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ABSTRACT

1 ¥} .f\ = k, find the unknown rate of interest. This paper derives the

- &2 - &2 ky 2
approximate solutions { = 1 (n) and 1 = ({1 + ! (n) ntl -<1 - (n) ) (n+l) -
k k |3

k, 4 o+l
k<1+1—(;)2) -n

. INTRODUCTION:

On page 60 of [1], Kelligson considers the problem of finding the
unknown rate of interest determined by the equation am = k. Three different
solutions are offered: Interpolation in the tables

Treating af'ﬁ sv+vi+...v" =k asan n':h degree polynomial whose
roots are to be found

Iteration by means of 1 = 1 - 51+1)"“
k

The purpose of this paper is to derive approximate analytical formulae and
discuan their accuracy.

Deri{vation

am- v+vl+ . 0" =k, If we multiply by (1 - v) and rearrange,

n+

we obtain F(v) = v™1 o (14k) v + Kk (1)

£7(v) = (n+l) VT - (1+K) (2
£¢v) = (n41) n vn-l >0 for v > 0 (3)

From elementary calculus, the graph of this function on the interval
(0,1) is easily obtained. The following facts about the graph on (0,1) are
stated without proof: the graph is concave upwards.

n+l
The éraph passes through the points (o,k), 1%1( (l%k) )and (1,0).
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1

The graph possesses exactly one minimum at (};%
Between 0'and 1, the graph possesses exactly one root r. 1
f f £ f 1 Lk < Lk ¥
, (v) > 0 for 0 < v < r and f(v) <0 for r < v < 1. 17k <r 1+n
The graph 1s shown in the figure.
We now derive our first
estimate for r.
k-r+r2-0;r3+...rn >n - ‘(O,k)
n p ng;rf-l! by the

r

\

classical inequality on the arithmetic k k 1
' 1+, \1+

and geometric means.

2 1 -1
Hence, (g_)\ﬂ >, (4) + S
: (65 45))
A

Since 1 > 0, k < n and

D
k+kn<n+kn or k < l+k FIGURE
- n l4+n. Whence,
2 1
Kk 2a 141 1 or EYH-I T,
n 14n n l4nj . This inequality together with

3 |

2
+1
: Ay L+
(4) gives: | r < 6‘3 < T+ . (5)
2

FAR 221
Since {;) > r by (4), we shall choose the slightly smaller quantity
2 .

(_l_t_s as our first approximation for r. The values of these two quantities are
n

tabulated in table 1. These values are most easily checked by converting the
approximate values of v to 1. The exact solution is given in column 1 and the

-approximate values of { are shown in columns 3 and 5. Table I shows that

(!._}2“ gives slightly more accurate values in the range of interest of most
n

financial problems. More important, the subsequent expressions become algebrically
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simpler with this choice. However, for n < 9, this is no longer true, because
2

+1
(%Y cannot be replaced by (:S without an excessive loss of accuracy. We

therefore assume n>9.

In order to improve this cstimate for the root, we shall iterate

n 2
using the formula { = l;v (6) (see 1], page 61). Let be the
()
K 2
starting value; one {iteration produces 1 = 1l- (;\ (7

—_—
These values are tabulated in table II, column 2 and agree reasonably
well with the exact values of column 1. Except for the first two values, the
relative error is less than .05 for all tabulated values. If all calculated
values are rounded to two decimal places, formula (7) is accurate to two
decimal places in all tabulated values except for n = 20 and 1 > ,13. This
formula is easily calculated by hand and is sufficient for many purposes. If
& high degree of accuracy is required, formula (7) 1s an excellent starting
value for any of the standard iterative techniques.
The obvious extension of formula (7) 1s to perform a second

iteration. This yields:

1=1-(1 +(1_;_®f))m (8)

Formula (8) is tabulated in column 3 of table II. When rounded off, this

esgtimate ig accurate to two decimal places in every tabulated value. While
this slight fmprovement is disappointing, it is easily anticipated. Following

Kellison [2] page 254, the rate of convergence 1is determined by
2

a4 /1 - v\ = n vn+l = k where v = ( n+1. Since k approaches 1 for small f{,
di k k n n n

the rate of convergence must, lo general, be slow.
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We shall now use formula (7) as the starting value for the Newton-
Raphson Technique. If we apply this method to equation (1), using in

add{ition equatton (2):

n+l
\lz-vl-ul -(l+k)\)l+k ~nvn+l—k

n
(v - (1+) (V] - (1)

v can be eliminated in favor of 1:

n+1
(1+1l} -4 (n+1) -_i (9

k (1+11)“+1 -

Finally, insert formula (7) into equation (9):
Y e o
(1+(1 (n)) -(m-l)(-n -1
k k

4 - 10)

