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Methodology
We worked with R, utilizing the tidyR framework which simplifies data manipulation and links with ggplot
visualizations.

The primary aim of our approach was to combine a non-parametric correlation structure in Age and Calendar
Year leveraging existing mortality models, along with a parametric dependence on the large collection of
covariates available in the Individual Life Mortality Experience (ILM) dataset. To do so, we came up with
a two-step procedure. In the first step, we fit an Age-specific non-parametric mortality model, linking to
the external Human Mortality Database data for US mortality by gender. In the second step, we model the
resulting residuals through a Generalized Linear Model to account for the multitude of covariates in the ILM.

The ILM data set contains 33, 807, 927 rows of data (observations) with the following columns, generically
indexed by row i below:

• Di the number of deaths,

• Ei the number of deaths and policies exposed, and

• Xi the vector of covariates containing: Observation_Year, Preferred_Indicator, Gender,
Smoker_Status, Insurance_Plan, Issue_Age, Duration, Attained_Age, Age_Basis, Face_Amount_Band,
Issue_Year, Number_Of_Preferred_Classes, Preferred_Class, SOA_Anticipated_Level_Term_Period,
SOA_Guaranteed_Level_Term_Period, SOA_Post_level_Term_Indicator, Select_Ultimate_Indicator.

The categorical covariates in Xi are encoded numerically. Furthermore, we use xag to denote Attained_Age
and xyr for Observation_Year.

As is typical in stochastic mortality modeling, we work with the central log mortality rate

mi = Di

Ei
, (central mortality rate)

yi = log(mi). (log mortality rate)

The log mortality rate yi is considered the output for the model.

Step 1: Multi-Population Stochastic Mortality Model
In our first step we build a stochastic mortality model. Our aim is to provide a data-driven set of mortality
projections that capture the fundamental dependence on Age and (Calendar) Year. This requires smoothing
the raw observations provided in the contest dataset and producing non-parametric Age-specific mortality
projections for year 2017. Recognizing the central effect induced by Gender and Smoker status, we further
incorporate these covariates into the mortality term structure.

Our approach takes log-mortality as the target object to be predicted, leveraging the vast longevity modeling
toolbox. At this step we aggregate across all the other covariates, and simultaneously introduce an external

1



dataset, namely the United States mortality experience from the Human Mortality Database [HMD]. The
HMD provides a publicly-accessible high-quality national-level mortality data broken out for Males and
Females. It does not contain any other covariates and is based on the US Census Bureau and the National
Center for Health Statistics (CDC) records. Given the enormous number of rows in the ILM, our motivation
is to:

• aggregate data to infer trends in the insured population, optimizing the smoothing of raw observations;

• employ the HMD population to avoid overfitting and regularize the projected Age-specific mortality;

• rely on the HMD data for 2017 to improve predictive power for the purposes of the contest.

Thus, the reason for including HMD data is two-fold. First, we borrow information from the 2017 HMD
data which helps in projecting xyr = 2017 mortality rates for the ILM data set. Second, prior studies
[Bahna-Nolan 2019] document that insured data is heterogeneous across years and therefore it is beneficial to
use national population data to reduce year-over-year volatility and discontinuity. In particular, [SOA ILEC
2016] specifically mentions the use of HMD data for ILM assessment.

To leverage HMD, we employ a multi-population methodology that provides flexible information fusion
across multiple datasets. Specifically, building upon the very recent work in [Huynh & Ludkovski 2021a], we
develop a multi-output Gaussian Process (MOGP) model. GP modeling takes a spatio-temporal approach,
representing log-mortality as a data-driven response surface indexed by xag, xyr and xpop which is a factor
covariate encoding the different sub-populations being considered. The model infers a correlation structure
that governs the dependence among different mortality rates based on the distance between respective cells in
xag and xyr, scaled by the length-scales θag, θyr. It moreover infers a cross-correlation between populations
linking respective mortality experiences. The MOGP-predicted log-mortality can be interpreted as a linear
combination of all observed mortality rates, weighted by the model-driven similarity between different (Age,
Cal Year) pairs. This gives a non-parametric, data-driven fit that jointly smooths the noisy observed mortality
rates in Age and Year, as well as fuses information from the HMD.

