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Agenda

➢ What actuary already knew

➢ What actuary may not know

➢ Basic models beyond OLS

• Generalized Linear Model

• Decision tree & more

• Clustering & more

➢ What is next?

➢ Conclusion, Q & A
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What actuary already knew
• Are you familiar with the following terms?

• Ordinary Least Square (OLS)

• Time Series

• Linear regression model

• Y target variable, Xi predictor variable,  error term/noise

• i parameters to be estimated

• Underlying Assumptions for a valid LM

• Y: homogeneity, representative of population, independence between observations

• X: fixed, error-free

• Normality, ε ~ N(0,2)

• (linearity)

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 + 𝜀 = 𝑖𝛽𝑖𝑋𝑖 + 𝜀 = ഥ𝑿ഥ𝜷 + 𝜀
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Ordinary Least Squares
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➢ Ordinary Least Squares(OLS)

• For a simple regression

➢ Identical to Maximum likelihood estimator

▪ More robust and consistent approach

➢ Use adj R2 to compare fitness of models

1 = 𝑅𝑆𝑆

𝑇𝑆𝑆
+ 𝐸𝑆𝑆

𝑇𝑆𝑆

Define 𝑅2 = 𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 − 𝐸𝑆𝑆

𝑇𝑆𝑆
=

σ𝑖(𝑌𝑖−
෢𝑌𝑖)

2

σ𝑖(𝑌𝑖−
ഥ𝑌)2

,   but it is biased

Adjusted 𝑅2 = 1 − 𝐸𝑆𝑆

𝑇𝑆𝑆
∗ 𝑛−1

𝑛−𝑘
= 1 − (1−𝑅2)∗ 𝑛−1

𝑛−𝑘

෠β = 𝑎𝑟𝑔min 𝑅𝑆𝑆 = 𝑎𝑟𝑔min 𝑖(ෝ𝑦𝑖 − 𝑦𝑖)
2 = 𝑎𝑟𝑔min 𝑖(𝑗𝛽𝑗𝑋𝑖𝑗 − 𝑦𝑖)

2

෢β1 = ൗ(𝑥𝑖𝑦𝑖 −
1

𝑛
𝑥𝑖𝑦𝑖) (𝑥

𝑖

2 − 1

𝑛
(𝑥𝑖)

2),  ෢β0 = ത𝑦 − ෢β1 ҧ𝑥

෠β = 𝑎𝑟𝑔m𝑎𝑥 𝐿(𝑋, 𝑌, 𝛽) = 𝑎𝑟𝑔min −ln(𝐿 𝑋, 𝑌, 𝛽 ) = 𝑎𝑟𝑔min 𝑖(𝑦𝑖 − ෝ𝑦𝑖(𝜇𝑖))
2

if normal distribution

• portion that has been explained by OLS model

• portion of TSS for the error  



6

Why actuary did not use OLS
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➢ Processes are inherently linear, or can be well-approximated by LM

➢ Effectiveness & Completeness

▪ OLS makes very efficient use of the data; good results with relatively small data sets

▪ Identical to maximum likelihood estimation

➢ Easy to understand and communicate

▪ theory is well-understood;  Results are easy to communicate

➢ Great! but wait …

➢ There are several issues with OLS

▪ Validation of assumptions - Normal w/ constant 2, independent, homogeneous

▪ Unbounded data, non-negative value

➢ How about insurance application? Distribution of data, variance structure

▪ Binomial for rate (mortality/lapse/UW, etc.), 2 ~ r(1-r)

▪ Poisson for claim count,  ~ mean

▪ OLS may not be applicable in insurance, but you know lots about modeling
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What actuary may not know

Machine Learning & Statistical Techniques

▪ Decision Trees (CART/MARS)

▪ Neural Networks / Deep learning

▪ Bayesian Analysis

▪ Classification/Association

▪ Analysis of Variance

▪ Mixed Models

▪ Categorical Data Analysis

▪ Multivariate Analysis

▪ Survival Analysis

▪ Cluster Analysis (e.g. K-Means)

