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Abstract. The intent of this note is two-fold. First, a derivation for the 
z-Method is presented. This derivation is algebraic (in the abstract 
sense) rather than combinatorial in nature. Second, a clarification of 
the use of compound statuses results in simpler calculations and largely 
eliminates the need to return to first principles when calculating pro­
babilities. 

0. King's z-Method for representing the probabilities that exactly r or at 
least r of m events will occur was presented originally as a mnemonic for 
Waring's formulas, also called inclusion-exclusion formulas. No under­
lying mathematical meaning was assumed; the formula reflects a fortuitous 
agreement among coefficients and significantly eased the memorization of 
the formulas. 

In this paper an appropriate algebraic structure is constructed for the 
inclusion-exclusion formulas and King's z is defined as formal operator on 
that algebraic structure. The structure is square-free symmetric polyno­
mials and z is old-fashioned polynomial integration. (Note: Probabilists 
and statisticians tend to read •expectation• whenever "integration• ap­
pears. In this application, "integral" in the sense of a linear operator 
is more appropriate, I expect.) 

In addition, a simplification of current exposition may be possible with 
an explicit interpretation of compound statuses. This is presented in 
section 2 with examples in section 3. 

To keep the abstract algebra understandable, every attempt to keep the 
proofs and definitions concrete has been made. For those readers who feel 
more comfortable with polynomial rings, quotient rings, lifts and projec­
tions, section 1 may provide an entertaining exercise. 

The references cited in the bibliography reflect the results of a litera­
ture search conducted on inclusion-exclusion formulas. The closest 
results to any given in section 1 (following Lemma 2) appeared in [s, 
pp. 261-262] • While formally identical with our Theorem 2, Loeve's 
result is really a modification of King's Z-Method. 
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1. In the general multi-life status, 

we are primarily concerned with the probabilities 
[r] trJ r 

P ---'~ •F ( p ••• p) and p---
n x1 ···~ n x1 • 'n ~ n x1···"m 
denoting the probability that exactly r and at least r of the m lives 
will survive n years. Three cases have special notation: 

(joint survivorship) 

(last survivorship) 

The rest of this section will express Fr and p(~as functions of 
Xl'····~· 

Let Xi be the probability that event i will occur. 

Let F{r) (Xl'. • • ,~) be the probability that exactly r of the m 
independent events listed will occur. 

Let Fr(x1, ••• ,~) be the probability that at least r of them 
independent events will occur. 

Where confusion will not arise, the •event list• (X1 , ••• ,~) will be 
omitted. 

The following are clear. 
LeDDa l. Fr • p[r] + pr+l 

Lenuna 2. p[rl (Xl' ••• ,~) 
for r ~ o. 
~ xl.p(r-ll (X2·····~> 

+ (1- Xll•Ftrl(x2, ••• ,~) 

Corollary: plr] is linear in each xi. 

w -~ ~ ~~ ~ Theorem l. "'F (Xl' • • • ,~) r f;~i ·F (Xl' • • • ,Xi, • • • ,x_l 
where Xi means that Xi has been dropped from the event list. 

100 



Proof 1 Since F [r) is linear in each variable, it suffices to check 
the 2m possibilities where Xi • 0 or 1. Since the right and left­
hand sides (RHS and LHS) are symmetric, this reduces to the m + 1 
cases where j of the Xi are 1 and m - j are 0 as j runs from 0 to m. 

Let x1 • x2 • ••• • xj • 1 and xj+l • xj+2 • ••• • Xro • o. 
If j ~ r, LBS • 0 and if j • r, LBS • 1 by definition. For the 
RHS, if j ~ r, then j - 1 > r - 1 so that RHS • o. 
Similarly, if j< r- 1, j- 1 < r- 1 so that RHS • 0. 

rr-1] A ~ If j • r- 1, Xi•F (Xl'•••rXi,•••rXrol 1·0 • 0 if i * j 
·1 • 0 if i > j 

so that RHS • 0. 
If j • r, XrF[r-l,) (X1r•• ,Xi'•• rXrol 

so that RHS •.!. [ r.l + (m-r) .oJ"' 1 • 
r 

·Jl·l • 1 if i ~ j 

(o.o • o if i > j 
LHS. 