Models Developed: In total, we have 2 · 3 + 2 = 8 populations, 6 populations from ILEC that are broken
out by Gender (2 factor levels) and Smoker Status (3 levels), plus 2 populations (Males/Females) from HMD.
In terms of span in Ages and Years we have:

– Individual Life Mortality Experience data, 0 ≤ xag ≤ 120, 2009 ≤ xyr ≤ 2016;

– Human Mortality Database data, 0 ≤ xag ≤ 109, 2009 ≤ xyr ≤ 2017. (In fact, HMD presently covers
1933–2019, so we could potentially include that additional information as well.)

Given the clear evidence of varying mortality experience for Males and Females, we construct separate
gender-based models (in other words we assume that the experiences for Males and Females are statistically
conditionally independent). At the same time, given the expected strong dependence between different
Smoking statuses, we build a joint model across those sub-populations. Thus, we consider a joint model
for {HMD Males, ILEC Smoker Males, ILEC Non-Smoker Males, ILEC Unknown Males}, encoded as
xpop = 1, 2, 3, 4 respectively, all treated via a single MOGP model fitted utilizing data from all stated
populations.

We considered breaking additionally according to Preferred_Indicator or Select_Ultimate_Indicator;
any discrete variable can technically be used to split. However, adding sub-populations requires to consider
all possibilities, exponentially increasing the number of populations in the MOGP. This is computationally
expensive (and makes the MOGP less stable) and likely to yield limited benefits. Thus, for tractability we
stick with treating Gender separately and jointly handling Smoker (experiments fusing by Gender as well,
which give a 8-population MOGP, produced comparable results). Our ongoing work [Huynh & Ludkovski
2021b] considers hierarchical multi-population mortality models that could be utilized if we had more time.

In order to handle the highly non-stationary correlation structure in Age, we build 3 different age-segmented
models covering Ages 0-30, 30-70, 70-100. To avoid discontinuity around the Age cut-overs, we train the
models on overlapping Age segments [0, 35], [25, 75], [65, 100], and Years 2009-2016 for ILM and 2009-2017
for HMD. One feature of the MOGP model is that it straightforwardly handles such “notched” input that
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has different observations for different sub-populations (in particular, no xyr = 2017 for ILM and no xag>109
for HMD). In essence, it “borrows” the information from xyr = 2017 in the HMD data set, and uses the
correlations found with the ILM sub-populations to assist in predicting xyr = 2017 for ILM.

For Ages 100+ the ILEC data is very sparse and noisy. Since those rows contribute little to overall predictive
accuracy, we postponed the challenge of modeling them and assumed a constant mortality rate for all ages
above 100, set to the smoothed mortality rate at xag = 100. See the flat sections in Figure 1 below.

In sum, we build 6 distinct MOGP models, each for 4 sub-populations (3 from ILEC, 1 from HMD). For the
purposes of our subsequent exposition, we bind them back across the Age segments, and present the results
in terms of Gender and Smoker.

MOGP Details: Our MOGP is implemented using DiceKriging and kergp packages in R. We select a
constant GP prior trend and the Squared-Exponential covariance kernel; these are standard choices in the
literature. Based on our extensive experience with GP modeling, the choice of this “GP mean function”
makes little impact for the purposes of doing a one-year-out projection. We use our expert knowledge to
restrict prior GP lengthscale ranges.

Cross-population correlations: As expected, ILEC mortality rates are substantially lower than those in
the HMD. However, that gap is greatly affected by Smoker status. For non-smokers, our fitted model suggests
over 20% reduction in mortality, while Smokers have mortality that actually exceeds that in HMD for Ages
50-85. Unknown status seems to be effectively the same as Smoker for Ages below 45 (suggesting that all
non-Smokers are motivated to self-report as such) and closer to non-Smoker for Ages above 70 (perhaps due
to data entry issues for older policies).
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Figure 1: Projected 2017 log-mortality as a function of Age and Smoker status.

Figure 2 shows the heat maps illustrating the ratios of ILEC mortality by Smoker status compared to the
HMD overall population. We see that the ratios are growing over time.