▪ Non-Parametric Analysis

▪ Text mining

▪ Generalized Linear Model (GLM)

▪ Random Forest

▪ XG-boost machine

▪ Gradient Boosting

▪ Ada Boosting

▪ Support vector machine

▪ Ensemble method

▪ Survey Data Analysis

▪ Genetic Algorithms

▪ Sentiment Analysis 

▪ Markov chain Monte Carlo (MCMC)

▪ Optimization Methods

▪ Feature engineering
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PM terminology

• Supervised: estimate expected value of Y given values of X
• Example: OLS/LM, GLM, Cox, NN, etc.

• Unsupervised: find interesting patterns amongst X; no target Y
• Example: Clustering, Correlation / Principal Components

Supervised 

vs. 

Unsupervised

• Classification: segment observations into 2 or more categories
• Example: fraud vs. legitimate, lapsed vs. retained, UW class

• Regression: predict a continuous amount, 
• Example: dollars of loss for a policy, ultimate size of claim

Classification 

vs. 

Regression

• Parametric Statistics: probabilistic model of data
• Example: Poisson Regression(claims count), Gamma (claim amount)

• Non-Parametric Statistics: no probability model specified
• Example: classification trees, NN

Parametric 

vs. 

Non-Parametric
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Generalized Linear Model
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➢ Generalized Linear Model(GLM)

▪ Major focus of PM in insurance industry

▪ Include most distributions related to insurance

▪ Great flexibility in variance structure

▪ OLS model is a special case of GLM

▪ (Relatively) Easy to understand and communicate

▪ Multiplicative model intuitive & consistent with insurance practice

➢ 3 components

▪ Random component

▪ Systematic component

▪ link function 



10

Generalized Linear Model
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Random component

Observations Y1, . . . , Yn are independent w/ density from the 

exponential family

From maximum likelihood theory,

➢ Each distribution is specified in terms of mean & variance 

➢ Variance is a function of mean

𝑓𝑖 𝑦𝑖; 𝜃𝑖 ,  = 𝑒𝑥𝑝
𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)

𝑎𝑖()
+ 𝑐(𝑦𝑖 , )

𝐸 𝑌 = 𝜇 = 𝑏′ 𝜃 , 𝑣𝑎𝑟 𝑌 = 𝑏′′ 𝜃 𝑎  = 𝑎  𝑉(𝜇)

Normal Poisson Binomial Gamma InverseGaussia

n

Name 𝑁(𝜇,2) 𝑃(𝜇) Τ𝐵(𝑚, 𝜋) 𝑚 𝐺(𝜇, ) 𝐼𝐺(𝜇,2)

Range (-,+) (0,+) (0,1) (0,+) (0,+)

b(𝜃) 2 e ln(1+e) − ln −𝜃 −(−2𝜃)1/2

𝜇(𝜃) 𝜃 e e/(1+e) −1/𝜃 (−2𝜃)−1/2

𝑉(𝜇) 1 𝜇 𝜇(1 − 𝜇) 𝜇2 𝜇3
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Variance of different distributions

➢ Gaussian, constant

➢ Poisson, ~ mean

➢ Gamma, ~ mean^2

Why distribution will affect results
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Generalized Linear Model
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➢ Systematic component

A linear predictor 𝑖 = σ𝑗 𝑥𝑖𝑗𝛽𝑗 = 𝑋𝛽 for observation i

➢ link function

𝑖 = 𝑔(𝜇𝑖), random & systematic are connected by a smooth & invertible function

Log is unique in insurance application s.t. all parameters are multiplicative

▪ 𝑦 = exp(σ𝑗 𝑥𝑖𝑗𝛽𝑗) = ς𝑗 exp 𝑥𝑖𝑗𝛽𝑗 = ς𝑗 exp 𝛽𝑗
𝑥𝑖𝑗

= ς𝑗 𝑓𝑗
𝑥𝑖𝑗

▪ Consistent with most insurance practices

▪ Intuitively easy to understand and communicate

Identity Log Logit Reciprocal

𝑔(𝜇𝑖) 𝑥 ln(𝑥) ln(
𝑥

1 − 𝑥
) 1/𝑥

𝑔−1(𝑖) 𝑥 𝑒𝑥 𝑒𝑥

1+𝑒𝑥
1/𝑥
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Generalized Linear Model
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➢ Solve for parameters () by maximum likelihood

