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A b s t r a c t :  The problem of the computer generation of random variables with 

a given force of mortality can be done by applying the connection between the 

cumulative distribution function F(t) and the cumulative force of mortality M(t). 

For generating a random variate with a given cumulative mortality, it suffices to 

invert an exponential random variate E. This inversion method works well for most 

of the mortality laws. For Makeham's law, we suggest the composition method 

which requires only three simple steps. Based on the relationship between F(t) and 

M(t), we also suggest a graphical approach to find a suitable force of mortality for 

a set of survival time. Several graphical examples are presented to illustrate our 

methodology under different laws such as Pareto, Weibull, de Moivre, Gompertz 

and Makeham. 

1Room 640, Drake Centre, 181 Freedman crescent, Winnipeg, Manitoba RaT 5V4 

Canada. E-mail: jpai@ec.umanitoba.ea 

293 



1. INTRODUCTION 

The analytical  laws of mortal i ty such as Gompertz  and Makehaln are of_ 

ten used by actuaries to describe the survival distributions. NuInerical ap- 

proaches to (~'vahlat(' features such a,s mean and variance of these distributions 

may be very difficult not t,o mention tile characteristics of t,heir life conting(;nt 

ftm('tions. 

The use of saint)ling based methods is an alternative to ttle numerical 

al)proaches. Let t l , . . . ,  tg denote saml)les generat.ed fl'om a. probability den- 

sity function, say f(t). The mean of any function of t, say E[g(t)], can by 

at)l)roxilnated by tile ergodic average 

f 1 J g(t)f(t)dt ~ -j ~.q( t j ) .  (1) 
j= l  

we note tha t  tile right hand side converges to the left hand side of (1) in 

probability as J -* ~c. For example, let f ( t )  be tile probability density 

function of the random variable T(J:) (the futur(~ lif(:time for a person of 

ag(' J';) a n d  (](~) = oxI)[-(ST(:lT)] be  t he  p resen t  v~tll,(2 ,'~LlldOlll v~t,l'i~l,],l{, of  the 

benefit of a whole life insurance policy, b denotes the force of interest. 

Consider tile relationship between the cumulative distr ibutkm function, 
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say F(t), and tile fi)rce of mortality, say #(t) as follows: 

j~0 t F(t) = 1 - exp[-M(t)] ,  where M(t) = #(,s)(ls. (2) 

This connection helps us t.o generate randoln variates through the use of 

exponential random variat.es. Section 2 discusses the generation of random 

variates with a given force of mortality by the inw~rsion method. We also 

suggest the Newt.on-Rat)hson inethod, tile thinning nlethod, and tile coml)o- 

sition method in the case of the Makeham's law. 

Section 3 presents a type of graphical methods for data analysis. We sug- 

gest a theoretical quantile-quantile plot (Q-Q plot) to explore tile observed 

data an(t to find a suitable force of mortality for the data. We present several 

graphical examples to illustrate our methodology. 

2. GENERATION OF RANDOM VARIATES 

From (2) we note that M(t) has an exponential probability function (with 

mean 1). Thus, for generating a random variat.e with a given cumulative 

force of mortality it suffices to invert an exponential random variate. 
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Inversion m e t h o d  (Cinlar, 1975) 

(i) Generate  E from tile exponential distribution. 

(ii) Calculate T = M - I ( E ) .  

Table 1 summarizes the result, from tile inversion method for several useful 

laws of force of mortality. 

2.1. Newton-Raphson Iterations 

In the case of the Makeham's  law, 

M ( t )  = at + 
bc~(c t - 1) 

ln(c) 

where M - I ( E )  is not explicitly known, we can solve M ( T )  = E for T by 

Newton-Raphson  method as follows. 

Inversion m e t h o d  using N e w t o n - R a p h s o n  i terat ions 

(i) Generate  E from the exponential  distr ibution 

(ii) Set To = 0 

(iii) Calculate Ai = E ~T,--b~(~r,- 1)/ln(~) 
a +bcX + Ti 

(iv) Calculate T~+I = T, + A, 
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(v) Retain Ti+l if }/Ni I < e, go to (iii) otherwise 

An appropriate stopping rule, say e, must be added in practical applications. 

The computing time depends on tile starting value, To, and the precision 

required, e. A better starting value can be obtained by taking the second- 

degree Taylor polynomial of c t. That is, 

bcZ (ln(c))2 t 2 - 1] (3) 
M ( t )  = at  + l--~(c)[1 + ln(c)t + ~ . 

The positive root of the quadratic equation is 

[(a + a ~ )  2 + 2 Z b c  • l n ( ~ ) ] l / 2  - a - be  ~ 
To = bc ~ In (c )  (4)  

2.2. Thinning Method 

Not like the Newton-Raphson method, the thinning method doesn't, need 

any stopping rule. Suppose that we can find a force of mortality, say #0(t), 

such that p(t) ~ #o(t) for all t and the sampling with respect, to /~o(t) is 
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easy and comt)utational inexl~ensive, we can apply the thimting inethod to 

Makehain's law. For exampl(~, let/~(~(t) = ((~/c:" + b)c ~'+~. 

