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Geospatial Metrics for Insurance Risk Concentration  
and Diversification1 

 

Ivelin M. Zvezdov  

 

Abstract 

(Re)insurance practitioners view geospatial variability of insurable losses and claims as a 
significant risk factor in the definition of key business processes and their outcomes. This 
second-order, volatility type of risk factor impacts the construction of insurance rates and 
reinsurance treaty premiums, the computation of reserve capital and the management of 
concentrations of physical and financial risk. With increased industry emphasis on analytics, 
modeling and measuring of all types of physical and financial variability and volatility, both 
temporal and geospatial, new efforts are needed to enrich the scope of metrics that capture the 
nature of second-order risk. 

In its first generation, second-order metrics are pairwise by nature. Significant effort by 
academics and practitioners is under way to develop a new generation of such metrics, which 
capture and express the complexities of concentration and interconnectedness of multiple risk 
factors that are physical, geospatial and financial in nature. Clarity of and intellectual discipline 
in the definition of second-order geospatial risk metrics helps (re)insurance practitioners to adopt 
these statistical and computational methodologies effectively and promptly. Further, clarity, 
consistency and coherence of second-order geospatial risk metrics allows practitioners to relate 
them efficiently to the main business workflows of (re)insurance firms, to apply them in 
effective measurement when mitigating and hedging situations, and to promulgate them easily to 
executive-level decision makers. 

 

                                                 
1 The views and opinions expressed in this article are those of the author and do not necessarily reflect the position 
of any other organization, employer or company. Assumptions made in this paper are not reflective of the position 
of any entity other than the author, nor do they reflect on any real-world business performance. 
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Achieving a sustainable scale of business operations is a key objective for insurance and 
reinsurance firms today. This drive toward market scale takes many forms. It is expressed in the 
motivation to acquire larger market shares of gross underwritten premiums by various means, the 
most obvious being through acquisitions of business lines or whole books of insurance business. 
Tangible economies of scale are also an internal objective and a driving force in pursuing 
optimal cost and distribution of reserve capital among the firm’s business units. Whatever the 
business realization of the drive toward market scale, the achievement of this goal has two very 
different but intersecting implications for the insurance firm. The first is the emerging demand 
for measuring and accounting for the effects of diversification in a (re)insurance book of 
business due to geospatial insurance coverage or financial risk factor interdependencies. The 
second is measuring and accounting for the concentration and clustering of insurance risks, 
which are subject to mutually, highly contingent outcomes. For top-level practitioners at a 
(re)insurance firm who want to achieve scale in insurance operations, a critical task is to master 
the modeling and measurement of interdependence among risk factors in all forms—including 
the fundamental ones of exposure and expected loss diversification. 

The objective of this paper is to review existing geospatial risk metrics, contribute to the 
development of new ones and attempt to enhance the market applicability of such techniques and 
methodologies for measuring the interdependence for insurance risk factors. Another objective is 
to outline their direct use and applications in practical risk management for an insurer portfolio, 
more particularly in managing an underwriting concentration of insurance exposures and 
henceforth defining and following up with capital reserving tasks. The paper derives a set of 
metrics and indices from modeled and simulated insurance losses for a detailed physical and 
geographical distribution of insured exposures that comprise a book of business for a notional 
regional firm.  

Section 1 reviews the economic theory and motivation for developing diversification and 
concentration risk metrics from the perspective of the insurance firm. It also outlines the 
structure of the insured exposure of the case study (notional insurer) used to compute and 
construct the numerical risk metrics and indices. Section 2 provides the details of the insurance 
loss modeling methodology and simulation, which produces the outputs for the development and 
construction of all numerical metrics and indices. These are presented in section 3, which 
develops and discusses three new geospatial risk metrics. Section 4 shows how the process of 
back allocating losses and risk metrics from a global portfolio level down to single risk 
components affects the interdependence of these same metrics within the overall risk profile of 
the insurance firm’s book of business. Section 5 continues to focus on applied risk management 
by introducing three new diversification and concentration portfolio indices. Section 6 concludes 
with an analysis of the applied utility of these metrics for insurance risk management 
professionals and outlines some further research directions. 

 

1. Economic Theory and Motivation 

Connectedness, also described as interconnectedness, has become a central theme in modern risk 
management, but it has remained technically ambiguous and less well defined than traditional 
statistical, pairwise correlation metrics. Typically, modern financial and insurance portfolio 
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correlation metrics are pairwise and are applied in linear Gaussian methodological and modeling 
frameworks. The impact of insurance risk interconnectedness on critical market and business 
tasks such as pricing, underwriting, concentration management and reserving demands further 
improvements in analytical and measurement practices. This article focuses on measuring this 
interconnectedness and its effects on a critical portfolio risk factor—the geospatial distribution of 
insurance claims and losses among the company business units of an insurance firm. Loss 
analytics, rate making and premium pricing practices, which are among the company units within 
an insurance firm, are interconnected through the impact of claims from extreme events with 
large geospatial footprints that cause what practitioners term “clustering” or “concentrations” in 
the accumulation of losses. Such undesirable loss accumulations may take place as well, during 
smaller catastrophic events that occur in clustered patterns both spatially and temporally (in a 
smaller geographic area with less time between events), a phenomenon known as temporal 
clustering. Since premium prices, insurance rates and reserves greatly depend on a modeled 
expectation of insurance loss, practitioners are also concerned about the volatility, or various 
expressions of uncertainty, in such loss expectations. Section 3 of this paper examines how 
identifiable and measurable connectedness impacts the variability in loss expectations and the 
definition of key business metrics. It shows that in the presence of strong and measurable 
connectedness among risk factors, both volatility of loss and variability of risk metrics are 
magnified by extreme events and extreme disaster scenarios. 

