2019 Predictive Analytics Symposium

Session 30: M/S - General Insurance Applications of Predictive Analytics (PA)

SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer

Mixed Effects Models

Brian Hartman, ASA, PhD, Brigham Young University Peng Shi, FSA, PhD, University of Wisconsin-Madison

Brian Hartman & Peng Shi

- 1 Longitudinal Data
- **2** Linear Mixed Effects Models
- **3** Generalized Linear Mixed Effects Models

э

イロン イ理 とくほとう ほんし

Outline

1 Longitudinal Data

2 Linear Mixed Effects Models

3 Generalized Linear Mixed Effects Models

э

イロト イヨト イヨト イヨト

What are longitudinal and panel data?

- Regression is a statistical tool to study the distribution of an outcome of interest in terms of other variables
- In regression, measurements are recorded at the level of research unit or observational unit
 - Unit of analysis is referred to as individuals in econometrics literature and subjects in statistics literature
 - Dependent variable: outcome of interest
 - Explanatory variable: other measurements
- In insurance and actuarial applications, one could think of a policyholder as an subject.

(日)

What are longitudinal and panel data?

- Model building often depends on the type of data
 - Cross-sectional data focuses on static relationship, while Time series data examines the dynamic relationship.
 - Longitudinal/panel data: a marriage of cross-sectional and time series data
 - measurements on a cross-section of subjects
 - repeated observed over time (multiple observations on each subject)
 - We follow each of *n* subjects for a maximum of $T = \max\{T_1, \ldots, T_n\}$ time periods
 - 1st subject {y₁₁, y₁₂,..., y₁₇}
 - 2nd subject $\{y_{21}, y_{22}, \dots, y_{1T_2}\}$
 - ...
 - *n*th subject $\{y_{n1}, y_{n2}, \ldots, y_{nT_n}\}$

イロト 不得 トイヨト イヨト 二日

What are longitudinal and panel data?

- Consider some applications that actuaries might face that fall into this framework
 - Personal lines insurance: y_{it} is the number of claims of a policyholder.
 - Commercial lines insurance: y_{it} is the loss ratio of a customer.
 - Insurance sales: y_{it} is the sales of an insurance agent.
 - Coverage selection: *y_{it}* is the coverage selected by the policyholder, e.g. deductible level.
 - Customer Retention: *y_{it}* is the indicator whether a policyholder purchases coverage.

イロト 不得 トイラト イラト 一日

- Control for individual heterogeneity
 - · Heterogeneity means that subjects are different and unique
 - Panel data allows us to account for the uniqueness through subject-specific parameters, such as
 - heterogeneous intercept: $y_{it} = \alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta} + \varepsilon_{it}$
 - heterogeneous slope: $y_{it} = \alpha + \mathbf{x}'_{it} \boldsymbol{\beta}_i + \varepsilon_{it}$
 - both intercept and slope: $y_{it} = \alpha_i + \mathbf{x}'_{it} \boldsymbol{\beta}_i + \varepsilon_{it}$

イロト 不得 トイラト イラト 一日

х

х

э

・白い ・ ミト・・ ミト

- Study dynamic relationship
 - In cross-sectional regression, actuaries makes inference about effect of explanatory variables on the dependence variable. It is a static relationship because there is no time element in the inference.
 - In longitudinal regression, actuaries are interested in changes over time, known as dynamic relationship.

• • = • • = •

- Efficiency and information sharing
 - Actuaries would be able to obtain more precise (efficient) estimates of parameters. Suppose observations from different years are independent, a large sample means:
 - more variability in the data and thus less collinearity among variables
 - more degrees of freedom and thus less uncertainty in estimates
 - Longitudinal data often exhibit features of clustering. By exploring and incorporating this relationship into model, actuaries would also be able to make more efficient prediction.

(日)

- Identify and measure effects that are usually not detectable in pure cross-section or pure time series data
 - Example: we are interested in the accident rate in car insurance
 - In cross-sectional data, we have $E(y_i | \mathbf{x}_i) = E(y_j | \mathbf{x}_j) = 0.5$. Two possibilities:
 - subjects *i* and *j* are from homogeneous population, both 50% chance of accident in a given year
 - subjects *i* and *j* are from heterogeneous population, *i* has accident every year and *j* doses not have accident at all
 - With longitudinal data, two groups can be separated by investigating the effect of lagged dependent variable

イロト 不得下 イヨト イヨト 二日

Outline

1 Longitudinal Data

2 Linear Mixed Effects Models

3 Generalized Linear Mixed Effects Models

Brian Hartman & Peng Shi

э

イロト イヨト イヨト イヨト

The linear mixed effects is

$$y_{it} = \mathbf{z}'_{it}\boldsymbol{\alpha}_i + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}$$