We obtained correlation of about 70% between HMD and ILEC Smoker/Non-smoker sub-populations, and
about 90% for the Unknown sub-population. This suggests that the Unknown group is in fact very similar
(ignoring other covariates) to overall population. We also obtained correlations of 60-90% between different
ILEC sub-populations. The results are quite similar across Males/Females and across different Age segments.

Step 2: Gaussian GLM with Ridge Regression
After fitting the MOGP model, for each i (indexed by Age, Year) we obtain ŷGPi through the posterior mean
of the Gaussian process, and we compute the residual of the log mortality rate as

ei = yi − ŷGPi . (1)
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Figure 2: Ratios of ILM mortality to HMD population across Age (x-axis) and calendar Year (y-axis). Top
row: Female; bottom row: Male.

Next we build a Generalized Linear Model (GLM) on the residuals ei’s. We assume that ei is a linear
function of other covariates Xi and since it is real-valued, a Gaussian GLM is appropriate. Since mi = Di

Ei
,

ei = logmi − ŷGPi = log(Di/Ei) − log(D̂GP
i /Ei) = log(Di/D̂

GP
i ). In other words, exp(ei) = Di/D̂

GP
i , the

ratio of actual to (GP) expected deaths, and the GLM is modelling the log of the A/E deaths ratio.

We did consider other alternatives that make sense from the perspective of targeting the contest metric which
is not on the log-scale. We experimented with Gamma and Inverse-Gaussian GLM fitted to exp(ei) = Di/D̂i

with respective link functions so that the log mean is linear in Xi but that estimation was very slow and did
not yield better results before the deadline. In future work we would like to consider a Poisson GLM fitted to
the count data Di ∼ Pois(Ei exp(µi)) and then fitting a GP to the residuals.

The proposed GLM assumes Gaussian errors with a linear dependence of the response on all covariates, as
well as their first-order interactions:

ei = β0 +
p∑
j=1

βjxij +
p∑
j=1

∑
k<j

βjkxijxik + εi, εi ∼ N(0, σ2), (2)

where xij is the ith row and jth column of the data set, after appropriately coding categorical variables. This
form is motivated by the large amount of categorical variables, of which various linear relationships between
numerical xij and ei may differ, for different categorical levels.

Due to the large number of resulting terms in the model, as well as many collinear variables, we choose ridge
regression to infer the β coefficients. As we expect all covariates to have a potential effect, we did not want
to exclude any covariates and hence focused on regularized regression. A shrinkage approach via LASSO is a
reasonable alternative and could be more interpretable.

In estimating βj , j = 0, . . . p, we further opt to perform a weighted ridge regression with weights (wi):

β̂ = argminβ


n∑
i=1

wi

ei −
β0 +

p∑
j=1

βjxij +
p∑
j=1

∑
k<j

βjkxijxik

2

+ λ

p∑
j=1

β2
j

 . (3)
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As is common, the tuning parameter λ is obtained through 5-fold cross-validation (package glmnet). We
carry out two iterations of (3):

Iteration 1: Perform 5-fold cross validation where in removing each fold we fit (3) with weights wi = Ei, the
number of exposures. The resulting model is predicted on the removed fold, obtaining a value based on the
competition error metric (for each row):

CVErri = (Ci − Ĉi)2

Ĉi
. (4)

Iteration 2: Fit a weighted ridge regression model according to Equation (3) on the full training data, using
the weights wi = 1 + log(1 + CVErri) based on iteration 1; those weights end up in the range of wi ∈ [1, 20].
Based on the resulting β̂j , the GLM prediction êGLMi for any row i with covariates x′i is

êGLMi = β̂0 +
p∑
j=1

β̂jx
′
ij +

p∑
j=1

∑
k<j

β̂jkx
′
ijx
′
ik. (5)

Finally, to account for observed over-estimation for rows with very low death counts, we fit an auxiliary
logistic regression (with same dependence on Xi) for the event {Di = 0}, which yields p̂i = P(Di > 0|Xi).
Our final mortality projection is

mi = exp
(
ŷGPi + êGLMi · p̂i

)
.

Other regression specifications: We tested regressing on:

1. All first order terms in Xi.
2. First order terms and all first order interactions.
3. Second order terms, and all first order interactions.