T h i n n i n g  m e t h o d  (Lewis and Shedler, 1977) 

(i) Set To = 0 

(ii) Generate Ai from the Gompertz 's  law 

with t)aramet~ws b0 = a /c  r + b, Co = e and .r~ = x + T, 

(iii) Cenerate U fl'om a uniforln distribution (0,1) 

(iv) Calculate T,+l = T, + Ai 

(v) IRetain r i +  1 it' U < "+b¢'~+""+' go to (ii) otherwise ii(,ri+ l 4 -~cx+Ti+I  ! 

2.3. Composition Method 

Both the Newton-Ral)hson method and the thinning m(~thod are iterative 

method which is, s(mmtimes, not satisfactory in terms of the computing 

time and the precision. A non-iterative approach is suggested by using the 

composition method. Let 's first decompose the Makeham's  law, p(t), to two 

parts, #t ( t )  and p.2(t). Tha t  is, p(t)  = # t ( t ) +  p.2(t), where lq( t )  = bc ~+t~ has 

Gompertz 's  law and lt2(t) = a is a small adjustment  to I~ (t). 

C o m p o s i t i o n  m e t h o d  (Devroye, 1986, page 263) 
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(i) Generate G from the Gompertz's law (see Table 1) 

(ii) Generate E from the exponential distribution 

(iii) Retain T = M i n [ E / a ,  G] 

Proof:  

P,-[T > t] = P r [ M i n [ E / a , G ]  > t] 

= p,-[{E > at} and { a  > t}] 

= P r [ E  > a t ]Pr iG  > t] 

bcZ ( c t -- 

We note that only two exponential random variates are needed for generating 

one random variate from the Makeham's law. 

As an application, consider all annuity payable continuously at. tile rate of 

1 per year as long as at. least, one of three lives, say (w), (y), and (z), survives 

(the last-survival status). Suppose that. (w=30), (y=40), and (z=50) follow 

the Makeham's law, the Gomperzt's law, and the Weibull's law respectively, 

and their future lifetimes are mutually independent. We first draw 3 samples 

independently fi'om the three analytical laws of mortality with age z = 30, 

40, and 50 respectively. We keep the largest value T and ca.h:ulate the present 
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value 9 - (1 - eacp[-(ST])/6. We  repeat  J times to have a total  of .1 samples, 

say 9j, J = 1, • • •, J .  Then  the expected value and the variance of the present 

value random variable (:an be approximated  by the sample mean and variance 

of g j , j  = 1 , . . . , J .  

The  composi t ion method  can be used for any revised law. For example,  

Ill(t) could be a Pare to ' s  or Weibull 's law while #2(/) is a constant  adding 

an extra  risk to l~l(t). One can also apply this approach to a life having an 

addit ional  risk to an analytical  law in certain age interval. For example, let 

lq (/) be a Makeham's  law (which has been found suitable for adult  ages) and 

let. 112(~) be a constant  if / < I3, 0 otherwise. 

3. THEO1RETICAL Q U A N T I L E - Q U A N T I L E  P L O T S  

Let us suppose tha t  t l , ' - ' ,  t,~ are independent  identically distr ibuted (i.i.d.) 

r andom variables from tile probabil i ty density function with the force of 

mortal i ty  l~(t). Let s l , - . ' , s , ,  be the value of da ta  sorted from smallest to 

largest, so tha t  si is tile Pi = (i - 0 .5) /~  empirical quantile. The  relationship 

between the cmnulat ive force of mortal i ty  and the cumulat ive probabil i ty 
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dis t r ibut ion can be wri t ten as 

M(s~) = - l n [ 1 - F ( s , ) ]  ( i =  1 , . . . , n ) .  (5) 

If we es t imate  F(s~) by p~, we have rrh = ~I (s i )  = l n [ ~ ] .  We expect, to 

see, roughly, a 45 o line pass the origin if we plot M(s i )  versus rni under  the 

s i tuat ion where tile da t a  are t ruly from the underlying distr ibution.  Table 2 

shows the Q-Q plots under  different laws. The  following s imulat ion results 

are carried out  Ks s ta ted  in Section 2 with sample  size 10000. 

3.1. Pa re to ' s  law M(t)  = aln(1 + z + t) 

P L O T :  h,(1 + z + si) versus l n [ ~ J  

E X P E C T :  a s t ra ight  line cross the origin with slope a 

RESULT: Figure 1 shows the result with a = 0.5, x = 50 and a line Y = 0.5z. 

CO--~ 
3.2. de Moivre 's  law M(t)  = a ln(~_-EV27_t) 

P L O T :  ln(  - - v ,rsus ln[ ] 

E X P E C T :  a line with intercept  a ln(w - z) and slope - a  
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RESULT: Figure 2 shows the result with a = 1.1, w' = 1 10, x = 50 and a line 

V = a l n ( ~  - : r )  - c l X .  

