman's letter. Professor Hickman prefers 
a statistical approach that seeks "most probable values" for a set of func- 
tion values, given some observed values. But the actuary is also interested 
in the elusive quality of smoothness, and it may be difficult to achieve 
this quality by a purely statistical approach. However, interesting possi- 
bilities coming out of a statistical approach are appearing in work now 
going on under the direction of Professor D. A. Jones. 

I t  may be well at this stage to qualify the statement in the first para- 
graph of our paper that a periodogram can be obtained in relation to each 
adjusted average and difference equation method of a graduation. I t  is 
not clear how to determine a periodogram for a Whittaker-Henderson 
Type B formula, or for other graduation processes where something more 
than a single symmetric linear operator is applied. As noted by Mr. 
Rosser, we have not discussed nonsymmetric linear operators such as 
might be used at the end of a series. For a nonsymmetric linear operator, 
the periodogram definition given by Formula (12) would not hold. How- 
ever, a characteristic function in Schoenberg's sense could still be defined. 

Dr. Greville indicates some of the results obtained by Schoenberg and 
himself in regard to the question of stability which was first investigated 
by E. L. De Forest. He also introduces the definition 

R~ = lim R,, ,  

and states that R~ is given in terms of the characteristic function by 
R~ = [4~(~') [. Since, as indicated in A.10 of the Appendix to our paper, 
¢(27r/fl) = 6~(fl), then R~, when it exists, is equal to [6~(2)[. From the 
graphs in Appendix B, which begin at fl = 2, it appears that R~, if it 
exists, is near zero for the given graduation operators. In particular, for 
Q9 the value of (P(2) -- 0, as is the case for any summation graduator with 
a factor Ira], m an even integer. 

The summation graduator Q9 was developed somewhat incidentally as 
an application of the periodogram concepts. Following Mr. Rosser's sug- 
gestion, we have expressed Q~ in linear compound form, 

q~Gt, 
t 

where t runs over the even integers from 0 to 20, and have computed the 
values of R~ for m = 0, 3, and 4 for this formula. The results are summa- 
rized in the accompanying tabulations. Although the coefficients qt are 
presented to five places, the R~ values were computed using additional 
accuracy. 
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COEFFICIENTS OF Q9 IN L I N E A R  

COMPOUND F O R M ,  ~'~qtG~ 
$ 

t qt 

0 . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . .  

4 . . . . . . . . . . . . . . . . .  

6 . . . . . . . . . . . . . . . . .  

8 . . . . . . . . . . . . . . . . .  

10 . . . . . . . . . . . . . . . . .  
12 . . . . . . . . . . . . . . . . .  
1 4  . . . . . . . . . . . . . . . . .  

16 . . . . . . . . . . . . . . . . .  
18 . . . . . . . . . . . . . . . . .  
20  . . . . . . . . . . . . . . . . .  

• 16746 
• 15665 
• 13145 
. 09425  
• 0 5 4 6 6  
•02232  

- -  00040  
- -  . 0 1 2 3 0  
- -  0 1 3 3 9  
- -  . 01091  
- - .  00605  

VALUES OF R ~  FOR VARIOUS 21 -TERM GRADUATORS 

GRADUATOR 

Minimum R~ Minimum R] Minimum R~ Speneer's Q, 
Qs Qt 2 l-Term 

) . .  . 1 0 7 6  . 1 3 2 2 1 5  . 1 3 9 0 3 5  . 1 4 3 2  . 1 3 7 3 8 7  
3. . 0032  . 000023  .000027  . 000039  . 0 0 0 0 3 9  
~. . 0 0 3 0  . 0 0 0 0 0 5  . 000003  . 0 0 0 0 1 0  . 0 0 0 0 1 6  

I t  has been noted earlier that the value of 6~(2) for the graduator Q9 is 
0, and this is the value of R~ if the latter exists. From the value of R~, 
it appears that Q9 is equivalent to Spencer's formula by the R~ criterion, 
but by the R~ criterion, Spencer's formula smooths more strongly. How- 
ever, Rg for Spencer's formula exceeds that for Q2 which in turn exceeds 
Ro 2 for Q0. 

As an attempt to evaluate periodograms and how they fit into actuarial 
knowledge, we may say that they are a special case of characteristic func- 
tions where by reason of symmetry the interpretation in regard to wave 
modification follows. Characteristic functions provide a powerful tool in 
regard to probability distribution theory, and work such as that of Grev- 
ille and Schoenberg indicate they are significant also for graduation and 
interpolation• Periodogram theory is a mathematical not a statistical ap- 
proach and may, as Mr. Wolfenden suggests, provide only an a priori test 
for rejection of a graduation process rather than for confident acceptance. 
I t  may remain simply an interesting mathematical theory, but one never 
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knows when such a theory may yield a practical application. I t  seems lim- 
ited to graduation and interpolation processes based on symmetric linear 
operators. 

For the benefit of Mr. Rosser, students, and others who may be inter- 
ested in the application to interpolation, we give the subtabulator or sym- 
metric linear operator that may be read off from the coefficients given by 
Boyer (RAIA,  XXXI  [1942], 341) for subtabulating at subinterval 1/5 
by means of the Jenkins modified fifth-difference osculatory interpolation 
formula, namely: 

S = .83 Go + .779i G, + .643i G4 + .4613 G6 + .2715 Gs 
+ .i G~o + .008?) G~2 -- .0417 G~4 -- .0548 G,o -- .0453 G,s 
--.027 G2o - .0142 G22 - .006 G2, - .0017 a~ - .0002 G2s 

When S is applied to a series of values Uv obtained from given values u_~., 
u-l, Uo, ul, u2, u3, by the rule U, = 0, y not a multiple of 5, and Us, = u,, 
x --- - 2 ,  - 1 ,  0, 1, 2, 3, it subtabulates the values v, at x = 0, .2, .4, 
.6, .8, and 1.0 which would be given by direct application of the Jenkins 
formula. A periodogram for S may be obtained by applying formulae (16) 
and (13) of the paper. If one prefers, one may work instead with (1/5) S 
which is a graduator in the sense of Part  I I I  of the paper. For further 
information concerning subtabulators such as S, one may refer to the 
paper by Greville (listed as reference [6] in our paper) or to reference [2]. 



MINIMUM PREMIUMS PROMULGATED BY NEW YORK FOR 
GROUP LIFE INSURANCE ISSUED IN CANADA-- 

ACTUARIAL NOTE 

MORTON D. MILLER 

SEE PAGE 28 OF THIS VOLUM~ 

GERALD B. ANGER: 

The propriety of using population mortality differences between geo- 
graphic regions to approximate group insurance mortality differences is 
open to question. 

Mr. Miller states that the advisory committee felt that such use was in 
order since "group insurance covers such a broad cross-section of individ- 
uals." But is the cross-section broad enough when we note that farmers, 
ranchers, fishermen, share-croppers, field laborers, sole proprietors, em- 
ployees of small firms, professionals (such as physicians, dentists, lawyers 
etc.), indigents, inmates of institutions, and others, are not normally cov- 
ered by group insurance and that the proportion of total population of 
these excluded classes is not necessarily the same from one region to 
another? For example, is the cross-section broad enough such that the 
relative proportions of nonwhites to whites covered under group insurance 
in the United States and Canada are the same as those given by popula- 
tion tables? 

Perhaps the experience results (Table A) of the Canadian Association 
of Actuaries on 1963 Canadian Group Life Experience as compared to the 
1955-59 Society of Actuaries group experience rates will tend to confirm 
the view that the use of population data is questionable. Table A actually 
suggests that there is no significant difference between United States and 
Canadian group mortality--especially if the mortality improvement 
trend has continued and the 1955-59 experience rates are projected to 
1963 [ 

Of course, if the premise that population mortality differences do reflect 
group insurance differences is accepted as valid (or can be substantiated 
from group insurance experience results), it would seem (when we note 
that the population of Canada is of the same order of magnitude as New 
York or California) that the argument for variation in minimum rates 
between the United States and Canada could be made with equal force to 
produce various minimum scales within the several major regions of the 
United States. Table B suggests the pattern which might obtain. 
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TABLE A 

CANADIAN ASSOCIATION OF ACTUARIES 

1963 CANADIAN GROUP LIFE E X P E R I E N C E - - R A T E D  AND NONRATED 

INDUSTRIES--POLICIES COVERING 25 LIVES OR MORE m 

ALL DISABILITY PROVISIONS COMBINED 

CFACI~A L 
Ao,, 

18 . . . . . . .  
23 . . . . . . .  
28 . . . . . . .  
33 . . . . . . .  
38 . . . . . . .  
43 . . . . . . .  
48 . . . . . . .  
53 . . . . . . .  
58 . . . . . . .  

18-58 . . . .  

63 . . . . . . . .  
68 . . . . . . . .  
73 . . . . . . . .  
78 . . . . . . . .  
83 . . . . . . . .  
88 . . . . . . . .  
93 . . . . . . . .  
98 . . . . . . . .  

EXPOSED To 
P~sg 

40,429 
118,931 
121,859 
134,237 
135,029 
124,389 
108,424 
92,754 
69,303 

945,355 

45,792 
22,016 
11,658 
5,764 
2,266 

601 
107 

9 

DEATH AND 
DISABILITY 

CLAIMS* 

47.5 
. 118.5 

133.5 
173.5 
244.5 
354.0 
523.0 
738.0 

1076.5 

3409.0 

857.0 
674.0 
595.0 
451.0 
254.0 
115.0 
31.0 

5.0 

63-98 . . . . .  88,213 2982.0 

Total . . . .  1,033,568 l 6391.0 

FORCE OF DRCRE~F~T 

1963 1955-59 
C.A.A. S. of A.? 

.O0!f l  .00113 

.00J.00 .00107 

.00qlO .00106 

.00129 .00124 
.00181 .00188 
.00285 .00316 
.00482 .00538 
.00796 .00885 
.01553 .01477 

.00361 .00375 

.01872 .01994 

.0306t .03110 

.05104 i .04888 

.07824 I .07854 

.11209 ! .12219 

.19134 .18555 

.28972 .25473 

.55555 .22318 

.03380 .03444 

.00618 .00637 

RATIO 
1963 C.A.A./ 

1955-59 
$.  oF A. 

1.04 
0.93 
1.04 
1 . 0 4  
0.96 
0.90 
0.90 
0.90 
1 . 0 5  

0.96 

0.94 
0.98. 
1 . 0 4  
1.00 
0.92 
1.03 
1.14 
2.49 

i 0.98 

0.97 

So~cg:  Table It ,  Appendix B, December, 1964, Reporl of the C.A.A. Mortality CommiU~e (Group). 
* The number of death and disability claims is equal to the number of death claims plus 75 per cent of 

the Waiver of Premium Disability claims plus 50 per cent of the Total and Permanent Disabihty claims. 
t Derived from Report of the Committee on Group Insurance Mortality, Table 2, 1960 Reports ofth~ 

Society o] Actuaries, all disability provisions combined with the number ol death and disability claims com- 
puted as in * note above. 

