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Longitudinal Data

What are longitudinal and panel data?

• Regression is a statistical tool to study the distribution of an outcome
of interest in terms of other variables

• In regression, measurements are recorded at the level of research unit
or observational unit

• Unit of analysis is referred to as individuals in econometrics literature
and subjects in statistics literature

• Dependent variable: outcome of interest

• Explanatory variable: other measurements

• In insurance and actuarial applications, one could think of a
policyholder as an subject.
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Longitudinal Data

What are longitudinal and panel data?

• Model building often depends on the type of data

• Cross-sectional data focuses on static relationship, while Time series
data examines the dynamic relationship.

• Longitudinal/panel data: a marriage of cross-sectional and time series
data

• measurements on a cross-section of subjects

• repeated observed over time (multiple observations on each subject)

• We follow each of n subjects for a maximum of T = max{T1, . . . ,Tn}
time periods

• 1st subject {y11, y12, . . . , y1T1}
• 2nd subject {y21, y22, . . . , y1T2}
• · · ·
• nth subject {yn1, yn2, . . . , ynTn}
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Longitudinal Data

What are longitudinal and panel data?

• Consider some applications that actuaries might face that fall into
this framework

• Personal lines insurance: yit is the number of claims of a policyholder.

• Commercial lines insurance: yit is the loss ratio of a customer.

• Insurance sales: yit is the sales of an insurance agent.

• Coverage selection: yit is the coverage selected by the policyholder, e.g.
deductible level.

• Customer Retention: yit is the indicator whether a policyholder
purchases coverage.
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Longitudinal Data

Benefits of longitudinal data

• Control for individual heterogeneity

• Heterogeneity means that subjects are different and unique

• Panel data allows us to account for the uniqueness through
subject-specific parameters, such as

• heterogeneous intercept: yit = αi + x
′
itβ + εit

• heterogeneous slope: yit = α+ x
′
itβi + εit

• both intercept and slope: yit = αi + x
′
itβi + εit
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Longitudinal Data

Benefits of longitudinal data
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Longitudinal Data

Benefits of longitudinal data

• Study dynamic relationship

• In cross-sectional regression, actuaries makes inference about effect of
explanatory variables on the dependence variable. It is a static
relationship because there is no time element in the inference.

• In longitudinal regression, actuaries are interested in changes over time,
known as dynamic relationship.
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Longitudinal Data

Benefits of longitudinal data

• Efficiency and information sharing

• Actuaries would be able to obtain more precise (efficient) estimates of
parameters. Suppose observations from different years are independent,
a large sample means:

• more variability in the data and thus less collinearity among variables

• more degrees of freedom and thus less uncertainty in estimates

• Longitudinal data often exhibit features of clustering. By exploring and
incorporating this relationship into model, actuaries would also be able
to make more efficient prediction.
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Longitudinal Data

Benefits of longitudinal data

• Identify and measure effects that are usually not detectable in pure
cross-section or pure time series data

• Example: we are interested in the accident rate in car insurance

• In cross-sectional data, we have E(yi |xi ) = E(yj |xj) = 0.5. Two
possibilities:

• subjects i and j are from homogeneous population, both 50% chance of
accident in a given year

• subjects i and j are from heterogeneous population, i has accident
every year and j doses not have accident at all

• With longitudinal data, two groups can be separated by investigating
the effect of lagged dependent variable
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Linear Mixed Effects Models

Linear Mixed Effects Model

• The linear mixed effects is

yit = z ′itαi + x ′itβ + εit

• It contains both fixed effects and random effects

• This model allows for subject-specific intercept and slopes

• The model has matrix representation

yi = Ziαi + Xiβ + εi
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Linear Mixed Effects Models

Linear Mixed Effects Model

• Sampling assumptions

• Conditional on α1, . . . ,αn, {yi} are independent random vectors

• E(yi |αi ) = Ziαi + Xiβ

• Var(yi |αi ) = Ri

• E(αi ) = 0, Var(αi ) = D, and α1, . . . ,αn are i.i.d.

• This implies:

• E(εi ) = 0, Var(εi ) = Ri . It allows for heteroscedasticity and serial
correlation.

• Subject-specific effects and the noise term are uncorrelated, i.e.
Cov(αi , ε

′
i ) = 0

• Additional assumptions for finite sample inference

• Conditional on α1, . . . ,αn, {yi} are normally distributed

• {αi} is normally distributed
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Linear Mixed Effects Models

Linear Mixed Effects Model

• The marginal model is:

E(yi ) = Xiβ

Var(yi ) = Vi (τ ) = ZiDZ
′
i + Ri

• The linear mixed model implies the above marginal model, but not
vice versa.

