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A Hydro-EVT Approach to Flood Insurance 

Pricing 

 

Executive Summary  

Over the past decades, the world has witnessed more and more flood events that cause enormous 

amounts of economic losses. Such catastrophic floodings have been increasing in both frequency and 

intensity at alarming rates. It is now imperative to investigate the risk more closely and work towards 

better risk mitigation measures and risk sharing mechanisms. The goal of this research is to contribute to 

the effort by providing a modeling framework for assessing both the inundation risk of properties and their 

expected flood damages, and thereby laying a foundation for flood insurance pricing. 

To this end, we propose to use a combination of extreme value statistics and hydrology models to assess 

properties’ inundation probabilities and a mixed (generalized) beta model to model insurance claim losses. 

We use a regional analysis of flood risk to introduce a hierarchical model for assessing the inundation 

probability, consisting of an extreme value model that produces a heavy-tailed distribution for the annual 

peak streamflow at a nearby gage and a hydrologic model that produces inundation levels for various 

streamflow rates and across various locations. The hydrologic analysis produces a probabilistic classification 

model, which can be considered as a conditional relation between the inundation probability and 

geological and hydrological variables. Together with the streamflow model, this enables us to evaluate the 

inundation probability. 

Furthermore, to investigate insurance losses to flood risk, we study over 50 years of claims data from the 

National Flood Insurance Program with 2.5 million records. We identify the property characteristics that 

predict flood damages for inundated properties and derive a mixed beta model that links the conditional 

property damage, conditional on the property’s inundation, with relevant property characteristics. 
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Section 1: Introduction 

1.1 FLOOD RISK AND FLOOD INSURANCE 

The warming globe has undergone a series of changes in climate and environment that have rendered 

floods a growing risk worldwide. The climate and environmental changes have given rise to, among others, 

extreme precipitations, rising sea levels, and an intensifying global water cycle, each of which can 

contribute to extreme flooding (Brunner et al. (2021) and Masson-Delmotte et al. (2021)). 

In recent years, devastating floods have been occurring with an increasing frequency and have taken heavy 

economic tolls. In fact, during the past decades, for every few years, there would be some major flood 

events that would cause catastrophic losses. According to Federal Emergency Management Agency 

(FEMA)’s National Flood Insurance Program (NFIP), insured losses to significant flood events were $23.6 

billion in 2005, $11.0 billion in 2012, and $11.5 billion in 20171. 

Moreover, as is shown in Figure 1 below, insured losses due to floods in the U.S have now become much 

more substantial and more volatile than they were just two decades ago. As the climate trends toward 

more frequent extreme hydrologic events for many parts of the U.S. (Stocker et al. (2013) and Hirsch and 

Archfield (2015)), floods will continue to be a major risk for property owners. 

Figure 1 

FLOOD INSURANCE PAYMENTS (IN BILLIONS) BY THE NFIP DURING THE YEARS 1978–2020. THE AMOUNTS 

ARE INFLATION ADJUSTED TO 2020 DOLLARS USING THE CPI DATA FROM THE U.S. BUREAU OF LABOR 

STATISTICS. 

 

Data Source: Federal Emergency Management Agency (FEMA) and U.S. Bureau of Labor Statistics (BLS) 

Due to the potentially high flood risk many property owners must face, it is extremely important that 

affordable flood insurance is available in the market.  In an effort to improve flood insurance availability 

and affordability to the general public, FEMA created the NFIP in 1968, and for a long time, the NFIP has 

been the only marketplace for property owners to purchase flood insurance. It has so far sold millions of 

 

 

1 All numbers are in 2020 dollars, adjusted to inflation using CPI data from U.S. Bureau of Labor Statistics. 
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flood insurance policies to Americans and has contributed greatly to the growth of the flood insurance 

market. 

On the other hand, due to the more frequent and more devastating floods over the last two decades, the 

NFIP has paid billions more in reimbursement than the premium collected and is currently deep in debt. 

Apparently, for many NFIP policies, the rates are not actuarially fair and are likely heavily subsidized. 

Realizing that the NFIP has failed to self-sustain as it hopes to, Congress has been planning to reform the 

program in recent years. Now the program relies on Congress’s periodic authorization to remain 

functioning, and, at the time of writing, the authorization is set to expire on September 30, 2022.  