W+ (—g@— )

The values given by formula (10) are tabulated in column 4 of table II. It
should be noted that all values are slightly larger than the true value. That
this must be the case, I8 now demonstrated. By (3), the graph of (1) on (0,1)
{s o convex curve; thua, the graph always lies to one side of any tangent line.
By (5) and the fact that (7) lies even closer to the root,

1

1 - 552 P <1+k no, Therefore, the tangent line of the Newton-
n 1+n

Raphson method always lies under the curve and must cross the x axis to the
left of the true root. Hence, the estimate for v is always too small and the
estimate for i too large. 1In recognition of this fact, we must not round off
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the results of (10); we must adjust downwards. This 1s most simply achieved

by truncation. We shall therefore, agree to keep the first four decimal places
and truncate everything thereafter. If we apply this acheme to column 4 of
table II, all tabulated ramulta ave accuratu to four decimal places. In
wummary, formula (10) represents an approximate analytical solution to the
problem ol this papar for n p 4, If tho ftrat four digits are taken without
rounding off, 1If needed, further accuracy {8 quickly obtained by using

equation (9) (Newton-Raphaon) iteratively.
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TABLE 1

ne= 10

.01
.03
.07
.09
.11
15
.21

ne20

.01
.03
.07
.09
.11
.15
.21

a = 30

.01
.03
.07
.09
11
.15
.21

n = 50

(2

.989
.969
.932
.915
.900
871
.858

.990
971
.938
.925
.912
. 890
.B64

.990
972
.943
.931
.921
.904
.884

.990
.974
.950
.941
934
.923
910

R
T

.011
.032
.073
.093
-112
148
.165

.010
.030
. 066
.082
.096
.123
.157

.010
.029
.061
.074
.086
.107
131

.001
.027
.053
.063
.07
084
.099

.9%0
972
.938
.923
.908
.882
.870

<990
972
2941
.928
.916
.895
.870

.990
973
. 945
.933
.923
.907
.888

.990
.974
.951
.942
.935
2924
.912

.010
.029
. 066
.084
.101
.134
.149

. 001
.029
.062
.078
.092
117
.149

.010
.028
.059
.072
.083
.103
.126

.001
.026
.052
.061
.069
.082
.097
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-TABLE 11

n = 10

.01
.03
.05
.07
.09
.11
.13
.15
.17
.19
.21

n = 20

.05

.01087
.03193
.05229
.07214
.09164
.11091
.13003
.14906
.16808
.18708
.20612

.01030
.03002
. 04909
06791
.08673
.10567
.12479
.14411
.16362
.18329
.20310

.01007
.02924
.04798
.06680
.08592
. 10517
.12508
.14501
.16507
.18522
.20542

1- (14l (%)Z»_B

k

.01082
.03162
.05171
.07143
.09098
.11049
.13001
.14960
.16926
.18900
.20881

.01027
.03002
L 04947
.06903
.08879
.10873
.12880
.14895
.16911
.18928
.20941

.01006
.02953
.04920
. 06900
.08%13
.10933
.12952
.14968
.16979
.18987
.20992

EECR RS

o +(i._£§)_’))“*‘- ;

.010062
.030097
.050078
.070046
.090020
.110005
.130000
.150003
.170011
.190021
.210031

.010008
.030000
.050012
.070038
.090063
.110076
.130078
.150071
.170061
.190049
.210039

.010000
.030014
. 050050
.070070
.090067
.110053
.130037
.150024
.170015
.190009
. 210005
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TABLE 11 CONTINUED

n = 40

.01
.03
.03
.07
.09
11
.13
.13
.17
.19
.21

n = 60

.ol
.03
.05
.07
.09
.11
.13
.15
.17
.19
.21

.00993
.02882
.04755
.06668
.08624
.10612
.12622
.14641
.16665
.18689
.20713

.00976
. 02845
.04758
.06733
.08745
.10769
.12795
.14818
.16838
.18854
.20868

.00995
.02938
.04919
.06934
.08956
.10974
.12986
14993
.16996
.18998
20999

.00982
. 02942
.04958
.06980
.08992
.10997
.12999
.15000
.17000
.19000
.21000

.010000
.030032
.050060
. 070055
.090037
.110020
.130010
.150005
.170002
.190001
.210001

. 010005
.030045
.050038
.070017
. 090006
.110002
.130001
.150000
.170000
. 190000
< 210000
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