Note that F[rJ and Fr are symmetric square-free polynomials. In the 
following remarks we will derive certain properties of such poly­
nomials. TO this end, w~ introduce the f9llowing algebraic 
relation: FOr all i, Xi • 0. Since FtrJ is linear in each Xi' 
F[r] and Fr are unchanged by this. The calculations in the rest of 
this section are carried out modulo these relations. 

LetS • S(X1 , •• •,Xml = x1 + x2 + ••• + Xro· We shall see that powers 
of S generate the homogeneous square-free symmetric polynomials in 

m variables of each degree. Let l!j "' -1-r- sj. Then l!j is a homogene­
ous symmetric square-free polynomial ol degree j. MOreover, the term 

x1x2···Xj has co-efficient 1 in l!j. 

Let P be homogeneous, symmetric and square-free of degree j. Then 
for some permutation a- of the numbers 1 through m, the term 

XO'{l) x012 ) • •• :lV(j) ·Ao-(l) ••• Oo(j) appears in the expansion of 

p = p (x1 , ••• ,~). Since Pis symmetric P • P(XC'1 (l), ••• ,x~1 (m)) 

but A01l) ••• ~j) is now the co-efficient of x1x2 ••• xj. Hence, 

A1 ... j • ~(l) ••• O"(j) and it follows that P • A1 ••• j l!j (since the 
full symmetric group acts transitively on cycles.). 
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If T is a formal power series which is symmetric and square-free, ... . 
then T = L ajsJ. Since fill! + 1 = 0, T reduces to a polynomial of 

~ ~ 
finite degree. By T cx1 , ••• ,xi, ••• ,~) we mean the polynomial 

..... 
obtained by setting xi= 0. Equivalently T cx1 , •••,Xi, ••• ,~) • 

~ aj (S-Xi)j. This follows from s (Xl'···,'2i' ••• ,~) "S- Xi. 
J=O 

Lenona 3. l:_ Xi 
jal 

Proof for j > 0: 

sj (Xl' •••• ~i' •• ·~) = sj+l for 

m j A. 

i~ XiS (Xl'•••,Xi'· .. ,~) = 

= r!i xi [ sj - ch sj-lxi + •• • ] 

Jll. j . m j .+1 
• ~ xi s - sJ z::. xi .. s .s = sJ 

i=l i=l 

j ~ o. 
m 

:2:..Xi (S-Xi)j 
i=l 

m 1+0 
=- z::. x. = s • s 

i•l 
1 

Coroll~ry: If T is ~symmetric square-free forma~ power series, 
then f,;iXi•T (X1 , ••• ,Xi 1 •••,~) • S•T (Xl'•••,~) 

Lenona 4: F(O] = e-s 

Proof: F(OJ (Xl' • • • 1 ~) " (1 - X1) (1 - X2) ( • • •) (1 - ~) 
,. e-x1.e-x2 ••• e-Xm 

• e-s 

Since xi 2 • o, e-xi • 1- xi. 

Theorem 2: F[rJ = _!_ sr e-s 
rl 

Proof: Since F[rlsatisfies the conditions for the Corollary to 

Lenona 3, F [rJ • .!. Z X F [r-l) (Xl' • • • ,~, • • • ,~) 
r i•l i 

,. .!. s.Flr-1] 
r 

• rf sr F(o] 

= _!_ sr e-s 
rl 
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Define a linear map z on the symmetric square-free power series as 
040 

followss Let T • F-a Aj sJ. • T(S) 

Then Z(T) • ~: T(S') dS' 

In particular, we have 

Lemma 5s Z(Bj) • Bj+l 

Proofs Since Bj • ft sj I 

lso Z(Bj) • Jf 1: (S')jdS' • (j!1) I (S')j+l 

LeiiiiiA 6s F1 • z !Ftol > 

sj+l 
•---•B 

(j+l) I j+l 

Proofs From LeDDDa 1, r + F(.o). FO • 1 

or F1 • 1 - pta). 1 - e-8 • 

Z (F(OJ) • J: e-S'dS' •- e-S' 1: = 1- e-S • F1 • 

LeDDDa 6 suggests a relationship between Fr and p{r) which is indeed 
true. 