TABLE B 

1961 MALE AND FEMALE* MORTALITY 

AaEA 

~anada . . . . . . . . . . . . . .  
New England . . . . . . . . .  
Middle Atlantic . . . . . . .  
East North  Central . . . .  
West North  C e n t r a l . . .  
~outh Atlantic . . . . . . . .  
East South Central . . . .  
West South Centra l . . .  
Mountain . . . . . . . . . . . .  
Pacific . . . . . . . . . . . . . . .  
United States . . . . . . . . .  

20-44  YEARS 

Rate Ratio 
per 1,000 to U.S. 

1.59 0.79 
1.67 0.83 
1.96 0.97 
1.87 0.93 
1.73 0.86 
2.43 1.20 
2.45 1.21 
2.12 1.05 
2.09 1.03 
1.87 , 0.93 
2.02 I 1.00 

45-64  YEARS 

Rate Ratio 
per 1,000 to U.S. 

9.47 0.83 
11.23 0.99 
12,06 1.06 
11.16 0.98 
9,98 0.88 

12.78 1.12 
11.88 1.04 
10.88 0.96 
10,24 0.90 
10.48 0.92 
11.39 1.00 

SOURCKS: Dominion Bureau of Statistlcs--Cat. No. 84-202j Vitni Statistics, 1961, U.S. 
De ept; of Health, Education, and Welfare, F/#aJ S#a#istica of the United S~ates lP61, Vol. XI, 

* Male only was not available by U.S. major regions. 
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(AUTHOR'S REVIEW OF DISCUSSION') 

~ORTON D. ~ILL~R: 

I am glad that Mr. Anger has put into the Transactions the initial 
year's compilation of Canadian group life insurance experience by the 
Canadian Association. As mentioned in the Actuarial Note, intercompany 
data under Canadian policies were not available when the Advisory Com- 
mittee was called upon to make its study. I t  was therefore necessary to 
look to other indicators of comparative mortality levels such as the popu- 
lation tables which were used. 

Such Canadian experience as the companies represented on the Ad- 
visory Committee had was fragmentary. What there was tended to sup- 
port a level of Canadian mortality on the order of that recommended to 
the Department. 

Mr. Anger's material is, of course, only one year's experience, so that 
the significance of the Canadian studies cannot be fully assessed until 
additional statistics are accumulated. 



BAYESIAN STATISTICS 

DONALD A. ]ONES 

SEE PAGE 33 OF THIS VOLUME 

JOHN M. BOERMEESTER: 

Dr. Jones states that the objective of the paper is to bring Bayesian 
statistics to the attention of the members of the Society of Actuaries. 
Confronted by such an open invitation, I decided this would be an oppor- 
tunity to review the subject of statistics from the viewpoint of a member 
of the Society who last studied statistical theory for examination purposes 
more than 25 years ago. 

Dr. Jones refers to a paper by Mr. A. L. Bailey in the 1950 Proceedings 
of the Actuarial Society. Mr. Bailey, in effect, stated that there was no 
formal statistical technique available to an actuary to develop so-called 
"credibility factors" (Z) for experience rating purposes and that he (the 
actuary) had to depend on empirical methods to derive them. This paper 
then developed a number of illustrative formulae which may be used to 
calculate credibility factors under Bayesian theory. The paper also con- 
tained a reference to Mr. Ralph Keffer's paper published in TSA, Vol. 
X X X  (1929). 

I became curious concerning the nature of Mr. Keffer's credibility factor 
(Z), shown on page 113 of Actuarial Studies No. 6. This credibility factor 
had been suggested by Mr. Keffer for use in the experience rating process 
for group life contracts. Was Mr. Keffer's factor just another empirical 
device, or could it be defended by Bayesian statistical theory? 

In Mr. Keffer's development of the credibility factor, he first assumed 
that the prior frequency distribution of loss ratios for all group cases was 
in the form of a gamma distribution. He then assumed that the conditional 
frequency distribution for deaths in connection with the experience for 
any one case was in the form of a Poisson distribution. As a consequence of 
the theory of conjugate sets, the posterior frequency distribution for the 
loss ratios emerged in the form of a gamma distribution. Mr. Keffer used 
the posterior distribution to obtain a point estimate for the mean loss 
ratio applicable to the actual experience of a particular group. The result 
was recast in the familiar formula for the credibility factor Z which is 
stated in the Actuarial Study. 

I t  would appear to me that Mr. Keffer used the principles outlined by 
Dr. Jones. If my reasoning is correct, I wonder whether Mr. Keffer was, 
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in fact, a Bayesian statistician. If so, can we be consoled by the Bayesian 
school that the stigma of empiricism should never have been given to 
those who have used Mr. Keffer's credibility theory for the past 35 years? 

In conclusion, I wish to state that we should be most grateful to Dr. 
Jones for giving us the opportunity to become acquainted with some of the 
more recent developments in Bayesian statistical theory. 

~UCH ~. WOLF~.~DEN: 

Professor Jones' paper performs a useful service in once more bringing 
to the attention of actuaries the famous work of the Reverend Thomas 
Bayes. His references to Whittaker's Views on probability and graduation 
theory also provide a needed opportunity tO re-examine Whittaker's opin- 
ions, for the latter's TFA paper and its accompanying discussions left the 
entire subject of the place of the Bayes-Laplace formulae in actuarial 
techniques in a state of largely unresolved confusion. 

When Professor Jones notes that the courses of reading suggested in 
this Society for years have omitted any convenient reference to Bayes' 
theorem, I am bound to point out that in my book The Fundamental Prin- 
ciples of Mathematical Statistics--which was published by the Actuarial 
Society, and is still available, for tl~e express purpose of providing infor- 
mation in an accessible form for students on this and many other mat- 
t e r s - t h e  basic principles are explained on pp. 7-8, 165, and 221-23, in 
statements which should be understandable easily to actuaries already 
trained to think in terms of numerical probabilities of death, q,, based on 
observed values of 0-' and EP,. (In the subsequent portions of this discussion 
it will be convenient to refer to that book as "FPMS.") 

One of the points emphasized particularly therein (pp. 221-23) is the 
distinction to be maintained between "Bayes' Theorem" of formula (43b) 
for the special case when the a priori existence probabilities, ~,, are all 
equal, and the generalized "Bayes-Laplace Theorem" (43a) when the ~,'s 
are not all equal. Here it may also be of assistance to observe, in slightly 
different notation and form (cf. TASA, XXX, 279), that the Bayes- 
Laplace formula s tates  that when p~ is the a priori probability of the 
existence of the ith cause F~, and P~ is the a priori probability that when 
F~ exists the event E will happen, then the probability, a posteriori, that E 
actually happened from the cause F~ is p~P#Y.~p~P~; and that Bayes' for- 
mula is P~/~P~ when all the p~'s are taken as equal. The Bayes-Laplace 
formula "represents a perfectly sound and logical argument, and leads to 
unexceptionable results when it can be applied rigorously"; but when the 
prior probabilities are supposed, in the absence of specific information, to 
be equal merely because their real values are unknown (in accordance with 
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the "principle of insufficient reason"--Boole's "equal distribution of ig- 
norance"), Bayes' formula m a y  lead to questionable or absurd results-- 
for "Ellis' remark must always be remembered, that 'mere ignorance is no 
ground for any inference whatever; ex nihilo nihil' " (FPMS, p. 222). 

In this necessarily short discussion there is no space to examine in a n y  
detail the implications and possible uses of these Bayes-Laplace formulae 
in actuarial procedures. Their consequences, however, have interested me 
for so many years that recently--prior to the receipt of Professor Jones' 
paper--I have prepared a careful exploration of those questions 
(particularly in relation to the determination of probabilities from obser- 
vations, and Whittaker's approach to his graduation rationale), with the 
intention of including the material as one of several commentaries in two 
volumes on the life and work of Erastus Lyman De Forest (seemy paper, 
TASA, XXVI, 81), with reproductions of his writings, which I plan to 
publish soon with the collaboration of Dr. T. N. E. Greville. 

Without attempting at this time, therefore, to summarize the character 
or conclusions of that projected publication, it may be useful here to re- 
mark that : .  

1. Throughout the development of their practical techniques, actuaries 
have, quite properly, instinctively preferred the "maximum likelihood" 

approach of estimating q by maximizing the probability, O' qO,pE,--o,, 

that 0 p deaths did actually occur by chance out of E'  at risk (cf. FPMS, 
p. 239). Thereby usually they have not had to reconcile that obvious 
method (wherein q~ is carefully defined under specified conditions as a 
ratio obeying the addition and multiplication rules of probability), with 
the metaphysical concepts of. "probability" (cf. FPMS, pp. 4, 7, and 179- 
87) which lead into many obscure difficulties in the abstract mathematical 
interpretations of such hypothetical approaches. 

2. The highly controversial possibility of setting up some hypothesis 
for the prior probabilities in the Bayes-Laplace formula (43a) has been 
considered also in a long contribution by Perks, in ]1,4, LXXIII ,  285--to 
which Professor Jones does not refer. Perks commented (p. 285; see also 
E. S. Pearson, p. 324) that "the paper is concerned with fundamental 
questions of a controversial nature, and has little, if any, immediate prac- 
tical aspect, at any rate so far as applied actuarial science is concerned," 
though he added that "the time [1947] is more than ripe for actuaries to 
re-examine the fundamental bases of their processes." 

3. Whittaker's use of Bayes' formula with its arbitrary assumption of 
an equal distribution of ignorance inevitably introduces grave difficulties 
into his theoretical treatment of mortality formulae. 
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4. The rationale, as set out by Whittaker (his book, pp. 303-6, and 
restated by Jones), of his idea of basing a graduation method on the addi- 
tion of criteria for fit and smoothness in an arbitrary proportion again 
involves the "equal distribution of ignorance" assumption of Bayes' for- 
mula (see FPMS, p. 138), which is one of my reasons for remarking--in 
another discussion on the paper by Andrews and Nesbitt in this TSA vol- 
ume - upon  the difficulty of fully accepting Whittaker's reasoning. 