This unclear future of the NFIP makes developing and establishing a sustainable private flood insurance 

market extremely important. The private market may not replace the NFIP anytime soon but will likely 

coexist with NFIP by providing extra coverage capacity and, for individual policies, different levels of 

coverage from the limited coverages by NFIP. The private flood insurance market is already growing, but, 

despite its importance and the various promotional measures from the government2, it is still 

underdeveloped, insuring roughly 5%3 of primary residential policies. 

Obviously, the development of a private market hinges on insurers’ ability to better understand and price 

the flood risk. In this research, we will take a closer look at flood risk modeling and flood insurance pricing. 

1.2 STANDARD FLOOD INSURANCE POLICY 

The flood insurance we shall study has coverages similar to those of a typical NFIP policy. In this section, we 

briefly describe the coverages of an NFIP Standard Flood Insurance Policy (SFIP).  

First, under an SFIP, a flood must reach a certain threshold for it to be covered. Specifically, a covered flood 

is defined by the NFIP as a general and temporary condition of partial or complete inundation of two or 

more acres of normally dry land area or of two or more properties. 

SFIP coverages, limitations, and exclusions are specified using three forms: the Dwelling Form, the General 

Property Form, and the Residential Condominium Building Association Policy (RCBAP) Form. While the 

General Property Form and RCBAP Form are used for covering residential buildings with five or more units,  

residential condominium association buildings, and non-residential buildings, the Dwelling Form is used for 

covering single-family homes, two-to-four families, residential condominium buildings, and residential 

townhouses/rowhouses. We shall focus on the coverages by the Dwelling Form, which is used by the 

majority of the NFIP policies. 

The coverages under the Dwelling Form include the building property (Coverage A), the personal property 

(Coverage B), other coverages (Coverage C), and increased cost of compliance (ICC, Coverage D). Each 

coverage is subject to a max coverage limit, and so is the combined coverage. For example, for single family 

homes, the coverage limits are $250,000, $100,000, and $30,000 for building, content, and ICC, 

respectively. Claims on ICC are handled separately from those on the building and content but the 

combined payment for the three types of claims cannot exceed $250,000. 

Despite being a mandatory part of most policies since 1997 and automatically included in new and 

renewed NFIP policies, the ICC coverage is used less than the other two. The vast majority of ICC claims 

 

 

2 The efforts include, among others, reforming the NFIP (e.g., by introducing Risk Rating 2.0 in October 2021) to deliver rates that are 
actuarially fair—private insurers are not willing to compete with a government program that offers subsidized rates—and publishing NFIP data 
to facilitate research on flood risk. 
3 See https://www.forbes.com/advisor/homeowners-insurance/flood-insurance/.  

https://www.forbes.com/advisor/homeowners-insurance/flood-insurance/
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qualify because they satisfy the substantial damage criterion—although repetitive loss properties4 are also 

eligible for ICC funds—meaning the flood damage is more than 50% of the property value. Overall, only a 

very small portion of claims satisfy one or both of the two criteria. Among the over 2 million single-family-

home claim records in our dataset, only 1.8% of them include ICC claims.5 For our claims analysis in Chapter 

5, we shall study the claims on building coverage, which are by far the largest component. 

Last, we point out that almost all NFIP policies have a one-year policy term, with some exceptions being 

Group Insurance Policies, which have a three-year term. Therefore, we shall also consider one-year policies 

and, for this reason, the inundation probability we calculate in Chapter 4 will be one-year inundation 

probability. 

1.3 RESEARCH GOAL AND METHOD 

In this study, we propose an integrated framework for assessing properties’ flood risk and pricing their 

flood insurance coverage, using extreme value theory (EVT) and hydraulic modeling. 

We first point out that existing research on flood risk usually employs distinct methodologies, such as 

extreme value statistics, machine learning, and large model ensembles, without investigating the possibility 

of combining them. Our study is the first to combine hydrologic engineering with extreme value statistics to 

create an ensemble model for flood risk modeling. A similar idea of integrating extreme value statistics with 

large model ensembles has been explored in the literature to investigate weather events; see Sippel et al. 

(2015). Using temperature data and rainfall data, Sippel et al. (2015) show that a combination of extreme 

value statistics and ensemble simulations can inform each other and improve overall model performance, 

especially in tail assessments. As the authors point out, the reasons for the improvement are that the 

ensemble simulations may help estimate the EVT parameters for samples of small size, and that the 

utilization of EVT allows one to significantly reduce the number of ensemble simulations needed, which 

could otherwise be prohibitively large for tail assessments. This is precisely our motivation of combining 

EVT with hydrological models for flood risk modeling. 