- It contains both fixed effects and random effects
- This model allows for subject-specific intercept and slopes
- The model has matrix representation

$$\mathbf{y}_i = \mathbf{Z}_i \boldsymbol{\alpha}_i + \mathbf{X}_i \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i$$

< □ > < 同 > < 回 > < 回 > < 回 >

- Sampling assumptions
 - Conditional on $\alpha_1, \ldots, \alpha_n$, $\{y_i\}$ are independent random vectors
 - $E(\mathbf{y}_i | \boldsymbol{\alpha}_i) = \mathbf{Z}_i \boldsymbol{\alpha}_i + \mathbf{X}_i \boldsymbol{\beta}$
 - $\operatorname{Var}(\boldsymbol{y}_i|\boldsymbol{\alpha}_i) = \boldsymbol{R}_i$
 - $E(\alpha_i) = \mathbf{0}$, $Var(\alpha_i) = \mathbf{D}$, and $\alpha_1, \dots, \alpha_n$ are i.i.d.
- This implies:
 - E(ε_i) = 0, Var(ε_i) = R_i. It allows for heteroscedasticity and serial correlation.
 - Subject-specific effects and the noise term are uncorrelated, i.e. $\operatorname{Cov}(\alpha_i, \varepsilon_i') = 0$
- Additional assumptions for finite sample inference
 - Conditional on $\alpha_1, \ldots, \alpha_n$, $\{y_i\}$ are normally distributed
 - {α_i} is normally distributed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

• The marginal model is:

$$E(\mathbf{y}_i) = \mathbf{X}_i \boldsymbol{\beta}$$
$$Var(\mathbf{y}_i) = \mathbf{V}_i(\boldsymbol{\tau}) = \mathbf{Z}_i \mathbf{D} \mathbf{Z}'_i + \mathbf{R}_i$$

- The linear mixed model implies the above marginal model, but not vice versa.
- Marginal model is useful when the interest is the estimation of fixed effects, while linear mixed effect model should be used when the interest in the prediction.

< □ > < 同 > < 回 > < 回 > < 回 >

- Special Cases:
 - One-way ANOVA model

$$y_{it} = \mu + \alpha_i + \varepsilon_{it}$$

• In general, error components model

$$y_{it} = \alpha_i + \mathbf{x}'_{it}\boldsymbol{\beta} + \varepsilon_{it}$$

- Key assumptions:
 - $\{\alpha_i\}$ are i.i.d with zero mean and variance σ_{α}^2
 - $\{\alpha_i\}$ and error $\{\varepsilon_{it}\}$ term are uncorrelated
 - homoscedasticity $Var(\varepsilon_{it}) = \sigma^2$
 - no serial correlation $Cov(\varepsilon_{ir}, \varepsilon_{is}) = 0$

イロト 不得 トイヨト イヨト

- Estimation
 - Fixed effects β are estimated using GLS
 - Variance components are estimated using MLE or REML
- Prediction. Suppose we wish to predict a random variable w, where E(w) = λ'β and Var(w) = σ²_w. Given β, the best linear predictor of w is (in terms of MSE)

$$w^* = oldsymbol{\lambda}'oldsymbol{eta} + \operatorname{Cov}(w, oldsymbol{y})oldsymbol{V}^{-1}(oldsymbol{y} - oldsymbol{X}oldsymbol{eta})$$

- the results do not not rely on distributional assumption
- under normality, one can show $w^* = \mathrm{E}(w|\mathbf{y})$
- One could use R package 1me4 for implementation.

イロト 不得 トイラト イラト 一日

- Consider an application of linear mixed-effects model
- Recall the response is generated by $\mathbf{y}_i = \mathbf{Z}_i \alpha_i + \mathbf{X}_i \beta + \varepsilon_i$
- We are interested in subject *i* in period *T_i* + *L* (*L* lead time units in the future)
- Two quantities of interest
 - Conditional mean $E(y_{i, T_i+L}|\alpha_i) = \mathbf{z}'_{i, T_i+L}\alpha_i + \mathbf{x}'_{i, T_i+L}\beta$
 - Future response $y_{i,T_i+L} = \mathbf{z}'_{i,T_i+L} \boldsymbol{\alpha}_i + \mathbf{x}'_{i,T_i+L} \boldsymbol{\beta} + \varepsilon_{i,T_i+L}$

イロト 不得下 イヨト イヨト 二日

• Conditional mean. The BLUP is

$$w_{BLUP} = \mathbf{x}'_{i,T_i+L} \mathbf{b}_{GLS} + \mathbf{z}'_{i,T_i+L} \mathbf{a}_{i,BLUP}$$