On the wider question of the general appropriateness of employing the 
latest interpretations of "Bayesian methods" in actuarial work, it is of 
course true that the Bayes-Lap!ace approach is exceedingly intriguing, 
both philosophically and mathematically; occasionally, as already noted, 
it is directly applicable to practical statistical problems when the prior 
probabilities can be stated specifically and surely; but the assumption in 
Bayes' formula of equally distributed ignorance, or the invention of some 
artificial hypothesis of "cogent reason" for inclusion in the Bayes-Laplace 
expression, may introduce unavoidably an undesirable or intractable ele- 
ment of doubt into any apparent inference--and this is so even though 
it often may be found in practice that the form of such a hypothetical 
prior probability function may not influence the numerical results greatly 
when the data are large (as indeed has been emphasized by Laplace and 
Poisson, Sir George Hardy, and by modern writers like E. C. Molina, Sir 
Harold Jeffreys, and M. G. Kendall). 

Professor Jones' interesting paper, nevertheless, perhaps may encour- 
age actuaries in the future to consider more closely these efforts to incor- 
porate a "well defined judgment factor" (to use his description) in a few 
of their objective technical analyses. 

This discussion considers only the essential distinction, which for the 
sake of justice and clarity ought to be maintained, between the formulae 
of Bayes and Bayes-LapIace, with certain applications of their approaches 
to the determination and graduation of such basic actuarial functions as 
q,. I t  is not intended to deal with their possible applications to credibility 
and experience rating problems which are examined in papers at the Cas- 
ualty Actuarial Society included in Professor Jones' bibliography. 

CHARLES GREELEY: 

The author has written an excellent paper which should certainly fulfill 
his objective "to bring Bayesian statistics to the attention of the members 
of the Society of Actuaries." He chose the right audience, since Actuaries, 
consciously or otherwise, have been practicing Bayesian statistics for 
many years, as can be proven by the following syllogism. 
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1. Whatever actuaries do, they are expert at it. 
2. Most actuaries play bridge. 
3. Therefore, most actuaries play expert bridge. 
4. Bridge experts can solve the following type of problem. 
5. No one unfamiliar with Bayesian statistics could solve it. 
6. Therefore, a bridge expert knows Bayesian statistics, and that includes 

most actuaries. 

Suppose declarer (South) holds A 4 3 2 of Spades opposite North's 
K J 7 6 5. When South first plays Spades, by leading the Ace, suppose 
that both opponents follow suit with low cards, and when South next 
leads a low Spade, West again follows suit with a low Spade. Now the 
odds in favor of playing the King as opposed to the Jack are 12 to 11, 
since for East the Queen might be one of 12 other cards, but for West it 
can be only one out of 11. 

Consider next a different holding in which North holds the Spade ten 
instead of the Jack. When South plays the Spade Ace, suppose West fol- 
lows low, and East drops the Spade Jack. Next, when a low Spade is led 
and West again follows low, we must choose between playing the King or 
the ten. Superficially, the odds seem 12 to 11 in favor of playing the King, 
but, surprisingly, assuming expert opponents, it will be shown that the 
odds are 11 to 6 in favor of the play of the ten. 

Given South's Spade holding of A 4 3 2 and North K 10 7 6 5, consider 
the universe of possible hands in which West holds the 9 and 8 of Spades 
plus eleven other cards, one of which may be the Queen of Spades, and 
East holds the Jack of Spades plus twelve other cards (in other words, 
East's Spade holding is either the singleton Jack or the doubleton Queen 
and Jack). 

Let  A represent "East  plays the Jack," and B represent "East  has the 
Queen." 

Within the given universe, let us first evaluate the a priori probability 
P(A) that East will play the Jack. 

= P(A/B) P(B) + P(A/B) P(B) 

A / B) 

= 12/23  

= l l / 2 3  

= 1 /2  because an expert East, holding the Queen as well 
as the Jack, would falsecard half the time. 

= 1 since East would have to play the Jack if it were a 
singleton. 

.'. P(A) = (½ X .~3) + (1 X ~'2~) = ~ .  

P(A) 
P(B) 
P ( B )  

P(A/B) 
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Let us next evaluate P(B/A), the a posteriori probability, within the 
universe defined, of East having the Queen of Spades, given the fact that he 
played the Jack. 

P ( B / A  ) = P ( A / B ) P ( B )  = (½ X,~-~-)/(½~) = I~" 
P ( a )  

Conclusion: Since the odds are 11 to 6 that West has the Queen of 
Spades, you should definitely play the ten, not the King, and then thank 
Mr. Bayes when you collect your winnings more often than you used to. 

Observe the typically Bayesian method of analysis used in this prob- 
lem to reach a decision. In the game of bridge, the effect on probabilities 
of every bid and play of the opponents can best be evaluated in a Bayesian 
manner. Your course of action depends first on your prior evaluation of 
the probabilities, including your personal estimate of the probability of an 
opponent acting in a particular manner, and then on your computations, 
according to Bayes' theorem, reflecting any significant and relevant evi- 
dence obtained. 

Thanks to Dr. Jones, I expect that, in the future, many more actuarial 
applications of Bayesian statistics will be found; they will be well worth 
the effort if they touch the practical interests of Actuaries as much as does 
the application to the game of bridge l 

JAMES C. HICK.MAN: 

I have the feeling that Professor Jones' paper may mark a significant 
turning point in the relationship between actuarial science and statistics. 
In the past, actuaries and other business executives who must make 
decisions on quantitative matters have not relied on classical statistical 
methods to the extent that natural scientists have. This caution has, in 
part, been caused by a feeling that classical statistical models are some- 
what divorced from business reality. In particular, there is the common 
complaint that past experience is given insufficient weight in these models. 
The warning that current statistical results must be modified by that de- 
sirable but elusive quality, common sense, pops up again and again in 
actuarial literature. The Bayesian approach to statistics now offers a 
formal framework within which past experience and current results may 
be explicitly introduced.into a decision problem. This is all to the good. 
The requirement that the information which summarizes past experience 
must be quantified,in order to define a prior distribution, will force decision- 
makers to clear thinking by more sharply defining the areas and the ex- 
tent of personal differences in viewing the situation surrounding a decision 
problem. 
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It is not surprising that classical statistics has developed largely as a 
tool of natural science, while Bayesian statistics seems to have greater 
applicability in the solution of social, business, political (including war) 
problems. Since Galileo's dramatic success in the Renaissance, it has been 
part of the method and folklore of natural science that the first step in 
seeking new truth is to discount past theory. This preliminary intellectual 
sterilization, and a general and uniform interest in all alternative hypoth- 
eses, are common characteristics of both natural science and classical 
statistics. 

In the fields of business and politics, however, decision-makers have 
been trained by intensively studying past experience. They have been 
impressed with the profusion of the states of nature that they face in their 
decision-making, and they have not enjoyed the luxury of being able to 
suspend judgment on urgent questions. In addition, some consequences of 
possible decisions in these fields involve such large losses that the prob- 
ability of making a decision that could lead to these abhorred results must 
be minimized. Thus it seems natural that the Bayesian approach to decl- 
sion-making with its promise of a formal mathematical framework that 
forces the blending of past experience and current results, and with the 
flexibility that it permits in ordering possible consequences, will be vigor- 
ously developed in these fields. 

Professor Jones has provided actuaries with a program for applying 
Bayesian statistics to some of their problems The two principal points in 
this program are the application of Bayesian approach to graduation and 
to credibility theory. As he points out in the paper, both these actuarial 
problems have long and interesting histories and both have been attacked 
in the past by almost-Bayesian approaches. I am particularly interested in 
the history of difference equation graduation as it is traced in the paper. 
If one follows the graduation path blazed by Bayes, King, Whittaker, and 
Jones, do statistical tests of the graduation, as are mentioned in the Miller 
monograph and developed in Seal's paper (JIA, Vol. LXXI), any longer 
have relevance? It would appear that perhaps within the framework of 
this theory the "best" graduation would have already been done. 

Before turning our attention to another example of the application of 
Bayesian statistics in actuarial science, it is interesting to note a certain 
parallelism between objective and personalistic probability on the one 
hand, and risk and uncertainty on the other. Risk and uncertainty were 
the terms adopted by Knight,* in his pioneering work on the economic 
consequences of random losses, for differentiating between possible losses 
that are unique (uncertainty) and those where empirical results provide 

* Frank H. Knight, Risk, Uncertainly and Profit ~(Boston: Houghton Mifflin, 1921). 
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an estimate of the probability of occurrence (risk). Situations where the 
probability of loss is obvious from the very nature of the situation are also 
called risks under this classification. These definitions have been used by 
many subsequent authors in this field. However, this is a classification 
that is somewhat difficult to maintain. The dynamic nature of the forces 
that determine the distribution of random losses serves to soften this dis- 
tinction considerably. Similarly, statisticians have sought to build walls, 
both a conceptual and a notational wall, between objective and personal 
probabilities. This effort also seems to hold little promise of complete suc- 
cess, for in a real sense the personal approach contains the objective. 
Certainly a rational decision-maker would not overlook the results of a 
great many iterations of the random experiment under study. I t  is also 
interesting to note that the mental process through which a rational deci- 
sion-maker assigns personal probabilities to events is very similar to that 
employed by an experienced underwriter who is faced with the problem of 
rating a variety of risks. 

I am convinced that the development of Bayesian approaches to ac- 
tuarial problems should be one of the principal current intellectual goals 
of the actuarial profession. Therefore it seems appropriate in the re- 
mainder of this discussion to turn to such an application that is mentioned 
at the end of Section 4 of the paper. However, it will first be necessary to 
introduce some additional ideas. 

One aspect of recent developments in statistics has been in the area 
of statistical decision theory. The problem in this area is to formulate a 
decision rule that depends on a random variable X where the distribution 
of X in turn depends on a parameter 0. To each pair [O, d(x)], we assign 
a nonnegative number L[O, d(x)] which in some sense measures the loss 
in making decision d(X) when the distribution of X is determined by 8. 
The expected value of this loss function, for fixed 8, Exjo{L[O, d(X)]}, is 
called, in this theory, the risk function and is denoted by R(O, d). One 
approach to the problem, which leads to a solution in only some special 
cases, is to select that decision rule which will minimize R(O, d) for all 8. 
Another approach to selecting an optimum d(X) involves considering 0 
as a random variable, with a distribution determined on the basis of prior 
information. This approach calls for determining the d(X) that minimizes 
E,  Ix{L[e , d(X)]}, the expected value being taken with respect to the 
posterior distribution. A decision rule selected by this method is called a 
Bayes solution. 

An illustration of an application of this method may be developed by 
building on example E of the paper. This seems to be an especially appro- 
priate example for actuaries, for although it is in a biostatistical setting, 
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the change of a few words makes it into a problem of estimating the prob- 
ability of no claim for an individual risk belonging to a proposed new risk 
class. 