Looking at the fits and residual plots, second order terms seemed unnecessary (performing worse for projecting
2016), but the interaction terms provided significant improvement over a strictly linear model.

Regression Weights: The choice of Ei as regression weight in (3) is equivalent to expanding the data into
individual insureds observations rather than on the given rows. Other weighing schemes: wi = 1, wi =

√
Ei,

wi = E2
i were tested, but wi = Ei outperformed the others in our 2016 out-of-sample prediction.

With the choice wi = Ei, we still found discernable patterns in Erri for 2016, for example as a function of
Age. This motivated the idea to weigh based on prediction performance and led to the 2-step iteration above.
Its purpose is to prioritize minimizing predictive errors in rows where claim predictions are underperforming,
akin to boosting. This specific weighing scheme improved 2016 out of sample prediction by approximately
10%. Other weighing schemes involving CVErri were also considered, but we were forced to end a full analysis
due to time constraints.

One-Year-Ahead Analysis
To determine model efficacy in predicting one-year-ahead, we performed extensive analysis in fitting to
2009-2015 data and predicting on the known 2016 data. The first figure displays a metric representative of
the contest

Err =

√√√√∑i∈{2016 data rows}
(Ci−Ĉi)2

Ĉi∑
i∈{2016 data rows}Ei

, (6)

which is computed separately over each age; smaller values are preferred. As discussed by the ILEC, the
intent of this metric is to assess performance of claim amount prediction.
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Figure 3: Cumulative Errors vs. Attained Age of Policy Holders (One-Year-Ahead 2016)

Both GP based models are shown to perform better than the 2015 VBT table. By comparing the green and
yellow lines in Figure 3, the GLM portion of the model clearly provides additional error reduction. Note that
the GLM can have issues in areas with sparse training data (e.g. extreme ages) since it was optimized to
reduce aggregate error.
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Figure 4: Cumulative Errors vs. Attained Age of Policy Holders (One-Year-Ahead 2016)

In Figure 4 the prediction errors in 2016 are first aggregated over all covariates aside from Age, Duration,
and Smoker. A similar pattern of performance emerges as before: the GP breaks into population by smoker
status, so it improves over 2015VBT. The GLM then handles additional interactions with covariates and
smoker status, further improving performance over the GP.

2017 Mortality Projections
Without having policies exposed for 2017, we focus on mortality projections. The following plots display
partial dependencies of predicted 2017 mortality in terms of key covariates. Within each visualization, the
projections are averaged over all covariates not included and over all predicted rows to provide an average
representation of the full data set given. The code used to produce the plots below will generate analogous
plots for any variables by appropriately replacing Attained_Age and Gender, showcasing the efficiency of
tidyr. Boxplots for categorical variables on the x-axis can be produced similarly.
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df_Plot_1 <- grid_2017_temp %>%
group_by(Attained_Age,Gender) %>%
summarise(mort_rate = mean(mort_rate))

ggplot(df_Plot_1, aes(x = Attained_Age, y = log(mort_rate))) +
geom_line(aes(color = Gender)) + xlab("Attained Age") + ylab("Log Mortality Rate")
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Figure 5: Partial Dependence plot of projected 2017 log-Mortality vs. Age (by Gender)

Figure 5 shows our integrated projection for 2017 log mortality. The shape is very similar to the GP fit ŷGP
shown in Figure 1. Indeed, the GLM modification should not significantly change the overall mortality shape.
As expected, Male mortality is universally higher. Sparse data for extreme ages causes the two to converge
around age 100.
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Figure 6: Partial Dependence Plots for 2017 log-Mortality in terms of Attained Age.

Figure 6 highlights the differing relationship on mortality predictions among products (left panel) and face
amounts (right panel). The right panel highlights that our model detected a monotonic relationship between
face band amounts: policies with higher face amounts tend to have lower mortality rates.

Figure 7 illustrates different x-axes, with issue year on the left panel and duration on the right panel. Both
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Figure 7: Partial Dependence Plots in terms of Gender.

plots have similar shapes, highlighting an inhomogeneity of the data. Furthermore, we see log mortality
decreasing for higher issue years, where younger individuals tend to purchase products.
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