To provide an analytical framework for deriving and testing risk metrics, let’s study a theoretical 
insurance firm based in Florida. It is composed of three business units covering insured risks in 
12 geoadministrative areas, defined as state counties. These three business units are named South 
East (SE), Central Unit (CU) and North East (NE). The risks in two of the business units—South 
East and North East—are located in immediately neighboring administrative areas (counties), 
while those in the third (Central) are in proximity but not strictly adjacent to each other, as 
illustrated in Figure 1. In addition, SE and NE business units comprise risks from four 
geographically bordering counties, while CU comprises risks from only three counties. Finally, 
these three business units constitute the whole book of business for this notional and regional 
insurer. 

The general purpose of this analysis is the modeling, measurement and understanding of 
dependencies among these business units and then the presentation of results through the case 
study developed in sections 3 and 4. Let’s begin by discussing three new metrics, which are 
proposed to facilitate the tasks of measuring second-order risk and interdependence among 
business units (but more generally among risk factors) in an insurance firm. The contribution to 
risk management of these new metrics is mainly twofold: (1) the potential to enhance the 
accuracy of capital reserving, and (2) the potential to facilitate optimal selection of second-order, 
risk-mitigating insurance and financial contracts and instruments.  
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Figure 1. Three Business Units Constituting the Insurer’s Book of Business 

 

We will examine traditional pairwise connectedness measured between any two of the firm’s 
business units, as well as between any two geoadministrative counties within the same unit, and 
in parallel within the full portfolio. We will also compute and analyze “marginal connectedness,” 
which is defined in this study as the connectedness of a single company unit or geographic area 
to the remainder of the insured portfolio. Subsequent sections will show how both metrics of 
pairwise connectedness and metrics of marginal connectedness become valuable tools in 
managing concentration and risk-ranking analysis, pricing and underwriting, and reserving and 
risk management. 

2. Physical Peril Simulation for Insurance Loss 

The numerical study of this article uses simulated and modeled insurance losses produced by 
AIR Worldwide tropical cyclone model for North America, which includes coverage for Florida, 
where the insured exposures of our notional firm are located. The model can be viewed as a 
sequence of conditional statistical algorithms, which this section describes at a very high level. 
The primary objective of this work is not to review and provide detailed analysis of this type of 
natural catastrophe model for the insured peril of tropical cyclones. Rather, it is to use the 
model’s loss outputs to illustrate numerically, as well as theoretically, methodologies for second-
order, geospatial risk management, which in turn can be used by insurance industry practitioners.  

The first set of modeling algorithms derives statistical probability distributions from historical 
annual frequency data of recorded storms. The critical variables in defining the physical model 
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of a tropical cyclone are central barometric pressure, radius of maximum winds and forward 
speed. Central pressure is the primary physical determinant of the storm and, therefore, the 
primary modeling function to define the key variables for the computation of its intensity. 
Theoretical statistical distributions for all three variables are used as baseline generators and 
tested for goodness of fit to historical meteorological data. In the third stage of the model 
sequence of algorithms, a large sample of simulated and fully probabilistic storm tracks are 
generated. These tracks are generated from conditional probabilistic distributions derived from a 
large historical data set of recorded storm events. The sampled and simulated physical 
parameters are propagated through the storm track, and an analytical equation estimates the 
storm intensity on a predefined geospatial grid of a very high three-dimensional metric and 
temporal granularity. In the last step of this sequence, modeled storm intensity is linked through 
a nonlinear damageability response function to produce the final insurable loss values for a 
predefined insured exposure with a known monetary value, located by latitude and longitude 
coordinates on the “global” geospatial model grid. Then insured loss is computed by traditional 
actuarial formulas that apply insurance policy limits and deductibles on the actual insurable loss 
coming from the natural peril model simulation. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑙𝑙𝑙𝑙𝐼𝐼𝐼𝐼 = min [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, max(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼 𝑙𝑙𝑙𝑙𝐼𝐼𝐼𝐼 − 𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑙𝑙𝑙𝑙𝐼𝐼𝑙𝑙𝐼𝐼, 0)] 

 

3. Toward Second-Order Insurance Risk Management 

At the technical and quantitative level, this work is directed toward developing principles, 
techniques and tools for comprehensive second-order insurance risk management. In the context 
of a single insurance firm, this problem is defined as the measurement and management of single 
insurance risk and business unit dependencies and connectedness. For a typical insurance firm, 
such interdependencies in its book of business are manifold, including those of a geospatial, 
physical and financial nature. In parallel and at the macroeconomic level, the risk measurement 
problem becomes one of defining and quantifying the systemic nature of the interconnectedness 
of insurance and financial firms. This article focuses on the geospatial and physical 
interconnectedness of insurance risks at the microstructure of a single insurance firm. Thus, the 
data, computations, examples and case study reflect this scenario. 

