## A NOTE ON MULTIPLE DECREMENTS

by<br>Steve Spindler

In the 1985.1 issue of ARCH, Jim Conner derived an interesting corollary in his paper: "A Multiple Decrement Theorem". He later raised the question of whether the converse of his corollary was true. The purpose of this note is twofold: (a) to develop a counterexample, thus demonstrating that the converse is not true in general, and (b) to develop a "partial" converse by adding an additional condition.

Due to the unfortunate limitations of my printer and word processor. I find it necessary to depart from our beloved actuarial notation. Hopefully, the following conventions will not be too confusing to the reader.

Let $u,(t)$ denote the force of decrement due to cause ( $j$ ) at aqe $x+t$ for $0<t<1$. Assume the decrements are continuous.

Let $u_{r}(t)$ dencte the total force of decrement due to all causes combined.
Let $U_{1}(t)=\int_{0}^{t} U_{j}(s) d s$ and let $U_{r}(t)=\int_{0}^{t} U_{T}(s) d s$.
Note that $d U_{g}(t) / d t=u_{g}(t)$ and $d U_{T}(t) / d t=u_{T}(t)$.
Let $p_{1}^{\prime}(t)=\exp \left[-U_{,}(t)\right]$ and $p_{T}(t)=\exp \left[-U_{r}(t)\right]$.
Finally, let $\mathrm{a}_{\mathrm{a}}(\mathrm{t})=\int_{0}^{t} p_{T}(s) L_{y}(s) d s$ and let
$q_{T}(t)=\int_{0}^{t} p_{T}(s) U_{T}(s) d s$.
Consider the following two conditions:
(1)

$$
q_{0}(1) / q_{T}(1)=U_{H}(1) / U_{T}(1)
$$

(2) $u_{A}(t) / u_{r}(t)$ is constant for $0<t<1$

In his paper, Jim Conner proved that (2) implies (1). That the converse is false can be demonstrated by the following simple

Let $u_{t}(t)=1$ and $u_{s}(t)=a+b t+c t^{2}$, $o<t<1$, where $a=b=1 / 2$ and $c=(9-e) /(20 e-56)$. It can be verified that $0<u_{s}(t)<u_{T}(t)$ for $0<t<1$. Let $r=(14 e-39) /(20 e-5 b)$. Direct calculation will confirm the following:
$U_{T}(1)=1 \quad U_{\boldsymbol{\prime}}(1)=r \quad Q_{T}(1)=1-e^{-1} \quad Q_{u}(1)=r\left(1-e^{-1}\right)$
Thus (1) is satisfied but (2) clearly does not hold. Therefore, (1) does not in generai imply (2).

Now define $H(t)=U_{\tau}(t) / U_{\mathcal{L}}(t)$ for $0<t<1$. Note that
$p_{T}(t)=\left[p_{s}(t)\right]$ (tes). We can restate (i) as follows:
(3)

$$
\int_{0}^{1}\left[p^{\prime},(t)\right] H(t) u_{s}(t) d t=\left[1-p_{T}(1)\right] / H(1)
$$

However, the following is true by direct calculation:
(4)

$$
\left.\int_{0}^{1}\left[p_{s}(t)\right]^{m+1}\right)_{1}(t) d t=\left\{1-\left[p_{s}^{\prime}(1)\right]^{H}(1)\right\} / H(1)
$$

Combining (3) and (4) yields:
(5)


Now if $H$ is monotone (either non-increasing or nondecreasing) for $0<t /$, then the sign of the integrand in: (5) does not change. Therefore, it must be identically zera. That is, $H(t)=H(1)$ for all $t$. But then $U_{T}(t)=H(1) U_{f}(t$; for all $t$. and bv differentiation, $u_{T}(t)=H(1) u_{s}(t)$ for all $0<t<1$. This, however, is just condition (2).

In summary, we have proven the following partial converse to Jim Conner s result: if (1) holds and $H$ (as defined above' is monotone on ( 0,1 ), then (2) holds.

Under either the constant force or uniform distribution ef decrements assumption. $H$ is constant and therefore trivially monotone. In the counterexample given above, $H(0)=2$, $H(0.73)=1.69$, and $H(1)=1.73$. Thus, in this case $H$ is not monotone, and the converse fails.