▪ Closed form for small data and simple model

▪ Iterative numerical techniques for large data set & complex model

• 𝛽𝑛+1=𝛽𝑛– H
−1 ∙ s, similar to Newton’s method 𝑥𝑛+1=𝑥𝑛– 𝑓(𝑥𝑛)/𝑓

′(𝑥𝑛)

▪ Use statistical analysis application, such as R

➢ Compare OSL and GLM

➢ Great flexibility

▪ Various distribution, variance structure

▪ Prior weight and the credibility of data

▪ Offset of data

Random Systematic Link

OLS Normal only
𝑖 = ෍

𝑗
𝑥𝑖𝑗𝛽𝑗

𝐸 𝑦𝑖 = 𝑖

GLM Various distribution 𝑔 𝐸(𝑦𝑖) = 𝑖
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➢More regression models

▪ Survival Models (Cox Proportional Hazard)

▪ Generalized Additive Models (GAM)

▪ Multilevel/Hierarchical Linear Model(HLM)

➢Support vector machine

▪ Instead of a linear boundary that are affected by all data points to 

separate classes, an optimal boundary is selected to maximize the 

gap between classes

➢Neural network / Deep Learning

▪ Logistic model is the simplest neural network model

Where we go from GLM
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Decision Tree Model
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➢Decision Tree model, (Classification And Regression Tree - CART)

✓Both classification and regression 

✓Non-parametric approach (no requirement on data structure)

➢CART tree is generated by repeated partitioning of data set

✓Data is split into two partitions (binary partition)

✓Partitions can also be split into sub-partitions (recursive)

✓Until data in end node(leaf) is homogeneous (more or less)

➢Results are very intuitive

✓ Identify specific groups that deviate in target variable

✓Yet, algorithm is very sophisticated
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Decision Tree Model
Recursive Partitioning

• Take all data points

• Consider all possible values of all variables

• Select the variable/value (X=t1) that produces the greatest “separation”
– (X=t1) is called a “split”.

– If X< t1 then send the data to the “left”; otherwise, to the “right” 

• Repeat same process on these two “nodes”
– Result is a “tree”; uses binary splits

• Stop split data until certain criteria are meet

Two Core Questions

▪ How to find split points
• Which variable among all, at which value or category, what criterion to use

▪ When to stop splitting
• Avoid saturated model
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Splitting Point

• “Separation” defined in many ways; different for regression & classification

• Regression Trees:  use sum of squared errors

– 𝑆𝑆𝐸𝑝 = σ𝑖(𝑦𝑖 − 𝜇)2

– 𝑆𝑆𝐸𝑐 = σ𝑖(𝑦𝑖
𝐿 − 𝜇𝐿)2 + σ𝑖(𝑦𝑖

𝑅 − 𝜇𝑅)2

– Select X=t1 such that max
𝑥𝑖,𝑡

(𝑆𝑆𝐸𝑃 − 𝑆𝑆𝐸𝐶)

• Classification Trees: use measures of purity/impurity

– Intuition:  an ideal tree model would produce completely pure nodes

– Gini Index - purity of a node 𝑓(𝑝) = 𝑝(1 − 𝑝)

𝑓 𝑝 = σ𝑖 𝑝𝑖 1 − 𝑝𝑖 = 1 − σ𝑖 𝑝𝑖
2,   𝑝𝑖 = freq of class i

– Entropy – information index 𝑓 𝑝 = −𝑝𝑙𝑜𝑔 𝑝

𝑓 𝑝 = σ𝑖−𝑝𝑖 𝑙𝑜𝑔 𝑝𝑖 = −𝑝𝑙𝑜𝑔(𝑝) − 1 − 𝑝 𝑙𝑜𝑔(1 − 𝑝)