In the meantime, we point out that although there is extensive research in flood risk modeling, research on 

how to translate the understanding of flood risk to flood insurance pricing has been rather limited in the 

academic literature. Some recent research in the insurance and actuarial research literature are Czajkowski 

et al. (2012), Kousky et al. (2017), Furman et al. (2019), and Boudreault et al. (2020). Our research is a 

contribution to this strand of literature. 

In this research, we will treat flood frequency risk and property flood damage risk separately, using 

different models. It is natural to calculate the pure premium of flood insurance (with one year coverage) as 

the product of annual inundation probability and the conditional damage to the building6. The calculation 

of flood insurance premium will be straightforward once both of the two components are figured out. 

To this end, we use the proposed ensemble model that combines extreme value statistics and hydrology 

methods for regional analysis of flooding probability. The extreme value model produces a distribution for 

the annual peak streamflow at a nearby gage, which captures the heavy tail of the streamflow. The 

hydrologic analysis, together with the probabilistic classification results in a conditional relation between 

 

 

4 Defined as properties that were damaged by floods two times in the past 10 years, and the cost of repairing the flood damage averages at 
least 25% percent of the property value at the time of each flood. 
5 See, e.g., FEMA (2017) and Kousky and Lingle (2017) for more details about ICC coverage. 
6 Although an NFIP policy coverages not only building damage, but also personal belongings, increased cost of compliance, etc., we focus on 
building damage only. The methodology should be easily extendable for other coverages. 
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the inundation probability and hydrologic variables, i.e., the streamflow and the property height above 

nearest drainage. Together with the streamflow model, this gives us the annual inundation probability. 

Moreover, we will study over 50 years of claims data from the National Flood Insurance Program with 2.5 

million records to investigate insurance losses to flood risk. This leads to a model for the insurance loss 

given that the property’s inundation. Again, the two components above used together will give us a 

framework for flood risk pricing. 

1.4 PREVIEW OF RESULTS 

In this section, we preview pricing results that we will be able to obtain with our pricing models using two 

examples. Specifically, we consider the prices of one-year flood insurance coverage of two single-family 

homes located in Bellefonte, Pennsylvania. 

As the first example, we consider a property located in Bellefonte, PA, at latitude 40.91 and longitude -

77.78. Using the Z-estimate on Zillow7, we estimate that its property value is $145,000. Since the property 

value is estimated to be below the NFIP single-family home coverage limit of $250,000, we assume that the 

flood insurance coverage limit is also below the limit and chosen as the estimated property value of 

$145,000. According to FEMA map8 and Zillow, this property is located in a high-risk zone, has two floors 

and no basement, and was built 112 years ago. Its height above nearest drainage is 13.53 feet. The 

estimated annual inundation probability is 2.86%. Moreover, based on Model III in Section 5.3 and a 

median property value of $191,600 for this census tract, we estimate the building damage given 

inundation—assuming no community rating credits—is $38,556. Thus, the estimated annual premium for 

coverage of building damage is $1,102. 

As the second example, we consider another property in Bellefonte, PA, at latitude 40.92 and longitude -

77.78. We obtain the property characteristics in a similar way to the above. This property has an estimated 

value of $98,400—which also assume is the coverage limit—not located in a high-risk zone, has two floors 

and a finished basement, and was built 162 years ago. Its height above nearest drainage is 7.92 feet. The 

estimated annual inundation probability is 11.2%. Again, based on Model III in Section 5.3 and the median 

property value of $191,600 and assuming no community rating credits, we estimate the building damage 

given inundation is $21,488. Hence, the estimated annual premium for coverage of building damage is 

$2,4049. 

As a side note, the rates calculated here do not account for certain provisions set in statute, such as the 

cross-subsidies between policyholders,10 how the subsidies will be phased out, and the rate increase limit.11 

Below we shall elaborate on our models that we employ to produce these pricing results. The rest of the 

report consists of six sections. Sections 2, 3 and 4 focus on assessing the inundation probability, where 

 

 