Theorem 3. r • Z(F(r..:.l)) 
Proof: This follows by induction from Lemma 1. LeDDDa 6 
provides the result for r • 1. Assume r ~ 1 and Fr • Z(F[r-1]). 
We shall calcuate pr+l. From Lelllllla 1, 

pr+l • Fr - p[rJ • z (F(r-JJ ) - F [r) 

·lJs _1 __ s•r-1 e-s• dSJ' -.! sr e-s 
0 

(r-1) I rl 

• f<s')r e-s• Is +js....!. s•r e-s• dSJ-....!. sr e-s [71 
0 0 

rl ri 

.Jt e-8 + js....!. s•r e-s• dS' -....!. sr e-s • Z(F[rJ) 
rl 

0 
rl rl 

It is important to note
8
that r ~ 1 ftllows us to use integration by 

s de s de parts, since Se • S ds but e. ti (15• The difficulty could be avoided by 

lifting the formulas out of the quotient ring, but the added machinery 
is more cumbersome than helpful. 
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Theorem 4: F [r] • t+l and (l+Z) 

zr 
Fr- ---r 

- (l+Z) 

Proof: Since Fr • F[rl + Fr+l 
it follows that ll+Z) ~[rJ = z 
or F[rJ • (l+Z)-I z (F~-lJ) 

= F[r} + z (Ffrl> .. (l+Zl <~rJ> 
(F [r-1)) 

Since Z is a lower triangular matrix when expressed with 

respect to the basisffijsj:O , (1 + Z)-l is well-defined. 

Moreover, since (1 + Z)-~ (1 + Z) = (1 + Z) ·(1 + Z)-l 

or (1 + z)-l • (1) + (1 + Z)-l. (Z) (1) (1 + Z)-l + (Z) • (1 + Z)-1 

it follows that (1 + B)-l z = z (1 + fi)-1 
and [<1 + fi)-l B] r = (1 + B)-r fir. 

zr F[o] 
Thus F[r) = (l+Z) r 

zr 1 
(l+Z)t• (l+Z) FO • 

zr 
(l+Z)r+l (1) 

zr 
Fr = (l+Z)r follows from Theorem 3. 

2. Compound Statuses 

In Section 1, formulas were developed to calculate the 
probabilities of exactly r and at least r of m independent 
events occurring. Compound statuses can be handled with the 
formulas already developed by observing that •r out of m events 
occurring" is itself an event. 

TO show how this may be applied to statuses we will set up 
and nP (2) 

::::::::X: 
xl:x2x3x4:x5x6 • 

The notation is simplified by setting 

!~hen nP = p 1 = F1 
---- n =-x ___~..... 
xlx2:x3x4 xlx2:x3x4 

Xi= nPxi· 

(F2(Xl,X2), Fl(X3,X4)) 

and nP -----y---'('-=2=J = F[2] (Xl' F2 (X2,x3,x4), F2 (X5,X6)) =-=::x: 
xl:x2x3x4:x5x6 

The full calc~lation of these expressions is felegated to 
Appendix 1. Appendix 2 presents a table of F rJ and Fr for 
6. 

1
This table can be used form< 6 by recognizing that 

sm+ (X1 , ••• ,~) = 0 and that S(Xl' ... ,~) = S(Xl'"'' Xm-1> 
with xm = o. 
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For the sake of completeness, we should mention the status ill • 
Let tPru = 1 if 0 ! t ~ n and 0 otherwise. Then tPii\ represents 

the probability of "survivorship" of the term certain, and the 
symbol m can be used in the status calculation. The rest of 
the formalism is clearly applicable. (NOTE: This formula for 
tPn is appropriate for A,c:ii\ .~nd ax:ill • However, ax:iil 
requires a shift function: tPm • t+l~.) 