• Future response. The BLUP is

$$w_{BLUP} = \mathbf{x}'_{i,T_i+L} \mathbf{b}_{GLS} + \mathbf{z}'_{i,T_i+L} \mathbf{a}_{i,BLUP} + \operatorname{Cov}(\varepsilon_{i,T_i+L},\varepsilon_i) \mathbf{R}_i^{-1} \mathbf{e}_{i,BLUP}$$

• Special case when
$$m{R}_{i,st}=\sigma^2
ho^{|s-t|}$$

$$w_{BLUP} = \mathbf{x}'_{i,T_i+L} \mathbf{b}_{GLS} + \mathbf{z}'_{i,T_i+L} \mathbf{a}_{i,BLUP} + \rho^L \mathbf{e}_{iT,BLUP}$$

 Further if ρ = 0, the point prediction is the same as the case of conditional mean.

(日)

- We consider the loss data in Worker's Compensation Insurance
 - The data are from the National Council on Compensation Insurance
 - It contains losses due to permanent partial disability (see Klugman (1992))
 - 118 occupation or risk classes are observed over 7 years
- The variable of interest is Loss. Possible explanatory variables are Year and Payroll
 - We use Payroll as an offset.

< □ > < 同 > < 回 > < 回 > < 回 >

• The time series plot of Loss:

æ

イロト イヨト イヨト イヨト

• The scatter plot of Loss:

< ∃⇒

э

- We consider the following modeling strategies:
 - Pooled regression:

$$\log(Loss_{it}) = \log(Payroll_{it}) + \beta_0 + \beta_1 Year_{it} + \varepsilon_{it}$$

• Fixed effect model:

$$\log(Loss_{it}) = \log(Payroll_{it}) + \beta_{0,i} + \beta_1 Year_{it} + \varepsilon_{it}$$

• Error-component model:

$$\log(\textit{Loss}_{it}) = \log(\textit{Payroll}_{it}) + \alpha_i + \beta_0 + \beta_1 \textit{Year}_{it} + \varepsilon_{it}$$

• Random coefficient model:

$$\log(\textit{Loss}_{it}) = \log(\textit{Payroll}_{it}) + \alpha_{0,i} + \alpha_{1,i} + \beta_0 + \beta_1 \textit{Year}_{it} + \varepsilon_{it}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• <u>Goodness-of-fit statistics are:</u>

Model	df	LogLik	AIC	BIC
Pooled CS	3	-988.35	1982.69	1996.20
Fixed Effects	120	-482.00	1204.00	1744.69
Error Component	4	-720.23	1448.46	1466.48
Random Coefficient	6	-719.35	1450.70	1477.74

э

イロト イヨト イヨト イヨト

æ

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• Comparison of homogeneous and heterogeneous models:

<ロト <問ト < 目と < 目と

• Comparison of out-of-sample prediction:

Brian Hartman & Peng Shi

A B A A B A

• Hold-out sample validation statistics are:

	Pooled	FE	ErrComp	RanCoeff
MAE†	2.137	0.704	0.687	0.691
RMSE [†]	9.093	1.463	1.433	1.420
MAPE	0.685	0.517	0.507	0.498
Pearson	0.505	0.968	0.970	0.974
Spearman	0.823	0.917	0.922	0.927

[†] in millions of dollars.

э

イロト イボト イヨト イヨト

- Linear mixed effects models enhance the application of credibility theory by incorporating covariates.
- Several well-known credibility models can be viewed in the framework of linear mixed effects models.

$$y_{it} = \mathbf{z}'_{it} \boldsymbol{\alpha}_i + \mathbf{x}'_{it} \boldsymbol{\beta} + \varepsilon_{it}$$

- Bühlmann: $\mathbf{z}_{it} = \mathbf{x}_{it} = 1$, $\operatorname{Var}(\boldsymbol{\varepsilon}_i) = \sigma^2 \boldsymbol{I}_{T_i}$
- Bühlmann-Straub: $\mathbf{z}_{it} = \mathbf{x}_{it} = (1, t)'$, $\operatorname{Var}(\varepsilon_i) = \sigma^2 \operatorname{diag}(1/w_{i1}, \dots, 1/w_{iT_i})$
- Hachemeister: $\mathbf{z}_{it} = \mathbf{x}_{it} = (1, t)'$, $\operatorname{Var}(\boldsymbol{\varepsilon}_i) = \sigma^2 \mathbf{I}_{T_i}$