Decision Tree Model
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Surrogate Splits

• Problem: if missing data on xi, we don't know how to assign the object

• Solution: we can use a similar split on another variable that is associated 

(correlated); we use these (surrogate) splits to assign the object to the class

– Missing value can be solved in algorithm level

Decision Tree Model

A simple example - Titanic survivor model



19

19

Decision tree based model

➢ Random forest

➢ XG-boost machine

➢ Gradient Boosting

➢ Ada Boosting

w1
w2

Where we go from Decision Tree

w3
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Data Clustering
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Clustering algorithm

✓Find similarities in data according to features in data & group similar 

objects into clusters

✓Unsurprised (no pre-defined), classification, non-parametric

✓How to measure similarities/dissimilarities, e.g. distance

▪ Numeric, categorical, and ordinal variables

✓Partitioning (k-means), Hierarchical, Density-based, etc.
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Data Clustering
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Algorithm

▪ Partitioning algorithms - K-measn/k-medoids

• Maintain k clusters with k known; place points into their “nearest” cluster

▪ Hierarchical (Agglomerative)

• Objects are more related to nearby objects than to objects farther away; objects are 

connected by distance; how to define “nearby” object

K-Means Algorithm

1. Select K points as initial centroids, with a given k

2. Repeat

3. Form K clusters by assign each points to its nearest centroid

4. Re-compute the centroids of each cluster

5. Until centroids do not change
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Data Clustering
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Define Distance

• Euclidean: 𝑑 𝑥𝑖 , 𝑥𝑗 = (σ𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2)1/2 (p=2), easy to understand, but not scale invariant

• Manhattan: 𝑑 𝑥𝑖 , 𝑥𝑗 = σ𝑘 |𝑥𝑖𝑘 − 𝑥𝑗𝑘| (p=1), city-block distance

• Chebychev: 𝑑 𝑥𝑖 , 𝑥𝑗 = 𝑚𝑎𝑥𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘| (p→),

• Minkowski: 𝑑 𝑥𝑖 , 𝑥𝑗 = (σ𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)
𝑝)1/𝑝

• Others like Pearson correlation, Spearman,Canberra, Jaccard, binary, ... 

Standardization / Normalization

▪ Values of variables may have different units

▪ Variable with high variability/range will dominate metric, & lead to bias

How to determine K

▪ Business reasons could dictate k

▪ Try different k, looking at the change in the average distance to centroid, as k increases; 

error falls rapidly until right k, then changes little
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Data Clustering
Comments on K-Means

• Strength: simple, very efficient, & fast

• Weakness

• Applicable only when mean is defined, (categorical?)

• Need to know k in advance

• Unable to handle noisy data & outliers; sensitive to outliers 

• Not suitable for clusters with non-convex shapes

• Maybe sensitive to initialization

• There are variants of k-means

Hierarchical clustering

• Bottom up (aglomerative) or top down (divisive/deglomerative) produce a dendrogram

• Important questions - how to represent a cluster of more than one point, & how to determine 

the “nearness” of clusters?

– Single Link: smallest distance between points

– Complete Link: largest distance between points 

– Average Link: average distance between points

– Centroid: distance between centroids

23
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What is next for Actuary?

• You have solid education background in statistics

• You already have the business knowledge

• Pick up the new skills of data analytics

– Refresh yourself with the basics of modeling

– Learn a modeling application / language & practice with examples

– Attend seminar, conference, training program, etc.

– Start a project to apply the new skills

– Link your new skills with your job & practice if possible
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Conclusion

Actuary unique position

▪ Industry knowledge: domain knowledge is key in the predictive modelling process

▪ Data expertise: data is always the largest issue in data-driven applications

Challenge for actuary

▪ Solid math foundation, but need to learn modeling skills and new technology

▪ Combine the new skills with domain knowledge

Opportunity for actuary

▪ Data science is changing the insurance & will revolutionize how we run business

▪ Actuaries should lead the transforming by becoming data scientist or leading DS
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