• Marginal model is useful when the interest is the estimation of fixed
effects, while linear mixed effect model should be used when the
interest in the prediction.
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Linear Mixed Effects Models

Linear Mixed Effects Model

• Special Cases:

• One-way ANOVA model

yit = µ+ αi + εit

• In general, error components model

yit = αi + x ′itβ + εit

• Key assumptions:

• {αi} are i.i.d with zero mean and variance σ2
α

• {αi} and error {εit} term are uncorrelated

• homoscedasticity Var(εit) = σ2

• no serial correlation Cov(εir , εis) = 0
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Linear Mixed Effects Models

Linear Mixed Effects Model

• Estimation

• Fixed effects β are estimated using GLS

• Variance components are estimated using MLE or REML

• Prediction. Suppose we wish to predict a random variable w , where
E(w) = λ′β and Var(w) = σ2

w . Given β, the best linear predictor of
w is (in terms of MSE)

w∗ = λ′β + Cov(w , y)V−1(y − Xβ)

• the results do not not rely on distributional assumption

• under normality, one can show w∗ = E(w |y)

• One could use R package lme4 for implementation.
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Consider an application of linear mixed-effects model

• Recall the response is generated by yi = Ziαi + Xiβ + εi

• We are interested in subject i in period Ti + L (L lead time units in
the future)

• Two quantities of interest

• Conditional mean E(yi,Ti+L|αi ) = z ′i,Ti+Lαi + x ′i,Ti+Lβ

• Future response yi,Ti+L = z ′i,Ti+Lαi + x ′i,Ti+Lβ + εi,Ti+L
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Conditional mean. The BLUP is

wBLUP = x ′i ,Ti+LbGLS + z ′i ,Ti+Lai ,BLUP

• Future response. The BLUP is

wBLUP = x ′i ,Ti+LbGLS + z ′i ,Ti+Lai ,BLUP + Cov(εi ,Ti+L, εi )R
−1
i ei ,BLUP

• Special case when Ri,st = σ2ρ|s−t|

wBLUP = x ′i,Ti+LbGLS + z ′i,Ti+Lai,BLUP + ρLeiT ,BLUP

• Further if ρ = 0, the point prediction is the same as the case of
conditional mean.
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• We consider the loss data in Worker’s Compensation Insurance

• The data are from the National Council on Compensation Insurance

• It contains losses due to permanent partial disability (see Klugman
(1992))

• 118 occupation or risk classes are observed over 7 years

• The variable of interest is Loss. Possible explanatory variables are
Year and Payroll

• We use Payroll as an offset.
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• The time series plot of Loss:
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• The scatter plot of Loss:
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• We consider the following modeling strategies:

• Pooled regression:

log(Lossit) = log(Payrollit) + β0 + β1Yearit + εit

• Fixed effect model:

log(Lossit) = log(Payrollit) + β0,i + β1Yearit + εit

• Error-component model:

log(Lossit) = log(Payrollit) + αi + β0 + β1Yearit + εit

• Random coefficient model:

log(Lossit) = log(Payrollit) + α0,i + α1,i + β0 + β1Yearit + εit
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Goodness-of-fit statistics are:
Model df LogLik AIC BIC

Pooled CS 3 -988.35 1982.69 1996.20
Fixed Effects 120 -482.00 1204.00 1744.69
Error Component 4 -720.23 1448.46 1466.48
Random Coefficient 6 -719.35 1450.70 1477.74
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Comparison of different estimators:
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Comparison of homogeneous and heterogeneous models:
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Comparison of out-of-sample prediction:
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Linear Mixed Effects Models

Linear Mixed-Effects Models

• Hold-out sample validation statistics are:
Pooled FE ErrComp RanCoeff

MAE† 2.137 0.704 0.687 0.691
RMSE† 9.093 1.463 1.433 1.420
MAPE 0.685 0.517 0.507 0.498
Pearson 0.505 0.968 0.970 0.974
Spearman 0.823 0.917 0.922 0.927
† in millions of dollars.

Brian Hartman & Peng Shi 28 / 47



Linear Mixed Effects Models

Linear Mixed-Effects Models

• Linear mixed effects models enhance the application of credibility
theory by incorporating covariates.

• Several well-known credibility models can be viewed in the framework
of linear mixed effects models.

yit = z ′itαi + x ′itβ + εit

• Bühlmann: zit = xit = 1, Var(εi ) = σ2ITi

• Bühlmann-Straub:
zit = xit = (1, t)′, Var(εi ) = σ2diag(1/wi1, . . . , 1/wiTi )

• Hachemeister: zit = xit = (1, t)′, Var(εi ) = σ2ITi
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Generalized Linear Mixed Effects Models

Outline

1 Longitudinal Data

2 Linear Mixed Effects Models

3 Generalized Linear Mixed Effects Models
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• This section extends the mixed-effects models to outcomes with a
distribution from the exponential family.

• Definition. The distribution of the linear exponential family is

f (y ; θ, φ) = exp

(
yθ − b(θ)

φ
+ S (y , φ)

)
.

• y is a dependent variable and θ is the parameter of interest.
• φ is a scale parameter that we often will assume is known.
• b(θ) depends only on the parameter θ, not the dependent variable.
• S(y , φ) is a function of the dependent variable and the scale

parameter, not the parameter θ.