イロト 不得 トイラト イラト 一日

Outline

1 Longitudinal Data

2 Linear Mixed Effects Models

3 Generalized Linear Mixed Effects Models

э

イロト イヨト イヨト イヨト

- This section extends the mixed-effects models to outcomes with a distribution from the exponential family.
- Definition. The distribution of the linear exponential family is

$$f(y; \theta, \phi) = \exp\left(\frac{y\theta - b(\theta)}{\phi} + S(y, \phi)\right).$$

- y is a dependent variable and θ is the parameter of interest.
- ϕ is a scale parameter that we often will assume is known.
- $b(\theta)$ depends only on the parameter θ , not the dependent variable.
- S(y, φ) is a function of the dependent variable and the scale parameter, not the parameter θ.
- We can show that

$$\mu = \mathrm{E} \ y = b'(\theta)$$
 and $\mathrm{Var} \ y = \phi b''(\theta) = \phi V(\mu)$

where $V(\cdot)$ is known as variance function.

Linear Exponential Family of Distributions

Table: Selected Distributions of the One-Parameter Exponential Family

	Para-	Density or			
Distribution	meters	Mass Function	Components	Еy	Var y
General	θ, ϕ	$\exp\left(\frac{y\theta-b(\theta)}{\phi}+S(y,\phi)\right)$	$\theta, \phi, b(\theta), S(y, \phi)$	$b'(\theta)$	$b^{\prime\prime}(heta)\phi$
Normal	μ, σ^2	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$	$\mu, \sigma^2, \frac{\theta^2}{2}, -\left(\frac{y^2}{2\phi} + \frac{\ln(2\pi\phi)}{2}\right)$	$\theta = \mu$	$\phi=\sigma^2$
Binomal	π	$\binom{n}{y}\pi^{y}(1-\pi)^{n-y}$	$\ln\left(rac{\pi}{1-\pi} ight), 1, n \ln(1+e^{ heta}),$	$n \frac{e^{\theta}}{1+e^{\theta}}$	$n \frac{e^{\theta}}{(1+e^{\theta})^2}$
			$\ln \binom{n}{v}$	$= n\pi$	$= n\pi(1-\pi)$
Poisson	λ	$\frac{\lambda^{y}}{y!} \exp(-\lambda)$	$\ln \lambda, 1, e^{\theta}, -\ln(y!)$	$e^{ heta} = \lambda$	$e^{ heta} = \lambda$
Gamma	α, β	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} \exp(-y\beta)$	$-rac{eta}{lpha},rac{1}{lpha},-\ln(- heta),-\phi^{-1}\ln\phi$	$-\frac{1}{\theta} = \frac{\alpha}{\beta}$	$\frac{\phi}{\theta^2} = \frac{\alpha}{\beta^2}$
			$-\ln\left(\Gamma(\phi^{-1}) ight)+(\phi^{-1}-1)\ln y$		
Inverse	μ, λ	$\sqrt{\frac{\lambda}{2\pi y^3}} \exp\left(-\frac{\lambda (y-\mu)^2}{2\mu^2 y}\right)$	$-\mu^2/2, 1/\lambda, -\sqrt{-2\theta},$	$(-2\theta)^{-1/2}$	$\phi(-2\theta)^{-3/2}$
Gaussian			$ heta/(\phi y) - 0.5 \ln(\phi 2\pi y^3)$	$=\mu$	$=\frac{\mu^3}{\lambda}$

э

イロト イヨト イヨト イヨト

Variance as a Function of the Mean

Table: Variance Functions for Selected Distributions

Distribution	Variance Function $v(\mu)$
Normal	1
Bernoulli	$\mu(1-\mu)$
Poisson	μ
Gamma	μ^2
Inverse Gaussian	μ^{3}

• The choice of the variance function drives many inference properties, not the choice of the distribution.

イロト イヨト イヨト

• The generalized linear mixed-effects model is specified as:

$$y_{it}|\boldsymbol{\alpha}_{i} \sim f(y_{it}|\boldsymbol{\alpha}_{i}),$$

$$f(y_{it}|\boldsymbol{\alpha}_{i}) = \exp\left(\frac{y_{it}\theta_{it} - b(\theta_{it})}{\phi} + S(y_{it}, \phi)\right).$$

$$\boldsymbol{\alpha}_{i} \sim p(\boldsymbol{\alpha}_{i})$$

The conditional mean and variance are:

$$\mu_{it} = \mathrm{E}(y_{it}|oldsymbol{lpha}_i) = b'(oldsymbol{ heta}_{it}) \quad ext{and} \quad \mathrm{Var}(y_{it}|oldsymbol{lpha}_i) = \phi b''(oldsymbol{ heta}_{it}) = \phi V(\mu_{it})$$