Our problem is to estimate t by /" (n)  where/~(n) is a function of the 
x + y = n outcomes of Bernoulli experiments. A natural and very trac- 
table loss function is given by  L[t, T(n)] = c[T(n) -- t] 2, 0 < c. If we fol- 
low the Bayesian procedure, outlined previously, we will seek to find T(n) 
So that 

£ E~l,{L[t ,~ ' (n)]}  = c [ t ( n ) - - t J 2 K ( x + p , n - - x + q )  

X t~+P( 1 - t)"-~+qdt 

is a minimum. I t  is easy to show that the required Bayes solution (esti- 
mate) is 2~(n) = (x + p + 1)/(n + p + q + 2) and that 

~ l x [ T ]  = ~ ( n )  = [n/(n + p + q + 2)][x/n] 

+ [(p + q + 2)/(n + p + q + 2)][(p + 1)/(p + q + 2)1. 

Note that as the number of observed individual risks (n) increases, the 
prior estimate (p + 1)/(p + q + 2) is overwhelmed by the experimental 
data (x, n). This simple example serves to illustrate a Bayesian approach 
to an estimation decision. I t  could, just as well, have been stated in terms 
of a credibility problem (see Mayerson [12]). 

JOHN A. MIEREU: 

Dr. Jones has written a very readable and interesting paper on the 
subject of Bayesian statistics, a subject which apparently is experiencing 
a revival of interest. 

Many of us have had only a limited contact with the subject, and that 
under the name of "inverse probability." You may recall the type of 
problem where the poser says that either there are four white balls or 
two white balls and two black balls in a box and that either situation is 
equally likely. If a white ball is drawn you are asked to calculate that all 
of the balls are white. In practical applications of Bayesian statistics the 
prior information is never so clearly specified. 

I t  is interesting to note that the Whittaker-Henderson methods of 
graduation can be justified by Bayesian statistics. The choice of the factor 
h to reflect the relative emphasis to be given to fit and smoothness is 
left for personal judgment, and no light is shed on the most probable 
value of h. 

Perhaps it would be useful to simulate crude data on a computer by 
reversing the usual graduation process. One could start with a set of 
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smooth values, say, from some mathe/natical function, and then cause 
each value to wander about its true value in some random fashion. For 
each set of crude data so generated one could determine the value of h 
which would again produce the original smooth values. 

I believe that because of the controversy in the field of statistics be- 
tween classical and Bayesian statistics, it would be useful to have the 
classical side of the arguments before making the decision to become a 
Bayesian. If the Bayesian approach proves itself, the Society motto might 
be reworded to: "The work of science is to substitute facts for appearances 
by blending demonstrations and impressions." 

In conclusion, may I say that Dr. Jones has done the actuarial profes- 
sion a real service by giving us his survey of Bayesian statistics. In it 
there is much food for thought. 

EDWARD A. LEW: 

We are greatly indebted to Dr. Jones for his highly intelligible presen- 
tation of the Bayesian approach. His'paper and that of Allen Mayerson 
on "A Bayesian View of Credibility" show that certain actuarial problems 
can be handled with advantage by calculating probabilities on the basis 
of assumed prior knowledge and observational data, using Bayes' theorem. 

When the assumed prior knowledge is derived from other statistical 
data, there is substantial agreement about the application of Bayes' theo- 
rem. The issue between the classical and Bayesian statisticians is joined 
on the question of whether prior information that is not statistical in 
nature can properly be included in reaching useful decisions. This turns 
on our willingness to accept a theory of personal probability. 

If we take the position that any theory of probability is pure mathe- 
matics arising from a set of postulates, then different theories of proba- 
bility can be obtained by changing postulates. In applying a particular 
theory of probability, the pragmatic test is whether such theory and its 
underlying postulates fit the real life situation in which we are interested. 
I t  is possible that under some circumstances the theory of personal proba- 
bility may give more meaningful answers than the frequency theory, 
while in certain problems the reverse may be true; it depends on the ques- 
tions we ask (e.g., inferences about hypotheses or a decision rule) and the 
assumptions we believe to be pertinent to a particular real life situation 
(e.g., a set of repetitive events or a specific event). In many situations 
it would be convenient if we could retain the advantages of the personalis- 
tic view without the sacrifice of objectivity which this approach entails. 

The major difficulty with the Bayesian approach lies in assigning objec- 
tive values to the a priori distributions in terms of personal probabilities: 
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Even L. J. Savage is on record that "it  is usually possible to determine 
the personal probabilities of important events only very crudely," al- 
though he warns about drawing the "over hasty conclusion that such 
determinations are of little worth." 

An important advantage of classical confidence intervals is that they 
can be calculated precisely on the frequency theory without any assump- 
tions about prior distributions. This economy of assumptions leads to 
very general statements about intervals containing an unknown parameter 
at a preselected probability level, but such general statements are some- 
times not very informative. The Bayesian approach leads to a logically 
more pertinent statement about an unknown parameter which is related 
to our prior knowledge of the parameter in terms of personal probability, 
but the numerical answer may be highly subjective. 

This criticism is obviously valid, since personal probabilities may dif- 
fer widely from one individual to another and even for the same individual 
from time to time, and they may ultimately rest on the variable idiosyn- 
crasies of human beings. L. J. Savage has stated that any personal proba- 
bility should "in principle be indexed with the name of the person or 
people whose opinion it describes." Bayesians are likely to insist that the 
personal probabilities of an ideal individual reflect not merely his vague 
introspections but rather the results of a search for prior information. I t  
may further be argued that normal people will have had similar experi- 
ences and hence may reasonably be expected to interpret them within 
limits in the same way. Even when such is not the case, the use of per- 
sonal probabilities might be warranted in circumstances where their com- 
bination with sufficient observational data by the application of Bayes' 
theorem yields similar posteriori probabilities for different individuals. 
The discrepancies between the posteriori probabilities of individuals with 
different a priori opinions tend to become smaller as observations mount, 
in spite of conflicting a priori judgments. 

L. J. Savage rightly points out that the classical approach to inference 
has been pursued without reference to the existence of personal differences 
in judgment. Classical statistics, says Savage, "is largely devoted to ex- 
ploiting similarities in judgments of certain classes of people and in seek- 
ing devices, notably relevant observation, that tend to minimize their 
differences." 

Such devices include also the design of experiments and formalized ap- 
proaches to the analysis of data which introduce some subjective elements 
into the application of the frequency theory. Even more sobering is the 
realization that after inferences based on the frequency theory have been 
drawn from observations, the results may still have to be considered in 
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relation to prior knowledge. In this connection, it is interesting to note 
that C. B. Winsten has suggested that the term "weight" ra ther  than 
"probability" be used in describing prlordistributions. 

When we do decide to follow a theory of personal probability, we will 
need a systematic approach for selecting a prior distribution that will best 
summarize a priori knowledge, be relevant to the problem at hand, and 
appraise the stability of the process under observation, at least when 
there are marked divergences between the prior distribution and the dis- 
tribution implied by the observations. 

Because Bayesian distribution theory is only about ten years old and 
apt to be more complicated than classical distribution theory, it must be 
used with great circumspection. The possible usefulness in the Bayesian 
approach of nonparametric methods, where the main concern is to esti- 
mate the parameters of unknown distributions, remains to be explored. 

The concept of "consistent behavior" on which the theory of personal 
probability relies needs to encompass more explicitly the question of how 
relevant are the gambles representing prior knowledge to the gambles 
concerning anticipated events. The importance of basing judgments on 
relevant information is illustrated for actuaries by the early history of 
total and permanent disability benefits when for lack of better informa- 
tion the experience of fraternal orders was initially taken as the main 
source of prior knowledge about disability rates. 

Underlying all theories of statistical inference is the principle of sta- 
bility. In the frequency theory we rely on the premise that indefinite 
replication of observations will continue to field essentially the same re- 
sults. When the parameters of the process in which we are interested are 
liable to change with time or otherwise, we cannot count on stability, 
and in such circumstances neither classical theory nor the Bayesian 
approach will provide fertile grounds for induction. In his recent presi- 
dential address to the Royal Statistical Society, J. O. Irwin commented 
on inductive inference as follows: 

I have never concealed my personal conviction that we cannot get beyond 
the position, stated as early as Hume, that belief in the validity of inductive 
inference is, in the last resort, a matter of faith and faith only. It  seems, there- 
fore, largely a matter of taste at what logical depth we seek our primary postu- 
lates and axioms and whether we give more emphasis to objective or subjective 
theories of probability. This particular difficulty is not peculiar to the theory 
of statistics but concerns scientific inference in general. 

In my opinion the Bayesian viewpoint can be very helpful if we look 
upon prior personal probabilities simply as useful hypotheses rather than 
as uniquely intelligent guides for decision. If we make several plausible a 
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priori judgments and regard them as alternative hypotheses, we can learn 
a great deal about the range of posteriori probabilities produced by 
plausible assumptions as to prior probabilities and thus be in better 
position to make optimal decisions. This approach has some points of 
resemblance to the method of stable estimation advocated by L. J. 
Savage. 

HARRY M. SARASON: 

Professor Jones has made some of the statistical mathematical view- 
points more understandable to actuaries by use of the probability ap- 
proach. He has also introduced numerical illustrations which are still 
more understandable. I wish to enlarge upon use of numerical aids to 
understanding, by use of samples for survival rates as an illustration. 
Suppose the survival rate is three in four. We set up the hypothesis of 
independent probabilities; no catastrophe or epidemic. Then (1) trial- 
and-error based on a four-sided log marked d on one side could be used 
as a demonstration. (2) The Monte Carlo technique with random numbers 
could be used. (3) With some loss of realism a mathematical model based 
on an even distribution could be used; e.g., if sequences of eight tosses 
were used, we would have two to the eighth power or 256 sequences of 
deaths and survivals illustrating all possibilities, with some repeated to 
indicate relative probabilities, for a grand total of four to the eighth power. 
(4) With additional loss of realism we could replace this by four series, 
as follows: (a) dsss, dsss; (b) sdss, sdss; (c) ssds, ssds; (d) sssd, sssd. From 
this we could assume samples entering the first sequence of four either 
evenly or at random. (5) With additional loss of realism, we can assume 
an average start for our sample (i.e., after the first two items); we then 
have samples of (a') ss, dsss; (b') ss, sdss; (c') ds, ssds; (d') sd, sssd. In 
this series we have, all told, twenty-four items of which six are deaths 
and eighteen (or three-fourths) are survivors. (6) If we close our samples 
on the first death in the second sequence of four, we have (a") ss, d; 
(b") ss, sd; (c") ds, ssd; (d") sd, sssd. In this there are eighteen items with 
six deaths and twelve survivors with a survival rate of two-thirds. The 
unvarying inclusion of a death as the last item in our sample would pro- 
duce a bias in our sampling procedure. 