3. Annuities and insurances with compound statuses. 

The basic goal is to express ~ and ~ as a sum of joint 
insurances~ annuities, ~denot~g an arbitrary status. 

Since al(. • Z:.. vt tPo< and Ao< = 1:. vt+l t\~ 
t=l t=O 

= z vt+l ( p - t+l~) the approach of Section 2 can 
j .. O t co<. 

be used to expand tP~ as a sum of joint probabilities, and the 
observation to be made is that: if o< = t><1 + <>(2 then 1\.l'D( = 
nPcll + nPol2 so that Ao( = 11o1.1 + ~ and ao( = a ... 1 + ~2' 

The formalism here may be confusing in that it is likely that 
~l and ~ are algebraic expressions which may not in themselves 
be meaningful statuses. 

As an example, refer to Appendix 1, part 1, which can be 
compared with the insurance calculated in Jordan, page 214, 
where 

""-= iOOYz 
Since.{= F1 (F2 (w,x), F1 (y,z)), we have from the comments made 
above and Appendix 1: 

A~ "' Ay + Az + Awx - Ayz - Awxy - Awxz + Awxyz• 
wx:yz 

Here 

as expected. 

Consider a (x:i'il ) (y:llil) (Jordan, pg. 217). 

o<.= Fl (F2 (x,ii\), F2 (y,iiil)) 
= F2 (x,n\) + F2 (Y ,'ffil) - F2 (x,ii\ ) 
• x (il\ ) + y (iii\) - (x) !ill ) (y) (iii\ ) 

(x:ii)) + (y:iii\) - (xy:ill :lll\) 

so that ao( = ax:ii\ + ay:iii) - axy:iii\ if m ~ n, since tPm • tPrii\= tPJil. 

4. A loose end. 

In nP Lr)' if the ages of x1, ••• ,~ are all X, we know that 
X1···~ m r m-r 

nP ~ = (r) <nPx) (l - nPxl • 
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Using Section 1, we can give a alternate proof: 

F[r) • _l sr e-S 
rl 

sr = (X1 +···~lr = rl Br· 

If all Xi have the same numeric value X, 

r m r 
S (Xl'·•·,~) • rl !rl X 

Then ..., . 

F [r) (X, ••• ,X) .. L Z:. (-1) j LjJ 
rl j=O I 

m-r . 8r+j 
" I.. (-1) J rT3'I 

j=O 

_I!:I 
- z._ (r+~) I 

j•O rl I 

• xr ~ (-1) j J.!.t.iU . ml xj 
j"'O riJI (r+j)l(m-r-j)l 

ml xr 2:: 
-=r•l T.(m='-"=r"') •1 j•O 

(-1) j (m-r) I xj 
""j•l f.:(m-=--=-r-'-:ijr.).-1 
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Appendix 1. Calculation of Two Statuses 

P ~ p I = Fl (F2 ( p ) Fl ( ) ) n ~ n ::=x-= n w'nPx ' nPy•nPz 
wx:yz wx:yz 

Fl (F2 (w,x), F1 (y,z)) = F2 (w,x) + F1 (y,z) - F2 (w,x) F1 (y,z) 
= wx + y + z - yz - wx(y + z - yz) 
= wx+y+z-yz-wxy-wxz+wxyz 

nP ~ = nPwx + nPy + nPz - nPyz - nPwxy - nPwxz + nPwxyz 
wx:yz 

(Compare Jordan, page 214.) 