7 See https://www.zillow.com/. 
8 See https://msc.fema.gov/portal/home. 
9 The rates seem quite high, but for comparison, some property owners in the same area pay even higher rates. As examples, according to 
FEMA policy data, one policy covering a single-family home in Bellefonte, PA, with building coverage limit $17,7600, effective date July 08, 
2020, has an annual policy premium of $5,296 and policy cost of $6,549—The policy cost includes policy premium, reserve fund assessment, 
and federal policy fee, and Homeowner Flood Insurance Affordability Act (HFIAA) surcharge—and another policy, also covering a single-family 
home in Bellefonte, PA, with building coverage limit $20,2000, effective date June 22, 2020, has an annual policy premium of $6,760 and policy 
cost of $8,052. 
10 Subsidies are provided by NFIP to, e.g., pre-FIRM buildings, newly mapped buildings, and grandfathered buildings. These subsidies are set to 
phase out gradually under Risk Rating 2.0. See, e.g., Horn (2021) for related discussions. 
11 For example, under the current statute, the premium rate for individual primary residence policies cannot increase by more than 18% per 
year, and that for other properties such as non-primary residences and business properties cannot increase by more than 25% per year. 
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Section 2 introduces the EVT method for modeling peak streamflow, Section 3 describes the hydrological 

variables used for assessing conditional inundation probability, Section 4 derives both the unconditional 

and unconditional inundation probabilities. Section 5 discusses claims modeling, i.e., models for expected 

flood damage given that the property is inundated. Section 6 consists of acknowledgements. The 

Appendices contain a review of EVT, a description of machine learning methods for predicting streamflow 

for ungauged basins, and some additional discussions on our claims models.  
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Section 2: Extreme Value Modeling of Peak Streamflow 

Our approach to assessing a property’s inundation probability is built upon two components: a model of 

peak streamflow for the water source nearby, which we shall establish using extreme value theory (EVT), 

and regional analysis of the conditional relation, conditional on the peak flow, between the inundation 

probability and hydrologic variables. We now describe each of the two components and the underlying 

models, starting with extreme value modeling of peak streamflow. 

2.1 EVT 

EVT has been applied extensively to both actuarial science and hydrology. For example, in actuarial science, 

it has found applications in developing life tables, modeling large losses, extreme mortality events, natural 

catastrophes, extreme weather events, as well as their tail dependences; see, e.g., McNeil (1997), Watts et 

al. (2006), Zimbidis et al. (2007), Gbari et al. (2017), Tang and Yuan (2019), and Huang et al. (2020). 

Monographic treatments on extreme value statistics can be found in, e.g., Coles et al. (2001), Beirlant et al. 

(2004), and Embrechts et al. (2013). In hydrology, it has been used to model, e.g., extreme precipitation, 

river peak streamflow, inundation risk, and flood damage. See, e.g., Smith (1987), Wang (1991), Katz et al. 

(2002), El Adlouni et al. (2007), Williams et al. (2007), Villarini and Smith (2010), Agilan and Umamahesh 

(2015), Lombardo et al. (2019), Curceac et al. (2020), Lee et al. (2020), and Tabari (2021). 

Extreme value analysis of flood risk is usually performed using the Annual Maximum Series (AMS) approach 

or the Partial Duration Series (PDS) approach, which correspond, respectively, to the Block Maximum (BM) 

method and Peaks over Threshold (POT) method in the statistics literature. The former has its root in the 

Fisher–Tippett–Gnedenko theorem and the latter in the Pickands-Balkema-de Haan theorem. We provide a 

brief review of EVT in Appendix A. 

Our purpose is to utilize EVT described in Appendix A to model peak flow and then estimate inundation 

probabilities. Specifically, in our pricing model, we aim at a relation between properties’ inundation 

probabilities and hydrologic variables. The relation will be a conditional relation derived from regional 

analysis and takes the peak flow as an input. In the end, this conditional relation coupled with EVT model 

for peak flow enables us to estimate the inundation probabilities. 

In the following section, we demonstrate how EVT can be applied to model peak discharge at a gage in 

Spring Creek near Axemann, PA. This will later serve as a component of our pricing model in our case study. 

2.2 MODELING PEAK DISCHARGE FOR SPRING CREEK 

Based on over 80 years (from 1940 to 2022) of data on daily mean discharge collected for USGS gage 

01546500, Spring Creek near Axemann, PA, we model the distribution of the annual peak of daily mean 

flows at the gage.12 We point out that we choose to model annual, rather than monthly or daily, peak flow 

out of the following reasons: 

• The BM method requires the block size to be relatively large so that the limiting distribution can 

serve as a good approximation. Annual blocks can be understood as blocks of size 365 and thus 

are reasonably large. 

 

 

12 The code and data for implementing the extreme value modeling are available for download from the SOA web page that contains this 
report. 
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• The flood insurance policies we shall consider are of one-year term and, as a result, will need 

annual inundation probability. Although deriving annual inundation probabilities from, e.g., 

monthly peak flows is certainly feasible, deriving that from peak flows with matched frequency is 

more convenient. 