Mathematical statistics is used in a judgmental process and is not an 
exact science. Our students need to be made well aware of the fact that 
somewhat different numerical answers can be almost equally useful in 
judgmental process (without lengthening our examination syllabus, of 
course). I t  is much more important, however, for students to learn that 
there are a thousand and one pitfalls which every one of us finds difficult 
to avoid in the development and use of statistics. In my experience, the 
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major pitfalls have been avoided only when I was wary and was wining 
to examine all ideas. The pitfalls have not been avoided when I was not 
wary of prejudging. In forecasting disability rates among insured lives in 
the early thirties, for example, I never really believed that the depression 
would end. My forecasts were just as far off as were the earlier forecasts 
of those who believed that the prosperity of the twenties would continue 
forever. 

The worst pitfall that any statistician can fall into is to underestimate 
the fact that being an expert in the figures does not make him an expert 
in the facts which underlie the figures. You can't get the facts by sitting 
in an armchair, and there are very few who like toget  out of their arm- 
chairs and go dig up the facts; as Francis Bacon bemoaned somewhat 
more elegantly in his introductory essay in the Novum Organum when he 
decided that he had to do the job himself. One method of properly empha- 
sizing reality is by giving case histories. My own disability-depression 
case is one example of this. The first part of the statistics textbook of the 
Institute of Actuaries is along the case-history method. 

Another way to help the students is to emphasize the hypothetical 
bases of our numerical calculations so as to help them differentiate be- 
tween thinking based on reality and thinking based on hypotheses. I have 
seen statisticians try to develop the mathematics of subgroup sampling, 
rather than sampling by total population, on a hypothesis of statistical 
homogeneity of the entire populatiom 

Subgroup sampling would work very well in practice because, statisti- 
cally, birds of a feather tend to flock together, and defective nuts or. 
defective bolts tend to flock together. But subgroup analysis is merely 
devious and inefficient when used with a hypothesis of statistical homo- 
geneity. If we emphasize the word "hypothetical," it may help our think- 
ing. Perhaps Hall and Knight, in the second half of their sovereigns and 
shillings illustrative example, used the devious inverse probability solu- 
tion because in real life sovereigns tend to congregate with sovereigns 
and shillings tend to congregate with shillings--in supermarket cash 
registers, for example, and, presumably, in the eighteenth-century English 
green grocer's cash boxes also. For the benefit of students, then, my 
hypothetical answer to Dr. Jones' question about tossing a coin is as 
follows: "If  a hypothetical coin is hypothetically tossed, then every hypo- 
thetical body would be hypothetically wasting their hypothetical time if 
they hypothetically bet on the hypothetical outcome of the hypothetical 
event because both hypothetical bettors would hypothetically know that 
the hypothetical answer is, quite exactly, the real number, one-half." 
Curiously enough, we can inject a note of reality by spinning the coin in- 
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stead of tossing the coin. The probability of heads for a spun coin may 
be far from one-half. Right here in Denver a large number of pennies were 
minted which, when spun, came up heads five-sixths of the time--appr0xi- 
mately, that is. I t  may help our perspective to realize that this can lead 
to three kinds of thinking: (1) testing a single hypothesis, either one-half 
or five-sixths; (2) testing both hypotheses jointly; (3) getting more facts; 
from me, from the source of my information, by actual trial. The statisti- 
cian always has various choices of mathematical processes and, more 
importantly, always has the option of digging deeper into the underlying 
facts and the related environment, the historical changes, and the shadow 
of coming events. 

H A R W O O D  R O S S E R  : 

Dr. Jones' "personalistic definition of probability" appeals to me 
intuitively much more than does the "statistical" definition. So also does 
his single "black box" with the extra hole. However, the Examination 
Committee, with the aid of a syllabus change, persuaded me years ago 
that statistics was not one of my strong subjects. For that reason, among 
others, I shall confine my remarks to what Dr. Jones has to say about dif- 
ference-equation graduation. 

For one who has made something of a hobby of graduation, it was a 
pleasant surprise to find two papers being presented simultaneously, one 
directly on the subject and the other with a section devoted to it. Both 
deal with the Whittaker-Henderson method of graduation, but from 
quite different viewpoints. The paper by Andrews and Nesbitt shows that 
certain difference-equation graduation formulae, including mixed differ- 
ence types, have desirable periodograms. These they identify as Qb 
through Q8 on their graphs. 

Dr. Jones, in turn, explains why this family of graduation formulae 
gives good results. Much of this is not new, and is, as he notes, available 
in Miller's monograph on the subject. He goes considerably deeper, how- 
ever, and gives some history as to controversial aspects with which this 
reviewer was not familiar. 

He also makes a very trenchant capsule commentary on many actu- 
aries, present company not excepted: "To use or not to use the difference- 
equation method has probably been decided on computational grounds 
rather than on the merits of its theoretical justification." What a gem! 
This is particularly true of the Whittaker-Henderson "B"  formula. On 
the other hand, many substitutions could be made for "difference-equa- 
tion method" in that sentence, and it would still be all too true. Fortu- 
nately, in the electronic-computer age, this attitude is on the wane. 

Since this reviewer does not feel competent to comment on the broader 



196 BAYESIAN STATISTICS 

aspects of the paper, it remains only to compliment Dr. Jones on a very 
provocative viewpoint and an excellently organized presentation of his 
subject. In so stating, I make the fairly safe assumption that the qua]ity 
of what I didn't fully understand, at first reading, measures up to that of 
what I did. But I refuse to specify any confidence limits! 

WILLIAM H. CROSSON: 

In his paper, Dr. Jones referred to the problem that the Part II Com- 
mittee should have. We have recognized for some time that there we have 
a problem, not merely with respect to Bayesian statistics, but with the 
question of how to set an examination that properly discriminates be- 
tween the better and poorer students, and can be described as being 
"based on the material usually covered in undergraduate mathematics 
courses in probability and statistics," in view of the increasing diversity, 
in fundamental approaches to statistics. 

The purpose of this discussion is to record that the committee has been 
studying this problem for some time. We do not have the answer yet, and 
we solicit any suggestions that anyone may have which would help in 
solving this problem. 

(AUTHOR'S REVIEW OF DISCUSSION) 
DONALD A. JONES: 

My many thanks to the discussants who assisted immeasurably in 
"bringing Bayesian statistics to the attention of the members o'f the 
Society of Actuaries." The number of receptive discussants, the history of 
"Bayesian actuaries" contributed by Mr. Boermeester and Mr. Wolfen- 
den, and the conspicuous absence of comments by classical statisticians, 
all seem to me to be evidence of the affinity of Bayesian theory and 
actuarial practice. 

Mr. Greeley and Professor Hickman have contributed excellent ex- 
amples to the paper. I wish I had opened the paper with Mr. Greeley's 
clear and concrete application to bridge and closed with Professor Hick- 
man's sophisticated example in decision theory. Both examples should 
help " b r i n g . . .  a t t e n t i o n . . . "  (though Mr. Greeley's syllogism might 
distract us mediocre bridge players). 

I should try to clear up the misunderstanding induced by the ambiguity 
of the name "Bayesian statistics." In a school of thought so named One 
rightfully expects to find those statisticians who use Bayes' theorem: 

p(BIA ) oc P(A [B)P(B). 
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Among these statisticians are those who derived their statistical methods 
from personal probability, i.e., those called Bayesians in my paper. But 
there are some other Bayesians in the broad sense of using Bayes' theorem. 
Sir Harold Jeffreys is the chief author for this other Bayesian viewpoint 
which derives its statistical methods from the necessary definition of proba- 
bility. This is a sophisticated descendant of Laplace's equally likely defini- 
tion. Thus the personalistic Bayesian interprets the probability 
P(A) as a characteristic of the event A and the individual in contrast to 
the necessary Bayesian who interprets P(A) as an inherent property of 
the event A which may be derived on the basis of assuming symmetry at 
the "right point." 

While necessary probability is older than statistical and personal proba- 
bilities, the search for symmetry in applications other than games of 
chance has not been too successful, and hence the number of necessary 
Bayesians is small. 

The first three-fourths of Mr. Wolfenden's discussion with its history 
and references to the necessary viewpoint is an appreciated addition to 
the paper. One additional reference to the considerations of "equal dis- 
tribution of ignorance" is M. T. L. Bizley's Some Notes on Probability in 
JIASS,  X (1951), 161-203. 

I regret that Mr. Wolfenden did not detail his objection (4) to Whit- 
taker's basis for the difference equation method of graduation. As I 
understand Whittaker in [20], [21], and [22], he used Bayes' theorem, not 
formula, as Mr. Wolfenden states. As shown in [21], it was G. J. Lidstone, 
not Whittaker, who suggested "basing a graduation method on the addi- 
tion of criteria for fit and smoothness in an arbitrary proportion." This 
proportion was not arbitrary in [22] but rather was the ratio of the vari- 
ances of two normal distributions. 

Mr. Mereu also raised questions about the proportion between the 
measures of fit and smoothness in the Whittaker-Henderson method. 
Since h is the ratio of the variances of two prior distributions, the only 
"light to be shed on the [most probable] value of h" is from the gradua- 
tot's knowledge. If this knowledge is limited, then he needs to do research, 
perhaps along the line indicated by Mr. Mereu. For one graduator and 
graduation problem h is neither a random variable nor an unknown 
parameter but is a characteristic of the graduator's prior opinion about 
the problem. Incidentally the chore of making "Bayesian graduation" 
operational as Mr. Mereu's query suggests is a nontrivial exercise which 
is the topic of a recently completed Ph.D. thesis at the University of 
Michigan. 
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Mr. B0ermeester's query about Mr. Keffer's work is related to the 
ambigifity of the term Bayesian. In the broad sense of using Bayes' theo- 
rem Mr. Keffer was using methods of the'Bayesian School. The defense 
of Mr. Keffer's factor turns on one's interpretation of the six assumptions, 
especially (6), on page 131 of TASA, XXX. A classical statistician might 
defend the six assumptions as "prior k n o w l e d g e . . .  derived from other 
statistical data" (see Mr. Lew's discussion of this paper) and hence 
"apply Bayes i theorem rigorously." On the other hand, the six assump- 
tions may be accepted for reasons of symmetry by a necessary Bayesian. 
But certainly Mr. Keffer may adopt the assumptions from the personalis- 
tic view if he intends to use them as a guide to consistent behavior--which 
was his objective as I see it. ' ' 

Another major issue which is raised by Mr. Lew and Mr. Wolfenden 
is the difficult one of objectivity vs. subjectivity. These two words denote 
extremes of a very elusive concept, but as I interpret them a statistical 
theory based upon personal probability is more objective than a statistical 
theory based upon statistical probability. Professor Hickman says this in 
a positive tone in the last sentence of the first paragraph of his discussion. 

