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Abstract 

STABILITY OF PENSION SYSTEMS WIlEN 

RATES OF RETURN ARE RANDOM 

Daniel DUFRESNE 

Consider a funded pensiml plan,and suppose actuarial gains or losses are 

amortized over a fixed number of years. The paper aims at assessing how 

contributions (C) and fund levels (F) are affected when the rates of re-

turn of the plans's assets form an i.i.d. sequence of random variables. 

This is achieved by calculating the mean and variance of Ct and Ft for 

t ..::::: 00. 

Abbreviated title: PENSION SYSTEHS 

Reywords: Pension funding, Random rates of return, Actuarial gains and 
losses. 
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1. Introduction 

This paper examines the effect of random rates of return on pen­

sion fund levels and contributions. The funding methods considered are those 

which 

(1) determine an actuarial liability (AL) and a normal cost (NC) at every 

valuation date; and 

(2) amortize individual inter-valuation gains or losses over a fixed number 

of years (e.g. 5 ou 15). 

These methods have been used by actuaries in Canada and the 

United States. 

Remarks 1. A simil ar study has been done of funding methods which satisfy (1) 

but adjust the normal cost by a constant fraction of the actuarial liability. 

See Dufresne (1986a) and (1988). 

2. Pension mat.hematics and gain and loss analysis are described in 

Trowbridge (1952), Winklevoss (1977) and Lynch (1979). 
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Actuarial liability 

Benefit outgo 

Overall contribution 

Fund level 

Valuation rate of interest 

Actuarial loss during (t-l,t) 

Amortization period for actuarial losses 
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Adjustment of normal cost 
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Rate of return on assets during (t -I, t) 

Unfunded liability at time t 

Unfunded liability at. time t if all actuarial assumptions work 
out during (t- l,t) . 
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= jim-k'/~ , 0 ( k ~ m--l 

Variance of rt 
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3. Description of .odel and basic equations 

In order to isolate the effect of fluctuating rates of return 

(and keep the model tractable), the following assuptions are made. 

I. The population is stationary form the start. 

II. Except for rates of return, all actuarial assumptions are consistently 

realized. 

III. There is no inflation on benefits. 

IV. The rates of return {rt, t~l} form an i.i.d. sequence with mean r and 

variance u'. rt is the rate earned on assets during the period (t-l,t). 

Suppose the pension plan is set up at time t O. Given the 

assumpt.ions above, the assets process satisfies 

(1) 

where F is the fund level, C the contribution and B the benefit outgo. 

B is constant from assumptions J toIII. On the liabilities side we have 

AL = (l+i)(AL+NC-B) (2) 

where is the valuatIon rate of interest. This equation is known as the 

equation of equilibrium. 

Now define the unfunded liability at time t as ULt = AL-Ft , 

t ~ 0, and the (actuarial) loss experienced during the period (t-1,t) as 

Lt ULt - [value of ULt had all actuarial assumptions been 
realized during (t-l,t»). 

ULt - UL~ , t ~ 1 

For the time being let Lt = 0 for t, O. Letting rt 

Eq. (I), and subtracting it from Eq. (2), we get 
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UL~ (4) 

Under the funding methods considered, the contribution at time 

t is 

NC+Pt , 

m-l 
E Lt-k/~ . 

k=O 

Here m (an integer) is the amortization period and 

(5) 

(6) 

Each Ls is thus liquidated by m payments of amount La/a...... , made at valu-
m 

ation dates s, s+l, ... ,s+m-l. The fact that a...... is calculated at rate 
m 

ensures that l,s is in fact cancelled out after the m-th payment is made. 

Resark. It should be observed that all losses are assumed to be amortized 

in the same fashion, irrespective of their sign. In practice, it may happen 

that gains (i.e. negative losses) be written off immediately, in order to 

reduce the unfunded liability or the current contribution. 0 

As they stand, the above equations do not permit the calculation 

of the moments of F and C. One way to proceed is as follows: 

(i) derive a difference equation involving the L's only; 

(ii) calculate the moments of the L's from this equation; 

(iii) finally, obtain the moments of F and C from those of the L's. 
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First, let us express UL t in terms of the L's. We have 

O+i) (AL+NC-B) 

(l+rt)(AL-Ft-,-Pt -,) 

- (rt-i)(AL+NC-B) 

In view of Eqs. (3), (4) and (5), this implies 

Eq. (7) can be rewritten as 

or 

t-l 
ULt -(l+i)ULt -, = Lt -(l+i) r 

s=t-m 
L./8-, . 

m 

A particular solution of this difference equation is 

where the A's can be determined by direct substitution into Eq. (10), 

yielding 

- [(1+i)/8-,) Lt - m m 

which means 

816 

(7) 

(8) 

(9) 
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A solution of the homogeneous equation 

ULt - (l+i)ULt -, = 0 

is c(l+i)t, c a constant. The solution of the complete equation (10) is 

therefore (Brand (1966), p. 36B) 

m-l 
UL t r ~k Lt - k + ULo(l+i)t. 

k=O 

The term ULoCl+i)t brings to light the fact that the initial 

unfunded liability (ULo = AL-Fo) has not been taken into account so far. 