• The thinning resulting from the use of annual maxima as opposed to monthly/daily maxima 

reduces serial dependence among the data. 

• The usual concern of data scarcity with the annual maxima method discarding many observations 

is less worrisome since we have more than 80 years of data.  

Figure 2 presents the discharge rate data, where the left graph shows the daily mean flow rates, in cubic 

feet per second (cfs), from October 1, 1940, to April 18, 2022, and the right graph shows the annual 

maximal flow rates from water-year (WY) 1941 to 2021. Here, we follow USGS’s definition of water-year, 

which is the period from October of the previous calendar year to September of the current year. We 

exclude the 2022 WY data as we only have partial-year observations. 

Figure 2 

STREAMFLOW (CUBIC FEET PER SECOND) AT GAGE 01546500, SPRING CREEK NEAR AXEMANN, PA, FROM 

1940 TO 2022. THE LEFT GRAPH SHOWS THE DAILY MEAN FLOW AND THE RIGHT GRAPH SHOWS THE 

ANNUAL MAXIMA. 

 

Data Source: United States Geological Survey (USGS) 

Visual inspection of the data reveals that some observations of flow rates are extremely large as compared 

to others, motivating a model with heavy tail for the distribution of annual maximum flow rate. The nature 

of the observations, being maxima of blocks of observations, motivates the use of GEV. As such, we 

estimate a GEV distribution for the annual peak flow. Using maximum likelihood estimation (MLE), we find 

the estimates of the parameters 𝜇, 𝜎, and 𝜉 are, respectively,  

𝜇̂ = 421,    𝜎̂ = 221,    𝑎𝑛𝑑    𝜉 = 0.22, 

with corresponding standard errors of, respectively, 27.9, 22.2, and 0.09. 

An estimated shape parameter of 0.22 indicates that the annual peak flow is indeed heavy tailed. 

Obviously, annual peak flows at different gages may have distinct tails and therefore their shape 

parameters may be different. Although estimates with very distinct values have been obtained by some 

researchers—for example, Smith (1987) estimated, using records up to 1986, that the shape parameter of 
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Potomac River annual peak flow is 0.42—our estimate of 0.22 is consistent with estimates for some rivers. 

For example, for Potomac River (with more data than used by Smith (1987)), the shape parameter is 

estimated as 0.19, and for Salt River, estimated as 0.28 (Katz et al. 2002). 

Moreover, we also perform formal hypothesis testing regarding the heavy-tailedness of the peak flow by 

considering 

• 𝐻0: the annual maximum peak flow follows a GEV distribution with shape parameter 𝜉 = 0; i.e., a 

Gumbel distribution, versus 

• 𝐻1: the annual maximum peak flow follows a GEV distribution with shape parameter 𝜉 ∈ ℝ. 

This can be easily done with a likelihood ratio test. The maximized log-likelihood is obtained as 𝑙0 =

−580.4 under 𝐻0 and as 𝑙1 = −575.2 under 𝐻1. The likelihood ratio test statistics is given by  

−2(𝑙0 − 𝑙1) = 10.4 

and is large compared to the values of a chi-squared random variable with degree of freedom 1, leading to 

a p-value of 0.1%. This confirms that the annual peak flow at the gage is heavy tailed. 

Figure 3 

DIAGNOSTICS GRAPHS FOR THE GEV FITTING. THE TOP LEFT IS A P-P PLOT, TOP RIGHT IS A Q-Q PLOT, 

BOTTOM LEFT IS A COMPARISON BETWEEN THE EMPIRICAL DENSITY, OBTAINED WITH A BANDWIDTH OF 

84.78, AND THE MODELED DENSITY, AND BOTTOM RIGHT SHOWS THE PREDICTED LEVELS FOR VARIOUS 

RETURN PERIODS. 

 

Data Source: Author’s calculation 
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We present graphical diagnostics in Figure 3 to examine the goodness of fit using the GEV distribution. The 

points largely falling along the diagonals of the P-P plot (Figure 3, top left) and the Q-Q plot (Figure 3, top 

right) and the alignment between the empirical and modeled densities (Figure 3, bottom left) suggest that 

the GEV distribution is indeed a good fit to the data. Also presented in Figure 3  (bottom right) is a plot of 

the return levels for return periods ranging from 1 year to 1000 years. The point estimates of 20-year, 100-

year, and 500-year return levels are 1,342 cfs, 2,164 cfs, and 3,318 cfs, respectively.  Obviously, estimates 

of longer return periods mean more uncertainty with prediction and lead to wider interval estimates. 