Let’s define a geospatial, second-order risk metric to be a function ρ, which assigns a real 
number from the spatially aggregated distribution of insured losses [𝑋𝑋𝑖𝑖,𝑛𝑛] by any predefined 
geographic and administrative unit, which corresponds to a business unit of our hypothetical 
insurance firm. Later in the study, we will also use noncoherent risk measures such as value-at-
risk (VaR), also known as probable maximum loss (PML): 

ρ[𝑋𝑋𝑛𝑛] = 𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑋𝑋𝑛𝑛) = inf{𝑥𝑥 | 𝑃𝑃(𝑋𝑋𝑛𝑛 > 𝑥𝑥)1 − 𝛼𝛼} 

In the process of deriving geospatial risk metrics, we will make extensive use of coherent 
measures such as tail-value at risk (TVaR), which is defined as: 

ρ′[𝑋𝑋𝑛𝑛] = 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑋𝑋𝑛𝑛) =
1

1 − 𝛼𝛼
� 𝑉𝑉𝐼𝐼𝑉𝑉(𝑋𝑋𝑛𝑛)𝐼𝐼𝑙𝑙
1

𝛼𝛼
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We can expect noncoherent risk measures, such as VaR to display both superadditive and 
subadditive properties in accumulation, depending on the numerical and empirical case and the 
physical and statistical premises of the simulation. In short, they will not behave in a 
theoretically persistent manner. 

𝑆𝑆𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑙𝑙𝑙𝑙𝑆𝑆 =  �ρ[𝑋𝑋𝑖𝑖]
𝑛𝑛

< ρ ��𝑋𝑋𝑖𝑖,𝑛𝑛� 

  
𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑙𝑙𝑙𝑙𝑆𝑆 = ρ ��𝑋𝑋𝑖𝑖,𝑛𝑛� < �ρ[𝑋𝑋𝑖𝑖]

𝑛𝑛

 

However, a coherent risk measure, such as TVaR, can be expected to behave strictly in a 
subadditive manner in accumulations from portfolio units to the global risk profile of the book of 
business. We will also make use of the positive homogeneity property of risk measures: 

ρ[𝑘𝑘𝑋𝑋𝑖𝑖] = 𝑘𝑘ρ[𝑋𝑋𝑖𝑖],𝑘𝑘 ≧ 0 

The homogeneity property is expected to hold for both coherent and noncoherent classifications 
of second-order geospatial risk metrics. In our notional insurance book, comprising three 
business units, we notate the respective loss distributions by unit as:  

for 𝑙𝑙 = 1 𝑙𝑙𝑙𝑙 𝐼𝐼, South East as �𝑋𝑋𝑆𝑆𝑆𝑆,1, … ,𝑋𝑋𝑆𝑆𝑆𝑆,𝑛𝑛� 
for 𝑗𝑗 = 1 𝑙𝑙𝑙𝑙 𝐼𝐼, Central Unit as �𝑋𝑋𝐶𝐶𝐶𝐶,1, … ,𝑋𝑋𝐶𝐶𝐶𝐶,𝑛𝑛�  
for 𝑘𝑘 = 1 𝑙𝑙𝑙𝑙 𝐼𝐼, North East as �𝑋𝑋𝑁𝑁𝑆𝑆,1, … ,𝑋𝑋𝑁𝑁𝑆𝑆,𝑛𝑛� 

Where n is 10,000 stochastic, simulated loss scenarios for each of these spatial loss distributions. 

The first geospatial risk metric is most appropriately defined as a covariance ratio. This metric is 
computed as the ratio of the covariance of insured losses of any two of the business unit pairs to 
the sum of the variances of these same loss distributions. For example, the covariance ratio 
metric for business units South East and Central Unit is shown as 𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶 and is expressed in its 
traditional statistical form: 

 

𝐶𝐶𝑉𝑉𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝑉𝑉[𝑋𝑋𝑖𝑖:𝑋𝑋𝑗𝑗]

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑖𝑖] + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑗𝑗�
 

The covariance ratio metric is computed for all three pairs of business units in Table 1. 
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Table 1. Covariance Ratio for Each Pair of Business Units  

 South East Central Unit North East 
South East —  0.24  0.05 
Central Unit — —  0.19 
North East — — — 

 

With this first risk metric, numerical results converge to first principles from expectations of the 
importance of cumulative geospatial distances, being a main determinant in its explanatory 
strength. The distances 𝐼𝐼𝑖𝑖,𝑘𝑘 between any two pairs of individual insured risks, such as 
𝐼𝐼𝑆𝑆𝑆𝑆,𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐶𝐶𝐶𝐶,𝑘𝑘, are accumulated to measure the total conceptual and cumulative geospatial 
distance D between any two business units, in this case South East and Central Unit: 

𝐷𝐷𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶 = �𝐼𝐼𝑖𝑖,𝑘𝑘

𝑛𝑛

𝑖𝑖≠𝑘𝑘

 

The two business units of South East and North East, which have the largest cumulative 
geospatial distance between their respective composite risks, as expected, have the lowest 
covariance ratio.  

The second risk metric—called covariance percent share, or covariance share (CS)—is a partial 
transformation of the covariance ratio. This metric is defined as the percent share of the 
covariance of any two business units’ losses to the full sum of the covariance matrix of all pairs 
of business units’ losses. Again, in the example case of South East and Central Unit, the new 
metric (𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶) takes the following form: 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆,𝐶𝐶𝐶𝐶 =
𝐶𝐶𝐶𝐶𝑉𝑉[𝑋𝑋𝑖𝑖:𝑋𝑋𝑗𝑗]

∑∑𝐶𝐶𝐶𝐶𝑉𝑉[𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘:𝑋𝑋𝑘𝑘,𝑗𝑗,𝑖𝑖]
 

The covariance percent share metric is computed for all three notional business unit pairs in table 
2. 