It is easy to see that including supplementary payments of amount ULo/B-, at 
n 

times 0, I, ... ,n-I will liquidate ULo entirely. For the sake of simplicity, 

let us asswne that n = m, so we can define Lo = UI,o and obtain 

ULt 
m-l 
r Ak L t - k , t ~ 0 

k=O 
( 11) 

Eqs. (6), (8) and (11) now permit the derivation of a differen-

ce equation involving the L's only: 

where 

m-I 
Lt = (rei) [ r (Ak-I/~ )Lt -.- k - (1+i)-'AL] 

k=O 

m-1 
(rei) [ r Pk Lt - k - (1+i)-'AL] 

k=1 

Am- 1 -
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4. Stability conditions 

Definition. A sequence {Yt} satisfying 

n 

Yt + I "'j Yt-j 
j=1 

w, t ~ 1 (13) 

will be said to be stable if there is a finite value Y* such that Yt ~ Y* as 

t ~ 00 for any set of initial conditions Yo,Y-""',Y-n+" 

It is well known that a necessary and sufficient condition for 

this kind of stability is that all the roots of the characteristic equation 

n 
p(z) z" -+ I "'j z"-j o 

j=1 

be less than one in modulus. 

Proposition 1. If Ilcxjl < 1, then {Yt} is stable. 

Proof. Suppose there exists z E ( such that p(z) o and Izl ~ 1. Then 

n n 
Izl" ~ I Icxj I Izl"-j ~ Izl" I laj I < Izl" 

j= 1 jo 1 

a contradiction. 0 

Proposition 2. Suppose "'j ~ 0 for all j. Then {Yt} is stable if and 

Proof. Sufficiency is a consequence of Prop. 1. To prove necessity, suppose 

IIO: j I ~ I, and let q(z) z"p(l/z). Then q(O) 

q(l) = 1 + Iaj ~ o. 

aa 

and 



Thus q(z) has at least one root z* in (0,11, which implies that p(z) has 

the root z** = l/z* in [1,00). a 

is not in general a necessary condition for stabili-

ty of (13) can be seen by considering the case i = 0, m = 3 and rt-i = P 

in Eq. (12), 

This sequence is stable for -3<p<1, while Ira j I ,p,. a 

Let us now return to the processes {F t } and {C t }. 

Definition. A process {X t } will be said to be p-th order stable if {EXt} 

is stable. 

Since 

F t AL - ULt 

m-l 
AI, - r Ak I, t - k , 

k=O 

m-l 
Ct NC + r I,t-k/a,;;, , 

k=O 

it is evident that the stability properties of {F t } and {C t } are the same 

as those of {L t }. We will thus consider Eq. (12), with initial conditions 

being now arbitrary (imagining that the plan has been in existence for some 

time before t = 0). 

as 



First order stability 

We get 

m-l 
ELt = E(rt- i ) (r Pk ELt - k - (l+i)-'AL] 

k=1 

since rt is independent of Lt - k , k ~ 1. Applying Prop. I, we obtain 

Proposition 3. If Ir-ilrP k < I, then {Lt }, {Ft } and {Ct } are first order 

st.able, and 

(a) 

(b) 

(e) 

lim ELt 
t-+m 

lim EFt 
t-+m 

NC + Me. m/B-. . 
m 

Second ordc!· stability 

and 

At this point we make a supplementary assumption: 

r = i. 

Using Eq. (12), this implies 

ELt = 0, t ~ 

m-l 
ELtLs E(rt-i) E( r Pk Lt - k - (l+i)-' AL] Ls 

k=1 

o 

for any t ~ I, s < t. Thus {L t , t ~ I} becomes a sequence of uncorrelBted 

zero-mean r.v. 's. Eq. (12) then gives 
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( 
m-1 

( 1+ i ) -, AL'], Var Lt EL~ a' r II: Var Lt-~ + t ~ 1 
k=l 

0, t ~ O. 