We note that in our estimation procedure, we have omitted the temporal dependence among the 

observations. This is less of a problem when the use of WY maxima thins the data and reduces serial 

dependence. In general, statistical inference for extreme values presents some challenges when there is 

serial dependence. For example, for likelihood-based inference, the impact of dependence on the 

likelihood function is unclear and so there may be substantial model risk in specifying the likelihood 

function. In practice, methods such as decluttering—that is, identifying the clusters of extremes and using 

observations across different clusters that can be roughly considered independent for statistical 

inference—have been widely used, although that could mean subjective determination of clusters and 

discard of useful information. 

In addition, our model does not stress the possible nonstationary induced by climate change. We have used 

a simple stationary model for the annual peak flow since the data exhibit reasonable stationarity. Visual 

inspection reveals no trend over the years. Despite the evidence supporting an increasing trend in some 

closely related hydrometeorological variables, such as extreme precipitation, and an increased hydrological 

cycle, peak flows do not seem to exhibit similar increasing trends, at least not across the board. Analysis of 

peak flows for different rivers has led to different conclusions. See, e.g., Katz et al. (2002) for a summary of 

some research findings on peak flow trends. 

Furthermore, as some authors have pointed out, despite the profound changes that have occurred to 

drainage basins throughout the U.S., proving the demise of stationarity of flood peaks has been a 

challenge. See, e.g., Villarini et al. (2009), who conclude that, although a statistically significant change 

point was detected in the series they analyzed, overall, no monotonic temporal patterns of the annual 

maximum instantaneous peak discharge were detected from the series. 

To formally test the temporal trend of the peak flows at gage 01546500, we first estimate a GEV 

distribution with linear location function; that is, the location parameter of the GEV distribution is assumed 

to be 𝜇(𝑡) = 𝜇0 + 𝜇1(𝑡 − 1941), where 𝑡 is in years. The MLEs of the parameters 𝜇0, 𝜇1, 𝜎, and 𝜉 are 

found to be, respectively,  

𝜇0̂ = 413,    𝜇1̂ = 0.32,    𝜎̂ = 223,    𝑎𝑛𝑑    𝜉 = 0.21, 

with corresponding standard errors of, respectively, 47.5, 0.95, 22.6, and 0.09. The large standard error of 

𝜇1̂ as compared to the estimated value indicates that the trend is not significant. This can be confirmed 

with the following hypothesis test: 

• 𝐻0: the location parameter of the GEV distribution of the annual peak flow is a constant; versus 

• 𝐻1: the location parameter of the GEV distribution of the annual peak flow is a linear function of 

time, with 𝜇(𝑡) = 𝜇0 + 𝜇1(𝑡 − 1941), 𝜇1 ≠ 0. 

Again, this can be performed with a likelihood ratio test. The maximized log-likelihood is obtained as 𝑙0 =

−575.23 under 𝐻0 and as 𝑙1 = −575.15 under 𝐻1. The likelihood ratio test statistics is given by  
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−2(𝑙0 − 𝑙1) = 0.16. 

With a test statistic following a chi-squared distribution with degree of freedom 1, this leads to a p-value of 

0.70, meaning that there is no evidence that the annual peak flows at gage 01546500 exhibits a temporal 

trend. Of course, conclusions for different regional analyses may be different. 

Note that although models with trends in other parameters and tests about other trends of the GEV 

parameters are possible, it makes intuitive sense and is customary in the literature to focus on the trend in 

the location parameter. 

Lastly, we point out that although this is only one example of regional analysis of peak flow, for Spring 

Creek near Axemann, PA, regional analysis for other areas can be performed easily given the ample data 

available through USGS. Additionally, for ungagged locations, where there are no gages nearby, streamflow 

data may be generated using machine learning algorithms; see Appendix B. In some cases, the properties 

to be underwritten may be exposed to flood risks from multiple drainages along one or more river lines. 