Objectivity is sometimes characterized by the appeal, "let the data 
speak for themselves." L. J. Savage uses the following example in his 
classroom teaching, and it speaks to this point for me. Suppose that you 
are a consulting statistician called in on the following three problems. 
Case A: A musicologist claims he can distinguish between the works of 
Haydn and the works of Bach. Case B:.A lady tea-taster claims she can 
distinguish between a cup with cream added to the tea and a cup with 
the cream poured before the tea. Case C: An inebriated person boasts 
he can predict whether a head or tail will turn up when a coin is tossed 
by a disinterested third party. Now suppose that ten trials are performed 
by each of the three claimants and that each obtains nine successes. My 
reactions are that the musicologist is "slipping, the lady tea-taster may 
have a sensitive mouth, tile inebriate was exceedingly lucky--and if ob- 
jectivity admonishes me to draw the same conclusion about the abilities 
of all three then objectivity should "be sacrificed." 

I don't know how a classical statistician would advise his three clients 
for there is no place in the classical framework to insert the prior opinion 
which distinguishes each of these cases. On the other hand, the personal 
probability Bayesian and his clients have no Choice but to construct a 
prior distribution which represents the client's opinion and knowledge 
before the data are in. The latter is more objective (Webster's 3d ed. 
[ld]: "expressing or involving the use of facts without distortion by per- 
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sonal feelings or prejudices") for me than the classicist's unguided inser- 
tion of the "nondata" information. Mr. Lew sees this chink in the classicist's 
objective armor when he says, "Even more sobering is the realization 
that after inferences based on the frequency theory have been drawn from 
observations, the results may still have to be considered in relation to 
prior knowledge." 

This objectivity versus subjectivity struggle may be eased some by 
using the terms public information versus private information to remove 
the emotional attachment that we have to the former terms. If in Mr. 
Lew's discussion of confidence intervals, we insert "private" for "subjec- 
tive, . . . .  the Bayesian approach leads to a logically more pertinent state- 
ment about an unknown parameter which is related to our prior knowl- 
edge of the parameter in terms of personal probability, but the numerical 
answer may be highly private (subjective)," then it sounds about right 
to me. If the blend of prior information to data is high, then the Bayesian 
credible intervals will be very dependent on the individual, hence private 
(subjective) as they should be. On the other hand, when the blend of prior 
information to data is low, the credible intervals will he approximately 
equal for most individuals, hence public (objective). For more discussion 
on this issue see B. de Finetti, "Probability, Philosophy and Interpreta- 
tion," International Encyclopaedia of the Social Sciences, 1963, L. J. 
Savage [23] p. 178, and [16] Chap. 4, especially Section 4.6. 

I would make one more comment on Mr. Lew's discussion of the pros 
and cons of Bayesian statistics. In his second paragraph he says, "The 
i s s u e . . ,  i s . . .  whether prior information that is not statistical in nature 
can properly be included in reaching useful decisions." Later he says, 
"for lack of better information the experience of fraternal orders was 
initially taken [by actuaries] as the main source of prior knowledge about 
disability rates." Here I think Mr. Lew has a strong case for actuaries to 
be on the Bayesian side of the issue, for most certainly some prior informa- 
tion of a nonstatistical nature accompanied the fraternals' disability expe- 
rience into company use. I t  would also appear more objective to display 
this other prior information by a probability distribution than to simply 
make arbitrary adjustments to the fraternal experience. 

Mr. Lew and Mr. Sarason both have understandings of statistics in 
practice that cannot be gained in the cloistered halls of the academic 
place. Their discussions of homogeneity and stability are in this esoteric 
realm of understanding. However, Mr. Sarason tried to climb into my 
ivory tower with his rigged sample for my survival rate example (p. 46), 
and I think r l l  leave him up there until he "closes his sample on the first 
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death in the second sequence of four" in the series dssd, ssss--"curiously 
enough, we can inject this note of realism . . . .  " 

In conclusion, I would assert that classical statistics has failed Mr. 
Lew's "pragmatic t e s t . . .  [of] fitting the real life situation in which we 
are interested." If the contrary were true, then we should find classical 
statisticians' contributions to actuarial practice in TSA, among these 
discussions, and among the discussions given before the open meeting of 
the Research Committee. Due to its failure of the pragmatic test, I sus- 
pect that Mr. Mereu will have a long wait to hear "the classical side of 
the arguments before making the decision to become a Bayesian," so I 
urge him and others to follow Professor Hickman and Mr. Greeley up the 
path of.applications of personal probability and Bayes' theorem. 



SOME INSTANCES OF THE SUPERIORITY OF GEOMETRIC 
METHODS OVER ARITHMETIC METHODS OF 

INTERPOLATION AND EXTRAPOLATION 

CHARLES B. BAUGIIMAN 

SEE PAGE 159 OF THIS VOLUME 

ROBERT C. TOOKEY: 

Mr. Baughman has pointed out the superiority of geometric interpo- 
lation and extrapolation methods which we tested by extrapolating cash 
values. Frequently, the actuary will be trying to design a policy that will 
produce a desired cash value by the end of the twentieth year. Sometimes 
it is the level of cash value required that finally determines his selection 
of interest rate. When cash values according to a set formula are available 
at 2½ per cent and 3 per cent, the corresponding values at 2 per cent and 
3½ per cent may be obtained by extrapolation. 

COMPARISON OF ACTUAL AND EXTRAPOLATED 
MINIMUM CASH VALUES, ISSUE AGE 30 

DURA- 
TION 

5 . . . .  

WHOLE Ln~z 

Actual 

• ~ 29.24 
10 . . . . .  96.13 
15 . . . . .  170.48 
20 . . . . .  251.31 
25 . . . . .  336.78 
30 . . . . .  424.69 
35 . . . . .  511.90 

ENDOV,'~T AT 65 ! 20-PAy LI:VE 

Geo- 
metric 

$ 29.53 
96.33 

170.65 
251.49 
336.97 
424.92 
512.16 

Arith- 
metic 

$ 28.73 
95.24 

169.39 
250.20 
335.78 
423.89 
511.32 

Actual 

$ 57.36 
160.84 
279.94 
416.77 
575.03 
763.07 

Geo- 
metric 

$ 57.62 
161.14 
280.32 
417.22 
575.48 
763.43 

Arith- 
metic 

$ 56.95 
160.20 
279.34 
416.39 
574.96 
763.24 

Geo- Arlth- 
Actual 

metr ic  met l c  

$ 65. 755 65.8~ $ 63.68 
180.14 179.74 176.12 
312.59 311.7£ 316.99 
466.13 464.6£ 459.25 

The table above compares 3½ per cent minimum cash values at issue 
age 30 on whole life, 20-pay life and endowment at 65 plans as extrapolat- 
ed from 2½ per cent and 3 per cent values by the arithmetic and geometric 
methods of extrapolation with the actual values. I t  is somewhat surpris- 
ing that both the arithmetic and geometric methods produce such close 
results in the case of the whole life and endowment at 65 plans. However, 
the superiority of the geometric method is quite apparent when extrapo- 
lating the values under the 20-pay life plan, leading one to conclude that 
for the most consistently accurate results, the geometric method is the 
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m o s t  re l iable  in ex t r apo la t i ng  cash values .  I t  wou ld  follow t h a t  this would  

usua l ly  hold t rue  in the  ex t rapo la t ion  of pol icy  reserves  as well.  

ROBERT F. LINK: 

T h e  E q u i t a b l e  faced  essent ia l ly  this  p rob l em recent ly ,  w i th  the follow- 

ing  r e q u i r e m e n t s :  

1. We wished to derive values of reserves at  various odd rates of interest from 
values at two specified rates. 

2. A high degree of accuracy was desired, both in interpolation and in extrap- 
olation to higher interest rates. 

3. Several thousand such determinations were to be made in one E D P  run, 
with uniform pivotal  interest rates but  the desired rate varying from case 
to case. 

W h a t  we requ i red  was a fo rmula  of the  genera l  t y p e  u= = f(ul, uj), 
a d a p t e d  pa r t i cu l a r ly  to the  r ep roduc t ion  of p resen t  va lue  in te res t  and  

a n n u i t y  func t ions  wi th  ave rage  d i scount  per iods  of f rom ten  to twen ty -  

five years .  

COMPARISON OF GEOMETRIC EXTRAPOLATION WITH 
SPECIAL FORMULA EXTRAPOLATION 

(Based on 3 Per Cent and 3½ Per Cent Values) 

Special 
f (4 P e r  C e n t )  Actua l  Geomet r i c  SpecialFormula Geometric I Formula 

Value Value Value Per Cent ~ Per C e n t  

Error [ Error 

(1+i) 8 . . . .  
( 1 + i ) 8 8 . . .  

(1+i)1°°... 
?)3 . . . . . . . .  

~10 . . . . . . .  

?.)33 . . . . . . .  

S ~  . . . . . .  
S.--~ . . . . . .  
S,o-~ . . . . .  
as -  7 . . . . . .  
glo'- ~ . . . . . .  

as-s- ~ . . . . . .  

~ l o - ~  . . . . .  

al@ . . . . . . .  

~55 . . . . . . .  

g00 . . . . . . .  

A l O  . . . . . . .  

A 55 . . . . . . .  

A . ~ ,  . . . . . . .  

,~10 . . . . . . .  

P55 . . . . . . .  

1.12486 
3.64838 

50.50495 
.88900 
.67556 
.27409 
.01980 

3.12160 
66.20953 

1237.62370 
2.77507 
8.11090 

18.14765 
24.50500 
21.5207 
11.6923 
2.2692 

.13383 

.51183 

.87425 

.00594 

.04033 

.26742 

1.12494 
3.65119 

50.62295 
.88893 
.67542 
.27388 
.01975 

3.12163 
66.10756 

1225.28223 
2.77492 
8.10837 

18.10575 
24.20408 
21.3835 
11.6755 
2.2689 

.13241 

.51065 

.87408 

.00592 

.04029 

.26741 

1.12487 
3.64492 

48.94920 
.88901 
.67570 
.27517 
.02210 

3.12156 
66.07397 

1207.99855 
2.77508 
8.10974 

18.11953 
24.27745 
21.4183 
11..6804 
2.2691 

113398 
, .51113 

.87417 

.00593 

.04030 

.26742 

.01% 

.08 

.23 
- . 0 1  

- . 0 2  

- . 0 8  

- .25 
0 

- .15 
- 1 . 0 0  
- . 0 1  

- . 0 3  

- .23 
--1.23 
- -  . 6 4  

- -  .14 
- -  .01 
--1.06 
- -  .23 
- -  , 0 2  

- -  . 3 4  

- -  . 10 
0 

0 
~ . . 0 9 ~  

- - 3 . 0 8  

0 
.02 

l . . 3 9  

11.62 
• . . 0 

- -  .20 
-- 2.39 

0 
- -  .01 
- -  . 1 5  

- -  .93 
- -  . 4 8 .  