Using Prop. 2, we get 

PrOEos i ti on 4. {Lt }, {Ft } and {Ct } are second order stable if and only if 

a' r II: < 1, in which case 

lim Var Lt VOl a' ( 1+i )-' AL' / (1-a' r II: ) 
t~ 

lim Var Ft VOl r A' 
k 

t~ 

lim Var Ct VOl m/ (8.-, ). 
t_ m 

Remarks 1 . The L's are uncorrelat ed but certa i nly not independent. For 

exampl e, le t. m = 2, r = i = 0, AL 1/ 2. Then II, = 1/ 2 and 

where Xt rt/2. If furthermore L(O) = 0 and P(Xt x) -x) 1/2, 

we get 

-x-x' - . .. - x t ) P (Xs = x, l ~ sH) 

pel, x ) 1/ 2 

and 
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pel, -x-x' - ... -x t ) O. 

2. Covariances may also be calculated, yielding 

m-h-l 
Cov(Ft,Ft+h) r yar(Lt-k)Bm_ k, Bm-k-h,/(B;;;-.l", 0 " h < m 

k"O 

0, h ~ m 

m-h-l 
Cov(Ct,Ct +h ) r Var(Lt-k)/(B-,)', 

k=O m 
o " h < m 

0, h ~ m. 

5. Numerica] illustration 

Prop. 4. 

The purpose of this section is to illustrate the results of 

Population 

Entry age 

Retirement age 

English Life Table No. 13 
(males), stationary 

30 (only) 

65 

No salary scale, no inflation on salaries 

Benefits 

Funding method 

Valuation rate of 
interest 

Actuarial liability 

Normal cost 

Earned rates of 
return 

92 

Straight life annity (2/3 of 
salary) 

Entry Age Normal 

i = .01 

AL 451% of payroll 

NC 14.5% of payroll 

r = .01 



Because Ert = " EFt = AL and RC t = NC for t ~ m, for any 

initial conditions. Table 1 contains the limiting coefficients of variation 

of Ft and Ct , that is to say 

and 

l~m [Var Ftl'/'/AL 
t-

lim [Var Ctl'/'/NC , 
t_ 

for various values of m and u 

m <T = .025 <T = .05 
~ .: .: 

<T = .10 
.: ~ 

[Var F(ro)]2 [Var C(ro)]' [Var F(IIJ)]' [Var C(ro)]' [Var F(ro)]' [Var C(IIJ) ]2 
AI. 

2.5 % 

5 3.7 

10 4.9 

20 6.8 

40 9.7 

TABLE 1. 

Connnents 

NC At NC 

77.0% 5.0 % 154.0 % 

35.1 7.4 70.3 

25.5 9.9 51.1 

18.9 13.7 38.1 

14.7 19.6 29.9 

Coefficients of variation of F(IIJ) 
(Er(t) = 0.01 , u = rVar r(t)]'/') 

AL NC 

9.9 % 307.8 % 

14.8 141. 3 

19.9 103.2 

28.0 78.1 

41.6 63.3 

and C(ro) 

1. It is seen that for <T ~ 10%, the standard deviations of FIIJ and Coo are 

nearly linear in <T. This linearity gradually disappears, though,as <T or m 

become larger. 

2. Within the range of <T and m chosen, no single value of m is "bet-

ter" than the others. As m is varied, there is a trade-off between Var F 

and Var C, e.g. incereasing m reduces Var C, but. increases Var F. 
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3. This trade-off is a direct outcome of Prop. 4. However, the following ap-

proximate formulas give a more intuitive understanding of the way Var F and 

Var C vary with m. They are valid when i ~ 0 and (T'm is small (see 

proof below): 

Var F., :: <T' m At' 3 (14) 

Var CIl> :: <T' 1 At' 
m (15) 

In words: when is close to 0, the standard deviation of F 

(resp. of C) is roughly proportional to m'/' (resp. to l/m'/'). For 

instance, in Table 1, moving from m = 5 to m = 20 approximately doubles 

st. dev. Foo and halves st. dev. Coo. 

Proof of Egs. (14) and (15). Set = 0 in Prop. 4 to get 

First, 

m-1 
Voo U' AL'/(1-<T' r [(m-k)/m)') 

k=1 

Var Foo 

m-] 

m--1 
Voo r [(m--k)/m)' 

k=O 

Var Coo = V.,/m. 

m-l 
r [(m--k)/mj> 

k c-1 
r j'/rn' 

j=1 

[(m-l)m(2m--l)/6)/m' 

m/3. 

This shows that Voo a' AL' if <T'm is small. Observing that similarly 

m--1 
r [(m-k)/m)' m/3 

k=O 
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we obtain Eqs. (14) and (15) . 0 

Remark. As approximations for Var Fm and Var Coo, Eqs. (14) and (15 ) are 

some times valuable, even when i ~ O. For example, if i: .01, a : .05 and 

m : 10, Eq. (14) yields 

[Var FmJ'/2/AL ~ 9.1% 

while the exact number is 9.9% (Table 1). 
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