Regional analysis can be tweaked and muti-dimensional or infinite-dimensional EVT (such as multivariate 

EVT and max-stable processes) can be applied to account for the interactions between the risks from the 

multiple drainages. The caveat is that, although deterministic numerical methods forecast large-scale 

pattern better, there are many statistical modeling/learning tools at our disposal for regional analysis and 

much finer characterization can be achieved. One implicit assumption for regional analysis to be useful or 

feasible at all, however, is that some level of homogeneity exists within a region or across regions. For 

example, when analyzing the tails of peak flows for multiple regions, it is customary to assume that the 

location and shape parameters vary spatially but the shape parameter is fixed across the regions. Further 

exploration along this direction is outside the scope of this report. 
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Section 3: Spring Creek Inundation Modeling 

3.1 OVERVIEW 

This section describes how we model inundation extent using observed discharge data and a well-

established, off-the-shelf hydraulic model (HEC-RAS), allowing statistical analysis of flooding depth. This is a 

reliable procedure that depends on the availability of nearby streamflow gauges with long-term daily 

streamflow records. However, in places without such data (ungauged locations), we have run hydrologic 

models (and perhaps, most recently, machine-learning-based models) that can be used to provide 

alternative estimates. For readers without much background in hydrologic and hydraulic modeling, 

Appendix B provides the background information, discussion about recent progress including machine 

learning models, and an example for the Susquehanna River basin. 

The main goal here is to demonstrate how discharge can be converted into inundation extent and relate it 

to a concept called height above nearest drainage (HAND). The case study is Bellefonte in the U.S. state of 

Pennsylvania, an area that has the potential to be flooded with varying frequency. Spring Creek is one of 

the tributaries of the Susquehanna River which passes through Bellefonte, and the residences in the vicinity 

of this river are under flood risk. The study area covers approximately a 3-mile reach of Spring Creek River 

that goes through Bellefonte as shown in Figure 4.  

Figure 4  

STUDY AREA (CIRCLED IN BLUE) IN BELLEFONTE, PA, USA. 

 
 

This study consists of the following steps: 

1. Finding the nearest streamflow gage as upstream inflow to the Bellefonte municipality area 

2. Downloading the digital elevation model (DEM) file for the study area  

3. Creating the mesh-grids for modeling and performing the HEC-RAS simulations 

4. Calculating the flooded area for different flow rates 

5. Locating the residence areas under the flood  

6. Extracting HAND raster map for the area for statistical analysis 
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3.2 STREAMFLOW GAGE 

We obtained daily historical discharge data from streamflow gages in the vicinity of the study area. Gages 

01547100, 01546500, and 01546400 are the stream gages with daily observed data that are supported by 

the U.S. Geological Survey (USGS 2016) and Pennsylvania Department of Environmental Protection (Figure 

5). The nearest streamflow gage, 01546500, was selected to provide the upstream inflow conditions to the 

model. The USGS website provides the following information for this station: 

• STATION: 01546500 SPRING CREEK NEAR AXEMANN, PA 

• LOCATION: Lat 40`53'23", long 77`47'40", Centre County, Hydrologic Unit 02050204, on right bank 

at upstream side of bridge on SR 3001, 1.6 mi west of Axemann, 1.8 mi southwest of Bellefonte, 

and 2.5 mi upstream from Logan Branch. 

• DRAINAGE AREA: 87.2 square miles. 

• PERIOD OF RECORD: October 1940 to current year. 

• GAGE: Water-stage recorder and crest-stage gage. Datum of gage is 788.81 ft above National 

Geodetic Vertical Datum of 1929. Prior to Nov. 19, 1940, non-recording gage at same site and 

datum. Non-recording gage Mar. 6 to Sept. 30, 1995. 

 

Figure 5 

STREAMFLOW GAGES IN THE VICINITY OF BELLEFONTE. 

3.3 DIGITAL ELEVATION MODELS (DEM) FILE 

A DEM file is a representation of topography excluding trees, buildings, and other objects on the surface, 

which can be used for flood modeling. DEM files are generally rasters that provide the elevation as discrete 

values on a grid. In this study, we used a 10-meter (1/9 arc-sec) resolution DEM to be used in HEC-RAS for 

flood modeling, which was downloaded from the USGS National Map (USGS, 2022). 

3.4 FLOOD MODELING 

This model demonstrates the flooded areas under different flood frequencies in the study domain using 

version 6.1 of Hydrologic Engineering Center-River Analysis System (HEC-RAS), a classical and widely 

employed flood inundation modeling software. We created a 2D mesh-grids (5 meter by 5 meter) along the 
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river starting from gage 01546500 and ending at a position downstream of Bellefonte (Figure 6). This grid is 

refined and helps to improve the model’s accuracy close to the river.  

We defined the upstream condition as a constant flow hydrograph, which changes for different scenarios 

to represent the different flood scenarios. For the downstream boundary, the flow condition was set to the 

normal depth. 

Figure 6 

RIVER BOUNDARIES AND 2D MESH-GRID IN THE STUDY DOMAIN. 