Table 2. Covariance Percent Share for Each Pair of Business Units  

 South East Central Unit North East 
South East —  0.81  0.15 
Central Unit — —  0.05 
North East — — — 

 

The third metric quantifies the marginal impact of second-order insurance risk by measuring the 
geospatial interdependence of each business unit to the accumulated insurance loss of all other 
business units. Thus, in our case study, the remainder of the book of business is constructed of 
two units, as the whole book comprises three. This metric is called the marginal covariance 
(MC) ratio. To compute this metric, we must create three marginal portfolio loss distributions, 
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which are defined as the aggregated sum of each combination of any two of the three business 
units’ simulated losses. For example, the aggregated loss distribution without the North East 
business unit losses [𝑋𝑋𝑁𝑁𝑆𝑆,𝑘𝑘] is defined as the accumulated loss of the other two business units—
Central Unit and South East. This combined partial loss 𝑄𝑄1,𝑛𝑛 is produced by a joint generating 
function 𝑞𝑞: 

𝑄𝑄1 = 𝑞𝑞�𝑋𝑋1,𝐶𝐶𝐶𝐶,𝑋𝑋𝑆𝑆𝑆𝑆,1�, … ,𝑄𝑄𝑛𝑛 = 𝑞𝑞�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� 

The other two biregional loss distributions are expressed in similar joint, partial form with 
aggregate loss generating functions 𝑞𝑞′𝐼𝐼𝐼𝐼𝐼𝐼 𝑞𝑞′′, respectively . 

Central Unit and North East = �𝑞𝑞′(𝑋𝑋1,𝐶𝐶𝐶𝐶,𝑋𝑋1,𝑁𝑁𝑆𝑆), … , 𝑞𝑞′(𝑋𝑋𝑗𝑗,𝑋𝑋𝑘𝑘)� 

South East and North East = �𝑞𝑞′′(𝑋𝑋1,𝑆𝑆𝑆𝑆 ,𝑋𝑋1,𝑁𝑁𝑆𝑆), … , 𝑞𝑞′′(𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘)� 

for 𝑙𝑙, 𝑗𝑗,𝑘𝑘 from 1 to 𝐼𝐼 = 10,000 

With the two components of single unit losses and partial portfolio losses, the marginal 
covariance itself is computed between any single business unit and the aggregated loss of the 
remainder of the portfolio. In our example, the marginal covariance 𝑀𝑀𝐶𝐶𝑁𝑁𝑆𝑆 of losses for North 
East, 𝑋𝑋𝑁𝑁𝑆𝑆,𝑘𝑘 will be expressed to the aggregate loss 𝑞𝑞(𝑋𝑋𝑆𝑆𝑆𝑆,𝑖𝑖,𝑋𝑋𝐶𝐶𝐶𝐶,𝑗𝑗) from South East and Central 
Unit. Then the marginal covariance takes traditional statistical form: 

𝑀𝑀𝐶𝐶𝑁𝑁𝑆𝑆 = 𝐶𝐶𝐶𝐶𝑉𝑉[𝑋𝑋𝑁𝑁𝑆𝑆,𝑘𝑘: 𝑞𝑞(𝑋𝑋𝑆𝑆𝑆𝑆,𝑖𝑖,𝑋𝑋𝐶𝐶𝐶𝐶,𝑗𝑗)] 

In turn, the marginal covariance ratio for any business unit (including North East, 𝑀𝑀𝐶𝐶𝑉𝑉𝑁𝑁𝑆𝑆, in our 
example) is formally defined as the ratio of the actual marginal covariance to the sum of the 
single unit variance and the partial variance of the remainder of the book of business: 

𝑀𝑀𝐶𝐶𝑉𝑉𝑁𝑁𝑆𝑆 =
𝐶𝐶𝐶𝐶𝑉𝑉[𝑋𝑋𝑁𝑁𝑆𝑆,𝑘𝑘: 𝑞𝑞(𝑋𝑋𝑆𝑆𝑆𝑆,𝑖𝑖,𝑋𝑋𝐶𝐶𝐶𝐶,𝑗𝑗)]

𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑁𝑁𝑆𝑆,𝑘𝑘� + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑞𝑞(𝑋𝑋𝑆𝑆𝑆𝑆,𝑖𝑖,𝑋𝑋𝐶𝐶𝐶𝐶,𝑗𝑗)�
 

This new marginal covariance ratio metric is computed for the portfolio’s three business units in 
table 3. 

Table 3. Marginal Covariance Ratio for Each Business Unit 

 Central Unit & 
South East 

North East & South 
East 

Central Unit & 
North East 

South East — — 0.23 
Central Unit — 0.28 — 
North East 0.05 — — 

 

Each of these three metrics presents a different but mutually complementary picture of active 
practices for measuring geospatial variability and interdependence in second order of insurance 
risk. We started by developing a purely pairwise metric of covariance ratio and then transformed 
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it to a still pairwise but now advantageously unitary, covariance percent share metric. Last, we 
arrived at a marginal impact type of metric—marginal covariance ratio—that is no longer purely 
pairwise and is not unitary; rather it describes the relationship of every single unit to the 
accumulated remainder of the insurance book of business. As expected, business units, which 
comprise geographically neighboring counties, produce metrics that indicate higher degrees of 
dependence in second order of geospatial insurance risk. Then in a reverse relationship, we 
observe that business units with the largest cumulative spatial distances produce geospatial 
metrics of the lowest interdependence. These new metrics allow for the explicit quantification 
and ranking of business units by magnitude of “second-order riskiness.” This ranking practice 
can also be used effectively within a business unit to understand the relationships between and 
the contributions of individual risks to the overall profile of the unit; hence, the metric becomes a 
valuable ranking tool for concentration and underwriting management. Understanding the 
exposure and expected loss outcomes of the portfolio geospatial risk distributions provides a 
much improved environment in which practitioners can use these metrics to design and structure 
mitigating insurance and financial products, as well as for underwriting and risk management 
tasks and strategies. 