X4)' F2(X5' X6)) 
2 2 2 + x1 F (X5, x6) + F (X2 , x3 , X4) F (X5 , X6) 

- 3Xl F2 (x2, x3 , X4) F2 (x5, x6) 

= x1 (x2 x3 + x2 x4 + x3 x4 - 2x2 x3 x4> + x1 x5 x6 + (X2 x3 + x2 x4 
+ x3 x4 - 2X2 x3 X4) (X5 X6) - 3X1 (X2 x3 + 

x2 x4 + x3 x4 - 2x2 x3 x4> x5 x6 

= x1 x2 x3 + x1 x2 x4 + x1 x3 x4 - 2x1 x2 x3 x4 + x1 x5 x6 
+ x2 x3 Xs x6 + x2 x4 xs x6 + x3 x4 Xs x6 
- 2x2 x3 x4 x5 x6 - 3x1 x2 x3 x5 x6 
- 3x1 x2 x4 x5 x6 - 3x1 x3 x4 x5 x6 
+ Gx1 x2 x3 x4 x5 x6 

+ nPx2x3x5x6 + nPx2x4x5x6 + nPx3x4x5x6 

-2p -3p n x2x3x4x5x6 n x1x2x3x5x6 

- 3nPxlx2x4x5x6 - 3nPxlx3x4x5x6 

+ 6 p n xlx2x3x4x5x6 
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1 Se-s 

2 s2 e-s 
2 

3 s3 e-s 
6 

4 s4 e-s 
24 

Appendix 2. F [rJ and Fr 
for m • 6 

= 1 - s + s 2 + s 3 + s 4 - sS + s 6 

2 6 24 120 720 

= 1 - B1 + B2 - B3 + B4 - Bs + B6 

= s - s 2 + s 3 - s 4 + .L- 1 
2 6 24 120 

= B1 - 2B2 + 3B3 - 4B4 + SBs - 6B6 

= s2 - s3 + s4 - sS + s6 
2241248 

• B2 - 3B3 + 6B4 - lOBs + 1SB6 

= s3 - s4 + sS - s6 
6 6 12 36 

= B3 - 4B4 + lOBs - 20B6 

• s4 - ss + s6 
24 24 48 

- B4 - 5Bs + 1SB6 

s s 5 e-s = sS - s 6 

120 120 120 

• Bs - 6B6 
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F1 = s 2 - s 2 + s 3 - s 4 + L - 1 
2 6 24 120 720 

• B1 - B2 + B3 - B4 + Bs - 9~ 

F2 = s2 - s3 + s4 - sS + s6 
2 3 8 30 144 

= B2 - 293 + 394 - 49s + s96 

F3 = s3 - s4 + ss - s6 
6 8 20 72 

= 9 3 - 3B4 + 695 - 1096 

F4 = s4 - ss + s6 
24 30 72 

• 94 - 495 + 1096 

Fs • ss - s6 
120 144 

• 9 5 - S96 
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ADDENDUM "King's Z-Method: An Algebraic Approach" 

The following argument eliminated the inductive proof in the main 

exposition. 

Theorem 3. Fr Z(F [r-l.l ) for r "'-' 1. 

The proof involves two lemmas about polynomial derivatives and 

integrals. L .. t _J I + +' . r r 
"- <J.c.•e e. ~e. 1"1 "') <>t scb .... c....-c..- t-r-ee 

pol)' "'""';o..l.s. 

Lemma 1. If T(S)e .} 2 has no constant term, then Z(T
1

) = T. 

Proof: Clear, since Z( (Sk>'> = Z(kS k-l) = sk if O.Ck.s'm. 

Lemma 2. If u,v b..J2 , then Z( (uv) 
1

) Z(u
1
v + uv

1
). 

Proof: Since both the RHS and LHS are bilinear in u,v, it 

suffices to check u = si, v = sj. This reduces to three 

cases: (l) i+j~ m, (l) i+j = m+l and (l) i+j > m+l. 

1. If i+j~ m, then u'v + uv' = (iS i-l)Sj + si(jS j-l) = 

(i+j)Si+j-l = (uv) ', and applying Z gives the result. 

2. If i+j m+l, then uv 0 and Z((uv) 
1

) = Z(O) o. 

If i = 0, u' = v = 0 and there is nothing to show. If i ~ O, 

then i,j~ m and u'v + uv' • {m+l) sm so that Z(u
1

v + uv'> = 
Z( (m+l)Sm) = 0. For case (3), similar reasoning leads to 

I I 

u v = uv = uv = (uv) = 0. 
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