• We can show that

µ = E y = b′(θ) and Var y = φb′′(θ) = φV (µ),

where V (·) is known as variance function.
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Generalized Linear Mixed Effects Models

Linear Exponential Family of Distributions

Table: Selected Distributions of the One-Parameter Exponential Family

Para- Density or
Distribution meters Mass Function Components E y Var y

General θ, φ exp
(

yθ−b(θ)
φ + S (y , φ)

)
θ, φ, b(θ), S(y , φ) b′(θ) b′′(θ)φ

Normal µ, σ2 1
σ
√

2π
exp

(
− (y−µ)2

2σ2

)
µ, σ2, θ

2

2 ,−
(

y 2

2φ + ln(2πφ)
2

)
θ = µ φ = σ2

Binomal π
(

n
y

)
πy (1− π)n−y ln

(
π

1−π

)
, 1, n ln(1 + eθ), n eθ

1+eθ
n eθ

(1+eθ )2

ln
(

n
y

)
= nπ = nπ(1− π)

Poisson λ λy

y! exp(−λ) lnλ, 1, eθ,− ln(y !) eθ = λ eθ = λ

Gamma α, β βα

Γ(α) y
α−1 exp(−yβ) − βα ,

1
α ,− ln(−θ),−φ−1 lnφ − 1

θ = α
β

φ
θ2 = α

β2

− ln
(

Γ(φ−1)
)

+ (φ−1 − 1) ln y

Inverse µ, λ
√

λ
2πy 3 exp

(
−λ(y−µ)2

2µ2y

)
−µ2/2, 1/λ,−

√
−2θ, (−2θ)−1/2 φ(−2θ)−3/2

Gaussian θ/(φy)− 0.5 ln(φ2πy3) = µ = µ3

λ
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Generalized Linear Mixed Effects Models

Variance as a Function of the Mean

Table: Variance Functions for Selected Distributions

Distribution Variance Function v(µ)

Normal 1
Bernoulli µ(1− µ)
Poisson µ
Gamma µ2

Inverse Gaussian µ3

• The choice of the variance function drives many inference properties,
not the choice of the distribution.
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• The generalized linear mixed-effects model is specified as:

yit |αi ∼ f (yit |αi ),

f (yit |αi ) = exp

(
yitθit − b(θit)

φ
+ S (yit , φ)

)
.

αi ∼ p(αi )

• The conditional mean and variance are:

µit = E(yit |αi ) = b′(θit) and Var(yit |αi ) = φb′′(θit) = φV (µit)

• Both fixed and random effects are specified via link function:

g(µit) = z ′itαi + x ′itβ
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• The marginal mean and variance are:

E(yit) = E(E(yit |αi )) = E(g−1(z ′itαi + x ′itβ))

Var(yit) = Var(E(yit |αi )) + E(Var(yit |αi ))

= Var(g−1(z ′itαi + x ′itβ)) + E(φV (g−1(z ′itαi + x ′itβ)))

• The regression coefficients do not have a marginal interpretation, it
measures the effects conditional on the random effects.
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Estimation. The fixed effects parameters can be estimated using MLE:

l(β, τ ) =
n∏

i=1

∫ Ti∏
t=1

f (yit |αi )p(αi )dα.

• This requires approximations in the estimation.

• Only conjugate distributions lead to closed-form solution.

• Prediction. The inference of random effects αi is via empirical Bayes.

• Alternatively, one could perform a full Bayesian approach to the
mixed effects models.

• One could use R package lme4 for implementation.
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• We consider the claim frequency in Worker’s Compensation Insurance

• The data are from the National Council on Compensation Insurance

• Claim frequency are observed on a yearly basis (see Klugman (1992))

• 130 occupation or risk classes are observed over 7 years

• The variable of interest is Count. Possible explanatory variables are
Year and Payroll

• We use Payroll as an offset.
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• The time series plot of Count:
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• The scatter plot of Count:
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• We consider the Poisson regression model with a log link function:

Countit ∼ Poisson(λit)

• Pooled regression:

λit = Payrollit exp(β0 + β1Yearit)

• Fixed effects model:

λit = Payrollit exp(β0,i + β1Yearit)

• Random intercept model:

λit = Payrollit exp(αi + β0 + β1Yearit)

• Random intercept/slope model:

λit = Payrollit exp(α0,i + α1,iYearit + β0 + β1Yearit)
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Goodness-of-fit statistics are:
Model df LogLik AIC BIC

Pooled CS 2 -7449.92 14903.84 14913.13
Fixed Effects 131 -1911.19 4084.37 4692.54
Random Intercept 3 -2197.32 4400.63 4414.56
Random Coefficient 5 -2160.44 4330.87 4354.08
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Shrinkage effects:
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Comparison of homogeneous and heterogeneous models:
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Comparison of out-of-sample prediction:
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Generalized Linear Mixed Effects Models

Generalized Linear Mixed-Effects Models

• Hold-out sample validation statistics are:
Pooled FE RanInt RanCoeff

MAE 13.281 3.885 3.871 4.443
RMSE 1.585 0.842 0.742 0.761
MAPE 41.541 6.589 6.586 8.423
Pearson 0.403 0.967 0.967 0.943
Spearman 0.821 0.936 0.938 0.945
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Thank you for your attention!
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