 

4. Covariance Back-Allocation and Geospatial Interdependence of Metrics 

This section explicitly develops the links between statistical measures of geospatial 
interdependence and the practical, business-minded understanding and measurement of portfolio 
diversification. We can derive further spatial risk measures from insurance risk factors by using 
portfolio and business unit TVaR, which is a coherent market risk metric and has broad 
acceptance and understanding among practitioners. The individual business unit risk metrics of 
TVaR are derived by a procedure of back-allocation, executed downward from the global 
portfolio level of the total, corporate “global” metric. Back-allocating risk metrics, which 
practitioners often call a top-down approach, from an insurance or a financial portfolio total 
metric reflects that interdependence among risk factors at the portfolio level is present and 
captured in the modeled and global loss distribution of the portfolio risk factors. These effects of 
risk factor interdependence are contained in the modeled portfolio metric due to the very nature 
of the joint multivariable insurance loss accumulation. Section 2 described the physical peril 
model intensity simulation procedure, which models interdependent insurance losses in the 
geospatial domain on a grid-based, granular system of 30-meter resolution. Two types of 
physical peril intensity interdependencies are explicitly modeled: the first is geospatial, which 
captures dependencies among losses within a single simulated scenario; and the second is 
temporal and interevent, which captures dependencies across simulated, temporally clustered 
catastrophe scenarios. Analysis of the modeling principles and techniques of these effects is a 
large and separate research subject that is beyond the scope of this article. 

Expected and significant benefits of working with accurate and comprehensive second-order 
metrics for risk management and underwriting guidelines are that both pure technical premiums 
and risk measurements, such as VaR and TVaR, are optimally back-allocated to individual risks 
and policies, thus providing a sustainable and competitive edge in pricing and reserving. 
Capturing interdependencies with back-allocation practices reflects the effects of diversification 
or concentration in an insurance book of business, both of which are critical in making business 
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decisions. The rest of this study will use the metric of TVaR as the theoretically coherent choice 
for a portfolio and business unit risk metric. With respect to coherence, the most significant and 
fully required premise for this study is the support of the subadditive principle of accumulations 
of a risk metric 𝜌𝜌. In our notional case study, this principle is expected to hold in accumulations 
of the risk metric 𝜌𝜌 from the business unit to the portfolio global level:  

𝜌𝜌[𝑃𝑃𝑙𝑙𝐼𝐼𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙] ≤� 𝜌𝜌[𝐵𝐵𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙]
𝑘𝑘

𝑖𝑖=1
 

In the processes of corporate risk management, one practical translation of measuring 
interdependence is the identification and measurement of portfolio diversification. With a good 
understanding and effective application of such principles, practitioners can then take advantage 
of measuring and understanding diversification while defining and optimizing cost savings from 
optimal capital reserves allocation (Zvezdov and Rath 2017).  

This algorithmic flow for measuring portfolio diversification takes a few steps of allocation and 
transformation. It begins by measuring a corporate, global TVaR from the aggregated and full 
loss distribution 𝑌𝑌𝑝𝑝 of the entire insurance book of business, composed of its three business units, 
with a joint aggregate loss generating function 𝑔𝑔: 

𝑌𝑌1 = 𝑔𝑔�𝑋𝑋𝐶𝐶𝐶𝐶,1,𝑋𝑋𝑆𝑆𝑆𝑆,1,𝑋𝑋𝑁𝑁𝑆𝑆,1�, … ,𝑌𝑌𝑛𝑛 = 𝑔𝑔�𝑋𝑋𝐶𝐶𝐶𝐶,𝑛𝑛,𝑋𝑋𝑆𝑆𝑆𝑆,𝑛𝑛,𝑋𝑋𝑁𝑁𝑆𝑆,𝑛𝑛� 

for 𝑙𝑙, 𝑗𝑗,𝑘𝑘 from 1 to 𝐼𝐼 = 10,000 

𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛) = inf{𝑆𝑆 | 𝑃𝑃(𝑌𝑌𝑛𝑛 > 𝑆𝑆)1 − 𝛼𝛼} 

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛) =
1

1 − 𝛼𝛼
� 𝑉𝑉𝐼𝐼𝑉𝑉(𝑌𝑌𝑛𝑛)𝐼𝐼𝑙𝑙
1

𝛼𝛼
 

After computing the numerical 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉(𝐼𝐼) from the individual loss distributions of the business 
units and then from the combined and joint loss distribution 𝑌𝑌𝑝𝑝 of the entire portfolio, we can 
observe a subadditive relationship, as is expected by first theoretical principles of a coherent risk 
measure. We can now restate this subadditive relationship in a form of TVaR metric 
accumulation: 

 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑃𝑃𝑙𝑙𝐼𝐼𝑙𝑙𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙] ≤� 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐼𝐼𝐼𝐼𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙]
𝑘𝑘

𝑖𝑖=1
 

As a next step in the procedure to measure diversification, this total and global portfolio 
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛) metric is allocated down to each single contributing risk—in this case, to each 
business unit. 