• Both fixed and random effects are specified via link function:

$$g(\mu_{it}) = \mathbf{z}'_{it} \alpha_i + \mathbf{x}'_{it} \beta$$

イロト イヨト イヨト

• The marginal mean and variance are:

$$\begin{split} \mathbf{E}(y_{it}) &= \mathbf{E}(\mathbf{E}(y_{it}|\boldsymbol{\alpha}_i)) = \mathbf{E}(g^{-1}(\boldsymbol{z}_{it}'\boldsymbol{\alpha}_i + \boldsymbol{x}_{it}'\boldsymbol{\beta}))\\ \mathbf{Var}(y_{it}) &= \mathbf{Var}(\mathbf{E}(y_{it}|\boldsymbol{\alpha}_i)) + \mathbf{E}(\mathbf{Var}(y_{it}|\boldsymbol{\alpha}_i))\\ &= \mathbf{Var}(g^{-1}(\boldsymbol{z}_{it}'\boldsymbol{\alpha}_i + \boldsymbol{x}_{it}'\boldsymbol{\beta})) + \mathbf{E}(\phi V(g^{-1}(\boldsymbol{z}_{it}'\boldsymbol{\alpha}_i + \boldsymbol{x}_{it}'\boldsymbol{\beta}))) \end{split}$$

• The regression coefficients do not have a marginal interpretation, it measures the effects conditional on the random effects.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Estimation. The fixed effects parameters can be estimated using MLE:

$$I(\boldsymbol{eta}, \boldsymbol{ au}) = \prod_{i=1}^n \int \prod_{t=1}^{T_i} f(y_{it}|\boldsymbol{lpha}_i) p(\boldsymbol{lpha}_i) d\boldsymbol{lpha}.$$

- This requires approximations in the estimation.
- Only conjugate distributions lead to closed-form solution.
- Prediction. The inference of random effects α_i is via empirical Bayes.
- Alternatively, one could perform a full Bayesian approach to the mixed effects models.
- One could use R package 1me4 for implementation.

イロト 不得 トイヨト イヨト

- We consider the claim frequency in Worker's Compensation Insurance
 - The data are from the National Council on Compensation Insurance
 - Claim frequency are observed on a yearly basis (see Klugman (1992))
 - 130 occupation or risk classes are observed over 7 years
- The variable of interest is Count. Possible explanatory variables are Year and Payroll
 - We use Payroll as an offset.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- 4 回 ト 4 ヨ ト 4 ヨ ト

• The scatter plot of Count:

・ 何 ト ・ ヨ ト ・ ヨ ト

• We consider the Poisson regression model with a log link function:

 $Count_{it} \sim Poisson(\lambda_{it})$

Pooled regression:

$$\lambda_{it} = Payroll_{it} \exp(\beta_0 + \beta_1 Year_{it})$$

Fixed effects model:

$$\lambda_{it} = Payroll_{it} \exp(\beta_{0,i} + \beta_1 Year_{it})$$

Random intercept model:

$$\lambda_{it} = Payroll_{it} \exp(\alpha_i + \beta_0 + \beta_1 Year_{it})$$

• Random intercept/slope model:

$$\lambda_{it} = Payroll_{it} \exp(\alpha_{0,i} + \alpha_{1,i} Year_{it} + \beta_0 + \beta_1 Year_{it})$$

イロン イヨン イヨン

<u>Goodness-of-fit statistics are:</u>

Model	df	LogLik	AIC	BIC
Pooled CS	2	-7449.92	14903.84	14913.13
Fixed Effects	131	-1911.19	4084.37	4692.54
Random Intercept	3	-2197.32	4400.63	4414.56
Random Coefficient	5	-2160.44	4330.87	4354.08

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

• Shrinkage effects:

2

(本語) とうき とうせい

• Comparison of homogeneous and heterogeneous models:

A D N A B N A B N A B N

• Comparison of out-of-sample prediction:

Brian Hartman & Peng Shi

(B)

Hold-out sample validation statistics are:

	Pooled	FE	RanInt	RanCoeff
MAE	13.281	3.885	3.871	4.443
RMSE	1.585	0.842	0.742	0.761
MAPE	41.541	6.589	6.586	8.423
Pearson	0.403	0.967	0.967	0.943
Spearman	0.821	0.936	0.938	0.945

э

イロト イヨト イヨト

Thank you for your attention!

э

<ロト <回ト < 回ト < 回ト -

Klugman, S. A. (1992). Bayesian Statistics in Actuarial Science: with Emphasis on Credibility. Springer.

э

イロト イヨト イヨト イヨト