3.3. \,'v%ibull's law M(t) = ~[I.+tp+' ~+q 
b +  1 

The Weibull 's law can be written as 

axb+ l (~ 
ln( ,~I( t )  + ~ .  , ) = l n ( ~ .  , )  + (b + 1)hl( t  + ~:). 

o ~ - 1  o ~ - 1  

azb+ l 
If we plot. ln(s, + z) versus ln(mi + -gTT) we will see a regression line with 

(1 ¢15r b + l  intercept ln(g-~) and slope (b+ 1). We can initiate the plot by letting b+l = 

0 and est imate it by tile least square estimates, Y = A + / ) X .  Tha t  is 

a2:b+ l ,~, xf~ e A" 
b + l  

After a few iterations, we should get a satisfactory line, 

PLOT: ln(si + x) versus l n ( l n [ ~ ]  + x~)e. A) 

EXPECT:  a line with intercept ln(~@i ) and slope (b + 1). t)-I- 

RESULT: Figure 3 shows the plots and the line Y = ln(b-~-71 ) + (b + 1)X for 

4 iterations. 
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3.4. Gomper tz ' s  law M(t )  = 
I n ( c )  

Gomper tz ' s  law can be wri t ten as 

bc~ ) = l n ( ~ )  + t In(c). ln(M(t)  + ln(c) 

be x "~ If we plot. si versus ln(mi + ~ ]  we will see a linear relationship for large t. 

Several iterations might be needed to update  ~ as s ta ted in the previous 

subsection. 

b c  • ,~ PLOT:  si versus In( l n [ ~ ]  + l-h-~2 

hV bcT x and slope ln(c) E X P E C T :  a line with intercept tl-fi~ ] 

RESULT: Figure 4 shows the plots with b = 0.000007, c = 1.12, x = 50 and 

a line Y = In + ln(c)X. 

Same plot can be used to the Makeham's  law for small values of a (usually 

the case). Figure 5 shows the plot with a = 0.001, b = 0.000007, c = 1.12, 

x 50 a n d a l i n c Y  1 ~ bc~ ' = = n/ i~-~) + ln(c)X. 

4. Conclusion 

We have recognized several methods  to draw samples form Makeham's  law. 

While the adaptive rejection method that  Scollnik (1995) suggested works 
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for all log-concave densities, the composition method we suggest is simpler 

and more powerful especially when a very large sample size is required to 

achieve the desired accuracy. Sampling methods can be used easily to solve 

many complicated actuarial functions. The leust-survival example in Section 

2 is just one of them. In terms of estimation, London (1988) has suggested 

several useful methods to parametric survival models. All those methods can 

be used only when the certain law has been identified. Our method by Q-Q 

plots is a preliminary study to explore data and, hopefully, identify a suitable 

law visually. 
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Ta, ble i: Inversion method 

Pareto 

de Moivre 

Weibull 

Gompertz  

l + x + t  ~ 

a > O  

~ - t  ~ 

a > O  

. ( .  + t?, 

a,b>O 

b c X +  ~' 

b > O , c > l  

a ln(l 4-x + t) 

a l n ( ~ ,  - : c )  - a l n ( ~  - x - t )  

a l . + t )  b+~ nx~+~ 
b + l  b + l  

&_.~" + t bc:r 

c x p [ ~ ] -  1 - : r  

(~, - . ) ( 1  - ~,-~-) 

a 

]n@~+E ]n(¢))-ln@ _ x 
ln(~) 
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Table 2: Theoretical Q-Q plots 

law 1 X axis Y axis 
1 

Pareto ln(1 + x + s~) rn~ 

de Moivre ln[(w - s~)/(w - x -  s~)] m,~ 

Weibull ln(x + s~) ln(mz + adjustment)  

Gompertz  si ln(mi + adjustment)  

Makeham si ln(mi + adjustment)  
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Figure 1 Result of the Q-Q plot for the Parer, o's law (u = 0.5, :r = 50) and 

the line Y = ~ X .  

o ! 

cO 

El 

o~ 

0 

O 

0 5 10 15 
In(l+x+s_i) 

308 



. m  

I 
E 

I I  

0 

CO. 

(.0- 

~-.  

O -  

Figure  2: Resul t  of  the  Q - Q  plot  for the  de Moivre ' s  law (a = 0.5, co = 110, 

:~: = 50) and  tile lille Y = a In(co - x )  - a X .  
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Figure  3: Resul t  of the  Q-Q plot,s for tile Weitmll ' s  law (a, = 0.01414214,  

t) = 0.5, :r = 50) and tile. l ine = ln(~,~l ) 4- (t) ÷ 1)X.  
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Figm'{; 4: Result  of the Q-Q plots  for tile G o m p e r t z ' s  law (b = 0.000007, 

c = 1.12 z = 50) and the lille Y = a I n ( b e d ~ I n ( c ) )  - ln(c)X.  
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Figure  5: Resu l t  of  the  Q - Q  plots  for the  M a k e h a m ' s  law (a = 0.001, b = 

0.000007,  c = 1.12, x = 50) and  the  line Y = a In(be'X/In(c)) - l n (c )X.  
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