Practitioners use various numerical techniques for portfolio TVaR back-allocation. In this study, 
we will examine the covariance and the marginal covariance-variance (MCov/Var) back-
allocation principles, which we develop, express, and modify specifically for the needs of our 
case study. These two capital and risk metric back-allocation techniques are first constructed by 
expressing the decomposition of the full portfolio covariance matrix ∑ ∑ 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉(𝑛𝑛

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘) 

into its business unit covariance components: 
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��𝐶𝐶𝐶𝐶𝑉𝑉(
𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘) = 𝐶𝐶𝐶𝐶𝑉𝑉 ��𝑋𝑋𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,�𝑋𝑋𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� 

= �𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋1,𝑋𝑋𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

+. . . +�𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋𝑛𝑛,𝑋𝑋𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 

The marginal covariance of each individual business unit with the total portfolio is then 
expressed more robustly: 

�𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗+𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

= 𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋𝑖𝑖,�𝑋𝑋𝑗𝑗+𝑘𝑘

𝑛𝑛

𝑘𝑘=1

) 

An interdependent TVaR for each business unit is constructed, with the contribution of a 
marginal covariance principle back-allocation weight 𝑤𝑤𝑖𝑖, computed in a ratio form: 

𝑤𝑤𝑖𝑖 =
𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋𝑖𝑖,∑ 𝑋𝑋𝑗𝑗+𝑘𝑘𝑛𝑛

𝑘𝑘=1 )
𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑖𝑖,∑ 𝑋𝑋𝑗𝑗+𝑘𝑘𝑛𝑛

𝑘𝑘=1 � + 𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑗𝑗,∑ 𝑋𝑋𝑖𝑖+𝑘𝑘𝑛𝑛
𝑘𝑘=1 � + 𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑘𝑘,∑ 𝑋𝑋𝑗𝑗+𝑖𝑖𝑛𝑛

𝑘𝑘=1 �
 

The business unit TVaR back-allocation procedure itself is complete, with the following 
expression showing the case for the South East unit risk metric being dependent on the total 
portfolio 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛). This interdependent business unit metric is defined as a covariance back-
allocated measure 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝐵𝐵𝐵𝐵]: 

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝐵𝐵𝐵𝐵] = 𝑤𝑤𝑖𝑖,𝐵𝐵𝐶𝐶𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛) 

This covariance back-allocation relationship inevitably enforces a comonotonic relationship 
between the sum of the allocated business unit metrics 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝐵𝐵𝐵𝐵] and the total global 
portfolio 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛): 

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛) = � 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑘𝑘

𝑖𝑖=1
≤� 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐼𝐼𝑛𝑛𝐼𝐼

𝑘𝑘

𝑖𝑖=1
 

This relationship between the global metric, the back-allocated sum and the sum of independent, 
stand-alone business unit metrics is a foundation for many daily tasks in the insurance portfolio 
risk management process. It also serves as a motivation and justification to search for optimal 
and cost-efficient distribution of capital reserves within the business.  

Some practitioners use a back-allocation procedure for both risk metrics and capital reserves 
based on the marginal business unit covariance and the full variance of the total portfolio loss 
distribution 𝑌𝑌𝑛𝑛: 

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑋𝑋𝑖𝑖]𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀/𝐶𝐶𝑉𝑉𝑉𝑉 = 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝛼𝛼(𝑌𝑌𝑛𝑛)
𝐶𝐶𝐶𝐶𝑉𝑉(𝑋𝑋𝑖𝑖,∑ 𝑋𝑋𝑗𝑗+𝑘𝑘𝑛𝑛

𝑘𝑘=1 )
𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌𝑛𝑛]
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This second back-allocation technique does not support a strong theoretical and unitary 
relationship, as the sum of the marginal covariance of each unit—𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑖𝑖,∑ 𝑋𝑋𝑗𝑗+𝑘𝑘𝑛𝑛

𝑘𝑘=1 � +
𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑗𝑗,∑ 𝑋𝑋𝑖𝑖+𝑘𝑘𝑛𝑛

𝑘𝑘=1 � + 𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑘𝑘,∑ 𝑋𝑋𝑗𝑗+𝑖𝑖𝑛𝑛
𝑘𝑘=1 �—will not equal the variance of the global portfolio 

loss distribution, 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌𝑛𝑛]. This is evident by pure statistical mechanics, which show that the 
sum of the marginal covariance(s) does not theoretically or necessarily equal the theoretical 
variance 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌𝑛𝑛] of the combined loss distribution:  

𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌𝑛𝑛] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑖𝑖] + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑋𝑋𝑗𝑗� + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋𝑘𝑘] + 2��𝐶𝐶𝐶𝐶𝑉𝑉(
𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘) 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌𝑛𝑛] ≠ 𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑖𝑖,�𝑋𝑋𝑗𝑗+𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� + 𝐶𝐶𝐶𝐶𝑉𝑉 �𝑋𝑋𝑗𝑗,�𝑋𝑋𝑖𝑖+𝑘𝑘

𝑛𝑛

𝑘𝑘=1

� + 𝐶𝐶𝐶𝐶𝑉𝑉 �𝑋𝑋𝑘𝑘,�𝑋𝑋𝑗𝑗+𝑖𝑖

𝑛𝑛

𝑘𝑘=1

� 

With three types of metric computed—one stand-alone and independent, a second back-allocated 
by the pure covariance principle, and a third back-allocated by the marginal covariance-variance 
principle—we will next explore their ranking and relative standing: 

�𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀/𝐶𝐶𝑉𝑉𝑉𝑉 < �𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 < �𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐼𝐼𝑛𝑛𝐼𝐼 

The right side of this inequality expresses support for subadditive principles in accumulation, 
while the left demonstrates the lack of a unitary relationship as described earlier. On one hand, 
theoretical principles of subadditive accumulations guarantee that the independent sum of risk 
metrics exceeds the dependent and back-allocated sums through covariance participations in the 
granularity of business unit risk metrics. On the other hand, the relationship between the pure 
covariance business unit metrics and those computed through back-allocation by the marginal 
covariance-variance principle cannot be strongly guaranteed by theoretical and statistical 
principles. The numerical ratios of the back-allocated business unit metrics to the independent 
stand-alone business unit metric are summarized in table 4, where the theoretical expressions of 
the ratios take the following statistical forms: 