- -  . 1 0  

0 
.11 

- -  . 1 4  

- -  . 0 1  

- -  . 1 7  

- -  .07 
0 
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We first approached the question empirically. Harmonic interpolation 
seemed to have the right general characteristics and produced rather good 
results. However, we decided to derive a formula directly based on the 
characteristics of a present value function, and arrived at the following: 

u,=u~+(ui--ul)  ~ l - - ½ ( j + i ) - - ~ ( j  i) ' 
where 

• l ( u , - - u j ~  
O < i < g  and n=Ul k ] _ i  / .  

Our reasoning was threefold: 
1. If an average value of the duration until payment,  n, could be as- 

signed in a given case, the value of n would aid in establishing the curve, 
u,, based on ul and ui. We deduced the formula above for an approximate 
value of n in terms of ul and ui. 

2. Using this value of n, the value of u~ could be expressed as 

_u~) (1 +i /1  + x ) " - -  1 
u ln  u (ui U z  = 

(1+i/i+j)-- i" 

3. By an expansion of the above, and a judicious dropping of terms, 
we arrived at the formula given. 

The table on page 202 illustrates the results of extrapolation in accord- 
ance with this formula, in comparison with that suggested by Mr. Baugh- 
man. Ours is more accurate in the area of present values of annuities 
certain, life annuities, life insurances, and net level premiums. Geometric 
is superior for interest accumulation and discount factors and for annuity 
accumulation factors. 

DAVID ~. GOOD: 

Mr. Baughman has given a useful reminder that  there are more ways 
than one of performing an interpolation. A particular feature of his devel- 
opment is the criteria supplied for choosing between linear and geometric 
interpolation, most of which are in a form new to me. His comments and 
examples illustrate the point that  the choice of method depends on avail- 
able knowledge of the function; this is particularly important when ex- 
trapolation is involved. An outstanding example is the extrapolation from 
f(0) = 0 and f(90) = 1 to f(180) = 2, only to find later that  the function 
is a sine curve l 

I t  has been said that  numerical analysis is as much an art as it is a sci- 
ence. This is perhaps because the aim of interpolation, for example,[is not 
to get the "best"  result but to get a satisfactory result with the least 
effort. Here "satisfactory" depends entirely on the use to be made of the 
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result; to achieve this sometimes calls for skill and intuition. To illustrate 
some other devices that may be used, I will first discuss geometric inter- 
polation as it relates to other methods and then mention a similar useful 
method adapted to desk calculator computation. 

1. The familiar methods of interpolation are based on developing a 
polynomial which is a useful model of the desired function. Geometric 
interpolation can be considered a generalization of this in two ways. 

First, functions other than polynomials may be used. In Mr. Baugh- 
man's method, the function is represented by an exponential function 
such as 

ux = (ul/uo) ~ Uo. 

The general approach of using exponential functions is of course familiar 
in the case of the Gompertz and Makeham formulae. However, other 
functions may well be used. A numerical method of representing the func- 
tion by a rational function by means of "reciprocal differences" is due to 
Thiele and may be found in Milne-Thomson, Calculus of Finite Differ- 
ences. This method may be indicated when the function becomes infinite 
at finite values of x, or approaches a finite value as x approaches infinity. 
Another example is the method of representing the function in terms of 
trigonometric functions (harmonic analysis). This is indicated when the 
function is apparently periodic. Discussion may be found in Whittaker 
and Robinson, Calculus of Observations. 

Second, the function may be replaced by another more tractable func- 
tion, from which the original function may be obtained and for which 
polynomial interpolation is appropriate. Mr. Baughman's method con- 
sists of replacing the function by its logarithm for interpolation purposes. 
This device has many forms; possibilities sometimes used are polynomial 
interpolation on 1/u(x) or on x.u(x). Combinations of these methods also 
may be useful. 

2. A method similar to geometric interpolation is polynomial interpo- 
lation on the reciprocal of the function, which might be called harmonic 
interpolation. An example of this method is the Balducci approximation 
for l,. For the two-point case, the formula is 

UOUl 

u~=xuo+ (1 - - x )u l '  

which is relatively easy to calculate by desk calculator (geometric inter- 
polation for fractional x may require use of a seven-place logarithm table). 
This method frequently gives results on the order of geometric interpola- 
tion for functions of i (Mr. Baughman's Table 1), but for functions of age 
or duration it may not be so satisfactory (Mr. Baughman's Table 2). If 
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second differences are ignored and if u(x) does not vary too much in the 
interval concerned, the respective errors in linear, geometric, and har- 
monic interpolation are on the order of 

x ( x -  1)[u,,] 
~/* ~ 2 

~O ~ 2 

'H  = X ( , - -  1 ) [ U U " - - 2 . " ] 2  "U ' 

where the quantity in square brackets is to be evaluated at some undeter- 
mined point z in the interval. 

These indicate that geometric is superior to linear if 
luu"- . '* l  < 

o r  
U p2 < 2UU I1 . 

Harmonic is superior to linear if 

o r  

U ;~ < UU tt . 

Neither method is superior to linear if u 'r and u are of opposite signs 
(the curve concave toward the x-axis). This situation is illustrated by the 
function a~ as a function of n in Mr. Baughman's Table 2, and may com- 
monly arise for reserves considered as a function of duration. 

3. As an illustration of the use of a preparatory transformation before 
interpolating, consider the case mentioned above of a,- 1 as a function of n. 
For direct interpolation, linear interpolation is superior. If, however, the 
function 

V(n) = 2 5  - a~ 
is constructed, harmonic interpolation will be useful, and geometric inter- 
polation will be exact. The device may be useful for functions for which 
the algebra is not so obvious, such as those involving life contingencies. 
In this case the transformation is related to the limiting value as n ap- 
proaches infinity. 

As Mr. Baughman suggests, such methods are worthy of the further 
consideration by actuaries. They are practical in those situations where 
linear interpolation is unsatisfactory; the occasion and manner of their 
use can only be determined by the computer's knowledge and intuition. 
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I Would be happy to see more actuaries get their feet wet in this stream; 
they will find many such devices of practical use to them. 

HARW00D ROSSER: 

Mr. Baughman's numerical examples are more impressive, or at least 
easier to understand, than his accompanying theoretical development. 
He mentions interpolation but confines his illustrations to extrapolation. 
Accordingly, I have given below a numerical comparison of the results of 
interpolation under the two methods. In so doing, I have recast the work 
in what may be a more practical form, somewhat like the usual approach. 
This simplifies extension to the case where more than three values are 
given. I ta l so  permits some judicious blending of the two methods. 

My numerical example assumes that only an isolated value or so is 
required, or that accuracy is highly important. For interpolation in quan- 
tity, especially if quinquennial values are available, I would prefer the 
linear-compound approach given in my 1962 paper in the Proceedings of 
the Conference of Actuaries in Public Practice, XII,  298. 

This reviewer questions the value--for, actuaries, anyway--of the 
elaborate use of remainder terms. In actuarial work rarely does one seek 
to interpolate or extrapolate a mathematically expressible function. The 
author attempts to set up criteria to ascertain when geometric methods 
are preferable to arithmetic ones. These seem, however, to require that 
the underlying function be known. .. 

Mr. Baughman has, by implication, motivated us to re-examine a very 
fundamental actuarial subject: the choice of an appropriate formula or 
method for approximating additional points on a curve. This is, unfortu- 
nately, an area in which there is a plethora of formulae but a dearth of tools 
for prediction of comparative accuracy. More on this later. 

For a paper of tliis brevity, the author has wisely avoided the comple- 
mentary question of smoothness of results. Also, in government wo÷k, the 
emphasis is usually on forecasting rather than on obtaining intervening 
figures. The reader who seeks to apply these methods in a different context 
should, however, be aware of these limitations. This comment on the 
scope of the paper should not be construed as a criticism of the author's 
very ingenious, and yet basically simple, approach. 

One is moved to speculate as to what would be the impact on the linear 
compound interpolation formulae of Beers and Greville, if the tests of 
smoothness were based not on differences of the observed values but on 
those of their logarithms, as suggested by the author. In the comput..e.r age 
.this 'is something less than utterly fantasticl 
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COMPARISON OF INTERPOLATION RESULTS 

Arithmetic Methods 

To obtain what Mr. Baughman calls "arithmetic" results, we use clas- 
sical finite difference methods• For the value of ax0-v I when i = .0275, or 
n = 2{ (see Table  1), the appropr ia te  formula is 

U.+= = (I + A)=U,. (1) 

Setting x = { and expanding, we obtain 

U.+I]2 = V.'+ {AU. - -  1/8 A2U. + 1/16 asU. + .... (2) 

We employ as many terms on the right-hand side as we have given values. 
Thus, if three values are to be used, we proceed as though third and higher 
differences were all zero. I t  will be noted tha t  picking up an addi t ional  
value,  to improve the approximat ion,  thus means correcting the previous 
figure b y  the value of another  term of the series. 

Subst i tu t ing values, both  given and derived (those employed are i tal i-  
cized), f rom Table  1 in formula  (2), first using only two given values,  
then three, and finally all four, we obta in  results  as shown in Table  2. I n  

TABLE 1 

DIFFERENCES AND RATIOS OF a~o-~ 

(,) 

L.. 
Z.. 
3.. 
t . .  

Inter- 
est 

Rate i 
(2) 

.020 

.025 

.030 
• 0 3 5  

a,0--~ 

(3) 

43.09835 
36 .61411  
31.59891 
27.65543 

A 

(4) 

-- 6.48424 
-- 5.01526 
-- 3.9434~ 

At 

(s) 

1.469 
1.071 

A, (33~+,/(33. 

(6) (7) 

34 - - , 3 9 7 3 2  .8495478 
r2 . . . . . . . . .  8630255 
. . . . . . . . . . . . .  8752020 

Rt 

(s) 

1.015865 
1 .014109  

R$ 
(S)~+,/(8), 

(9) 

• 99827 ld 

TABLE 2 

" A R I T H M E T I C "  VALUES FOR a,o-'6~ AT 2.75 P E R  C E N T  

Correction ' Highest n--Subscrlpts Approximate Order of 
Approxi- of Values to Preceding 
marion Valuo Differences 

Used Figure Involved 

(1) (2) (3) (4) (s) 
I 1st . . . . . . . .  2-3 34.10651 • 

2d . . . . . . . .  2-4 33.97254 -- .  133965 2d 
3d . . . . . . . . .  1 - - 4  33.94771 -- .024832 i 3d 
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each case we take n = 2. However, in the last case, using n = 1 and 
x = 3/2 would give the same numerical result. 

Geometric Methods 

For "geometric" results, we replace addition by multiplication, use 
coefficients as exponents, and substitute R's for A's, where the former 
represent the ratios between two successive terms, rather than differences. 
Thus the counterpart of formula (2) is 

( g l U n )  1/2 (RaUn) 1/16 . . .  