𝑉𝑉𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑃𝑃 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑙𝑙𝑙𝑙 𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙 =  
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐼𝐼𝑛𝑛𝐼𝐼

  

𝑉𝑉𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑃𝑃 𝑙𝑙𝐼𝐼𝐼𝐼𝑔𝑔𝑙𝑙𝐼𝐼𝐼𝐼𝑙𝑙 𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑙𝑙𝑙𝑙 𝑙𝑙𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑙𝑙 =
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝑀𝑀𝐶𝐶𝐶𝐶𝑀𝑀/𝐶𝐶𝑉𝑉𝑉𝑉

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐼𝐼𝑛𝑛𝐼𝐼
 

 
Table 4. Ratios of Back-Allocated Business Unit Metrics to the  
Independent Business Unit Metric 

 Independent Unit to 
 Pure COVAR MCov/Var 

North East 2.73 1.27 
Central Unit 2.11 0.98 
South East 0.63 0.29 
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The numerical behavior of subadditive accumulations of insurance portfolio 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉(𝐼𝐼) by 
business unit supports an economic motivation and proposition that economies of scale and cost-
savings benefits can be realized in capital reserving due to risk dispersion and geospatial 
diversification. The pure covariance back-allocation principle is most widely accepted among 
practitioners, and it is also the more coherent in mathematical risk theory. 

5. Insurance Portfolio Diversification and Concentration Indices 

Many of the requirements for cost-effective, optimal capital reserving are dependent on 
measuring and quantifying portfolio diversification, which is theoretically justified under the 
mathematical principle of subadditive accumulations. To provide numerical support and proof 
for this analysis, we will continue to use our three business units—South East, North East and 
Central Unit—which compose our single notional insurance firm. The first two business units 
comprise risks from bordering and clustered geoadministrative geographies— counties in 
Florida. The risks in the last one, Central Unit, are less spatially concentrated (see figure 1).  

In the context of our case study, let’s examine some indexed diversification measures 𝐷𝐷𝐼𝐼 derived 
from business unit and portfolio covariance and TVaR metrics. For all three business units and 
the entire portfolio, TVaR is measured at 𝛼𝛼 = 0.05. The index construction relies on the 
mathematical properties of subadditive accumulation of TVaR, which we reviewed in the 
previous section. Computed from the loss distributions of SE, NE and CU (Xi, Xj and Xk, 
respectively) and the distribution of the entire insurance book of business (𝑌𝑌𝑛𝑛), these risk metrics 
numerically provide support for first theoretical principles, expressed in a generalized form: 

𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑌𝑌𝑛𝑛] = 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉 ��𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛

𝑖𝑖=1

� ≦ � 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉�𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘�
𝑛𝑛

𝑖𝑖,𝑗𝑗,𝑘𝑘=1

 

The first index, 𝐷𝐷𝐼𝐼𝐶𝐶𝑉𝑉𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶, is composed of two types of components: (1) business unit and 
portfolio VaR, and (2) TVaR. This first index includes VaR metrics, at both the business and 
portfolio levels, which theoretically do not satisfy the requirements for mathematical coherence, 
particularly risk metric subadditivity. In the context of natural catastrophe risk management, VaR 
metrics, also known as probable maximum loss, are not coherent and subadditive, as are their 
TVaR counterparts. For the same reason of lack of coherence, VaR metrics are not subject to 
portfolio back-allocation and are generally computed independently from their underlying, single 
factor loss distribution for the exposure or unit at risk. Thus, for the construction of the first 
diversification index, we use risk metrics computed only from the stand-alone and independent 
loss distributions of the business units (Xi, Xj and Xk, respectively), with i, j and k from 1 to 
10,000 simulation scenarios and not derived through the top-down back-allocation procedure, 
developed in section 4. To detail the expression, with an example case for the North East 
business unit, the index is constructed as the ratio of the difference of its independent 
𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼 and 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼 at 𝛼𝛼 = 0.05 to the sum of the same differences of independent metrics in 
all three units:  
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𝐷𝐷𝐼𝐼𝐶𝐶𝑉𝑉𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 =
𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑖𝑖] − 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑖𝑖]

∑ {𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑖𝑖] − 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑖𝑖]}𝑛𝑛
𝑖𝑖,𝑗𝑗,𝑘𝑘=1

 

The second diversification index is constructed from interdependent business unit 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉(𝐼𝐼). 
These metrics are back-allocated, by the top-down procedure, from the portfolio-level global 
metric by the covariance principle outlined in section 4. Logically the index is directly dependent 
on subadditive relations, so it is appropriately noted as 𝐷𝐷𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶. We saw in the previous 
section that due to mathematical coherence of back-allocation, the business unit metrics have a 
comonotonic relationship to the portfolio level metric. Again for the North East business, the 
index is formally expressed by: 

𝑆𝑆𝑆𝑆 𝐷𝐷𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 =
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑖𝑖]
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉�∑ 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑛𝑛
𝑖𝑖=1 �

 

To revisit the back-allocation process in the context of index construction, the global portfolio 
metric 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑌𝑌𝑛𝑛] is measured from the stochastically simulated, multivariate and joint 
distribution of all insurance losses in all businesses of the entire portfolio. Geospatial 
interdependencies among the individual business units, as well as individual risks, are captured 
by the covariance back-allocation principle applied to the global portfolio metric. As outlined in 
section 4, this principle constructs a back-allocation ratio, also known as “back-allocation 
weight,” from each business unit’s marginal covariance 𝐶𝐶𝐶𝐶𝑉𝑉�𝑋𝑋𝑖𝑖,∑ 𝑋𝑋𝑗𝑗+𝑘𝑘𝑛𝑛

𝑘𝑘=1 � share of the sum 
total of the portfolio marginal units’ covariance matrix ∑ ∑ 𝐶𝐶𝐶𝐶𝑉𝑉(𝑛𝑛

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1 𝑋𝑋𝑖𝑖,𝑋𝑋𝑘𝑘). The 

𝐷𝐷𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 index reflects the presence of these correlation effects, while the 𝐷𝐷𝐼𝐼𝐶𝐶𝑉𝑉𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 index 
does not. Both diversification indices 𝐷𝐷𝐼𝐼𝐶𝐶𝑉𝑉𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 and 𝐷𝐷𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 are computed in table 5. 

 

Table 5. VaR/TVaR- and COVAR/TVaR-Based Diversification Indices for  
Each Business Unit 

 Diversification Indices 
 VaR/TVaR COVAR/TVaR 

North East 0.06 0.10 
Central Unit 0.28 0.42 
South East 0.67 0.48 

 

Another two diversification indices, based on a covariance allocated metric and an independently 
computed risk metric, are proposed by Tasche (2008). These indices measure the relationship 
between a marginal covariance allocated risk metric that fits into the definition of our business 
unit 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, which is back-allocated through the covariance principle, and a fully 
independent risk metric such as those which we compute and define as 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝐵𝐵𝐵𝐵]𝐼𝐼𝑛𝑛𝐼𝐼. The latter, 
independent metric fits into our definition of a stand-alone business unit 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉, computed from 
the stand-alone and independent loss distributions of its accumulated and aggregated insurable 
risks. This diversification metric is defined formally, in the following North East business 
example, using the adopted notation of Tasche (2008) in the first expression and that of this 
paper in the second: 
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𝐷𝐷𝐼𝐼(𝑋𝑋𝑘𝑘|𝑌𝑌𝑛𝑛)𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝐶𝐶 =
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑋𝑋𝑘𝑘|𝑌𝑌𝑛𝑛]
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑘𝑘] 

𝐷𝐷𝐼𝐼(𝑋𝑋𝑘𝑘|𝑌𝑌𝑛𝑛)𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝐶𝐶 =
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶[𝑋𝑋𝑘𝑘]
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼[𝑋𝑋𝑘𝑘]  

For the whole insurance book of business, with a joint modeled loss distribution [𝑌𝑌𝑛𝑛] with 𝐼𝐼 =
10,000 simulation scenarios, the same metric is expressed in similar mathematical logic: 

𝐷𝐷𝐼𝐼(𝑌𝑌𝑛𝑛) =
𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉[𝑌𝑌𝑛𝑛]

∑ 𝑇𝑇𝑉𝑉𝐼𝐼𝑉𝑉𝐼𝐼𝑛𝑛𝐼𝐼�𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘�𝑛𝑛
𝑖𝑖,𝑗𝑗,𝑘𝑘=1

 

This set of five indices for each business unit and the whole book of business is computed in 
table 6. 

 

Table 6. Business Unit Diversification Ratio Indices Based on Covariance and Independent 
TVaR(s) 
 COVAR-TVaR/Independent Ratio 
North East 2.73 
Central Unit 2.11 
South East 0.63 
Portfolio 0.92 

 

To summarize our numerical analysis, we have produced, generalized and quantified three 
diversification and concentration indices: 𝐷𝐷𝐼𝐼𝐶𝐶𝑉𝑉𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶, 𝐷𝐷𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶/𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 and 𝐷𝐷𝐼𝐼𝑇𝑇𝐶𝐶𝑉𝑉𝐶𝐶 𝑉𝑉𝑉𝑉𝑟𝑟𝑖𝑖𝐶𝐶. All three 
point to the same relative ranking of business units, by the quantified patterns and metrics of risk 
clustering and risk concentration, summarized in table 7. 

 

Table 7. Relative Ranking of Risk Concentration and Clustering by Business Unit 

 Ranking* 
 VaR/TVaR COVAR/TVaR COVAR/TVaR Ratio 
North East 3 3 3 
Central Unit 2 2 2 
South East 1 1 1 

*1 = the highest concentration and clustering, while 3 = the lowest. 

  



 16 

6. Conclusions 

The interpretation of diversification indices and geospatial metrics provides meaningful analytics 
and a support tool for practitioners to use in systemically examining both actual and observed 
claims and simulated loss relationships of subadditive accumulations, geospatial interdependence 
and diversification. Such indices and metrics inform practitioners of risk clustering in the spatial 
and temporal domains, which is an opposing effect to aims and promises of portfolio 
diversification. Risk clustering and concentration is a highly undesirable effect of insurance 
underwriting by all risk managers and business unit managers. Furthermore, the effects of 
concentration and clustering of risk in physical, geospatial and temporal patterns are measurable, 
quantifiable and manageable using various exposure redistributions techniques, risk dispersion 
and the transfer of reinsurance and capital market contracts.  

It is clear that the traditional pairwise metrics of Gaussian model domains are insufficiently 
equipped to capture and describe the complexities of risk factor interconnectedness, which new 
generations of computationally powerful models make it possible to derive in enterprise IT 
environments today. The analytical and numerical efforts in this paper attempt to contribute 
toward the development and propagation of a set of geospatial and second-order risk metrics that 
capture in a more coherent manner the effects of diversification, concentration and 
connectedness among complex risk factors in an insurance book of business. Coherence, 
consistence and clarity are indispensable requirements for such metrics, so they can be easily 
understood and have an impact on decisions made by executive stakeholders. 
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