Un+l/, = U n (g'-~-~n l ~ f i - 7 ~  8 "~. ( 3 )  

Just as higher differences are deemed to be zero, higher "ratios," or R's,. 
are considered to be unity, and hence do not affect the result. Thus the 

TABLE 3 

"GEOMETRIC" VALUES FOR a~.--~ AT 2.75 PER CENT 

AP- 

PROXI- 

MATION 

(t) 

1st . . . .  
2d . . . . .  
3d . . . . .  

n--SuB- 
SCRIPTS OF 

VALUES 
USED 

(2) 

2 -3  
2 - 4  
I-4 

CORRECTION" FACTOR TO 

(3) (4) 

34.  01420 34 .10651  
33.  95468 33 .95430  
33. 94815 33 .95101 

APPROXIMATE VALUE 
P~.C~I~G Fmusm (COL. 3) S~MBOL FOR 

COL. 5 

Pure Blended Pure Blended ] 
(s) (6) ', (7) 

+ 1 . 0 0 1 7 5 3  
X .9998078 

+ 1 . 0 0 1 7 6 4  
X .9998920 

(R2U2)ll 8 
(P~V,)m0 

first approximation, based on two given values, uses only R~U,,. Each 
successive approximation refines the previous one by introducing an 
R-term of higher order. 

Substituting values from Table 1 in formula (3), using two, three, and 
four given values, respectively, we obtain results parallel to those in 
Table 2. These are shown in Table 3, in the columns labeled "Pure." 

In this terminology, Mr. Baughman's formula (4) would appear as 
follows: 

v . + 3  = U . ( R ~ U . ) 3  ( R ~ U . )  3 . (4) 

In fact, substitution therein from Table 1, with n = 2, will give his 
extrapolated value of 24.54558. 

Fractional Powers of R-Terms 

An obvious reason why "arithmetic" formulae have commonly been 
preferred is the labor of computing fractional powers of the R-terms, as 
shown in formula (3). This may be reduced by the use of logarithms, 
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generally with some loss of accuracy. I t  is not usually practical, however, 
to employ logarithms on an electronic computer. 

A method that is perfectly compatible with either a desk computer or 
an electronic one is Newton's iterative approximation formula: 

F(x.) 
x " + a = x "  F ' ( x , , ) "  ( 5 )  

This will be illustrated in obtaining the value of (R2Uz) ~/s shown in 
Table 3. 

The basic equation is 

F(x )  = x a -- R2U2 = 0 .  (6) 

Differentiating this, and substituting in formula (5), gives a working 
formula: 

x.+l = .875x. q- .125 R~U2/x~ .  (7) 

In worksheet form, the application of formula (7) appears in Table 4. 

T A B L E  4 

USE OF NEWTON'S  FORMULA T O  OBTAIN A FRACTIONAL POWER 

Trial (RaUs)dtffixn x~ R~UI+ (2) xn+* Check: 
1.014109+(2) .875(1)-t-.125(3) (1) (2) 

(1) (2) (3) (4) (s) 

1 . . . . . .  1 . 0 0 0 0 0 0  1 . 0 0 0 0 0 0  1 . 0 1 4 1 0 9  1 . 0 0 1 7 6 4  . . . . . . . . . . .  
2 . . . . . .  1 . 0 0 1 7 6 4  1 . 0 1 2 4 1 4  1 . 0 0 1 6 7 4  1 . 0 0 1 7 5 3  . . . . . . . . . . .  
3 . . . . . .  1 . 0 0 1 7 5 3  1 . 0 1 2 3 3 6  1 . 0 0 1 7 5 1  1 . 0 0 1 7 5 3  . . . . . . . . . . .  
t . . . . . .  1 . 0 0 1 7 5 3  1 . 0 1 2 3 3 6  . . . . . . . . . . . . . . . . . . . . . . . . . .  1 . 0 1 4 1 1 1  

"Blended" Methods 

If for the last R-value used under the "geometric" approach we employ 
a simple approximation to the fractional power, the work is substantially 
reduced. Also, as will be seen, the accuracy is often actually improved. 
This approximation is 

(RkU.)¢~ --- ! [  ( q _ p)  + p (RkU.) ]. (8 )  
q 

An example is the second trial value in Table 4, where p = 1 and q = 8. 
The results of using formula (8), in each case for a single R-term only, 

are shown in Table 3, in the columns labeled "Blended." To illustrate the 
saving in labor, the last figure in Column 5 required twelve trial values. 
Also, since the correct value of a~0"¢¢1 at 2.75 per cent is 33.95104, the "blend- 
ed" values are preferable to the "pure" ones in all but the first instance 
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(where, of course, the former coincides with the "arithmetic" result). 
This is more readily seen in Table 5, which compares the errors of approxi- 
mation in the values in Tables 2 and 3. 

POSSIBLE PREDICTION TH'EORY 

A glance at Table 1 suggests the possibility of some sort of practical 
criterion to determine whether an arithmetic or a geometric method will 
give better results, assuming that the underlying function is not formu- 
lated. If a certain order of differences--as the fourth, say--were all zero, 
then any standard finite difference formula extending to third differences 
should give an exact result. Similarly, if all the R-terms in a certain col- 
umn were unity, then a method using all R-terms of lower order should 

T A B L E  5 

COMPARISON OF ERRORS OF APPROXIMATION 

TO Uzo-~] AT 2.75 PER CENT 

~PROXZ- 
MATION 

(1) 

1st . . . . . . . .  
2d . . . . . . . .  
3d . . . . . . .  

"ARITHMETIC p~ 

MEg'ROD 

(2) 

.15547 
•02150 

- - • 0 0 3 3 3  

"GEO~gTRICP ~ ~ E T H O D  

Pure Blended 
(3) (4) 

• 06316 .15547 
.00364 .00326 

- - .  00289 - - .  00003 

give a precisely .accurate. answer.. Obviously, in the first instance, an 
arithmetic method would be preferable, and a geometric one in the second. 

In between these two extremes, the choice is less clear. A direct com- 
parison between differences and ratios (less unity) of the same order 
would not be appropriate, since multiplication of all the basic values by 
a constant would affect the former, but not the latter. I t  would be more 
reasonable first to divide each difference by something like: (a) the basic 
value on the same line; (b) the average of the basic values involved in the 
difference; (c) the next lower difference; or (d) the mean of the two dif- 
ferences defining such difference. Then such quotients might be compared 
with the departures from unity of the corresponding ratios. 

On such a basis--admittedly somewhat intuitive--the geometric ap- 
proach would be favored for the figures in Table 1. Time does not permit 
more investigation into the theory or more extensiv e empirical testing. 

One objection to such an attempt is that a constant addition to the 
basic values--pictorially, a translation--would not affect the differences 
but would alter all the ratios. This objection applies equally to all of 
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Mr. Baughman's geometric results as well; that is, they are not independ- 
ent of the position of the give n values on the graph. No ready remedy 
suggests itself. 

(AUTHOR'S REVIEW OF DISCUSSION) 

CHARLES B. BAUO~AN:  

That this paper has only scratched the surface is further evidenced b y  
the discussion. 

I t  was interesting to see Mr. Tookey's results from extrapolating to 
derive estimates of minimum cash values. His experience suggests that 
empirical testing is more useful than theoretical analysis in practical 
applications. 

Mr. Link has demonstrated Equitable's success in using a formula of 
the type 

u, - u d ( i ,  j ,  n) + u;g(i, i, n ) .  

This suggests formulae of the type 

log u, - F(i, j ,  n) log u~ + G(i, j ,  n) log uj . 

Mr. Good makes a number of helpful points which are so clearly stated 
as to require no comment. 

The author was particularly interested in Mr. Good's polynomial inter- 
polation on the reciprocal of the function, the process of harmonic inter- 
polation. If T~+x (x) and W, are defined so as to be consistent with the 
definitions of R~+I (x), S~+t (x), U,, and V,, we then have a formula 
analogous with formulae (5) and (6) in the paper, 

T,+I(z) =i--W,. 
Uz 

I t  is then relatively easy to derive theorems involving T~+x (x) and W, 
which are analogous to those in the paper. For example, a theorem 
analogous to Theorem VII is: 

If  ] u:T~+l(x) ] 
1--u,T.+l(x)  < IRn+x(x)I,  

then 

Also, if 
u,T.~ 1 ( x ) e-S.+l(,~ 

then 

I '1 u,-~-~, < l u , -  ev"l. 
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It can also be noted from Mr. Good's discussion that, if second differ- 
ences are ignored and if u(x) does not vary too much in the interval con- 
cerned, geometric is superior to harmonic if uu" -- u ~= < 0 and harmonic 
is superior to geometric if 0 < uu" -- 2u '2. 

It is interesting to compare values obtained by harmonic extrapolation 
wi th  those  in T a b l e  1 in the  paper .  These  va lues  are  con ta ined  in the fol- 

lowing table,  and  i t  will be no t ed  t h a t  ha rmon ic  ex t rapo la t ion  p rov ides  

the  bes t  a p p r o x i m a t i o n  for the  p resen t  va lue  of an  a n n u i t y  cer ta in .  

ILLUSTRATIONS OF VALUES 
EXTRAPOLATED HARMONICALLY 

( E x t r a p o l a t e d / t o m  3 P e r  Cent  and 3½ P e r  Cent Values)  

(1 + n)~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  1. 12518 
(1 + i)sa . . . . . . . . . . . . . . .  ; . . . . . . . . . .  3. 76422 
(1 + i) 1°° . . . . . . . . . . . . . . . . . . . . . . . . . .  82. 73352 

v 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 88912 
v 8s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 27999 
v t°° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 02317 

s3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3. 12170 
sss . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . .  66.71559 
s~oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1488.09522 

a3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.77517 
as3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18.18546 
a~oo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24. 58690 

/~o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23. 0309 
/i~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13. 2031 
~/90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3. 3563 

A10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0. 1212 
A 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.4943 
A 9o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.8709 

Plo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 00515 
Ps~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 03734 
Pgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  O. 25944 

Mr .  Rosser ' s  discussion is a helpful  add i t ion  to the  paper ,  i nasmuch  as 

he has  g iven  us a n u m b e r  of p rac t ica l  suggest ions  and  has  cas t  his devel-  

o p m e n t  in a more  fami l i a r  form.  I t  is hoped  he  will deve lop  his p red ic t ion  
t h e o r y  in a fu tu re  paper .  

T h e  au tho r  g rea t ly  apprec ia tes  the  va luab le  con t r ibu t ions  of the  discus- 

san t s  and  the  s t imula t ion  to fu r the r  exp lo ra t ion  which t h e y  offer. 