3.5 FLOOD AREAS FOR DIFFERENT SCENARIOS 

In the last section, the base of the hydraulic model was created. We connected HEC-RAS model to Python 

so as to run it with multiple flood scenarios, and used the pyHMT2D package (Liu, 2022) and the examples 

in it to automatically run HEC-RAS for different scenarios. We saved the results, flooded area for each 

scenario, in raster TIFF files for water surface elevation (WSE) and flood depth. The resolution of these 

raster files is 10 meters by 10 meters.  

According to a USGS report (Roland & Stuckey, 2008), the streamflow values for different recurrence 

intervals are provided for USGS stream gages as well as gage 01546500. We ran the model for flow rates 

ranging from 20 cubic meter per second (cms) to 400 cms (Table 1):  

Table 1 

FLOOD SCENARIOS MODELED FOR GAGE 01546500. 

Scenario Flow rates (cms)  Recurrence interval13 
1  20  2-year 

2  37  5-year 

3  40  — 

4  55  10-year 

5  60  — 

 

 

13 These are recurrence levels as reported by Roland and Stuckey (2008) and may be different from those derived from the EVT model we used 
in Section 3. 
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6  80  — 

7  100  — 

8  118  50-year 

9  120  — 

10  140  — 

11  161  100-year 

12  200  — 

13  250  — 

14  318  500-year 

15  400  — 

3.6 RESIDENTIAL AREAS 

We identified residential areas based on satellite maps of Bellefonte, which excluded, for example, parks 

and streets (Figure 7).  

Figure 7  

RESIDENTIAL AREA IN BELLEFONTE CLOSE TO SPRING CREEK. 

 

The overlaps between these polygons and water depth raster files will demonstrate the risk to the 

residential area. The resolution of the result is 10 meters by 10 meters. 

3.7 CALCULATING HAND 

Height Above Nearest Drainage (HAND) describes the vertical distance between a location (pixel in raster 

DEM file) on a map and its nearest stream. First, flow directions and accumulations were calculated based 

on the DEM to get flow paths in the study area. This analysis was done in QGIS (an open-source Geographic 

Information System software). The next step was to calculate the sub-catchments of each river pixel, which 

was done using the sub-catchment toolbox in QGIS (Figure 8-a and b).  Then, the elevation of the drainage 

was calculated using the minimum elevation in each zone. The last step was to subtract the DEM value 

from the elevation of the drainage (Figure 8-c). 
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Figure 8 

HAND CALCULATION GENERAL WORKFLOW. 

 

The HAND calculation result for Bellefonte area was a raster TIFF file with a 10-meter by 10-meter 

resolution (Figure 9). 

Figure 9 

HAND MAP FOR BELLEFONTE. 

 

3.8 INUNDATION MODELING RESULTS 

We ran the model for 15 flood scenarios, corresponding to different recurrence intervals (Table 1). Table 2 

describes the overall results for the number of pixels (each 10 meter by 10 meter) under the flood and the 

average water depth in the residential area: 

Table 2 

RESULTS FOR DIFFERENT FLOOD SCENARIOS. 

   
Scenario Flow estimates (cms) Number of pixels in 

residence area under flood 
Average water depth among the 
flooded residential pixels (meter) 

1 20 484 0.2018 

2 37 688 0.2991 

3 40 725 0.3162 

4 55 844 0.3772 

5 60 883 0.4005 

6 80 1002 0.4903 
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7 100 1101 0.5666 

8 118 1146 0.6408 

9 120 1162 0.6443 

10 140 1233 0.7021 

11 161 1279 0.7698 

12 200 1388 0.8645 

13 250 1467 0.9919 

14 318 1567 1.2067 

15 400 1681 1.2924 

 

The depth maps below show the inundation areas and depths for flood magnitudes of 55, 118, and 161 

cms. Again, the recurrence level of 10-year, 50-year, and 100-year are as calculated by Roland and Stuckey 

(2008). Clearly, the flooded area increases with higher-magnitude floods (Figures 10 and 11): 

Figure 10 

FLOODED AREA FOR 10, 50, AND 100-YEAR RECURRENCE INTERVALS. 

 

Figure 11 

HOW FLOOD AREA INCREASES WHEN THE FLOW INCREASES. 

 

As we mentioned before, Figures 10 and 11 only illustrate the total flooded area. In order to show the 

residential area under the flood, we cropped the flood map for the residential area. The simulated data will 

be used for further flood probability assessment in the next section. 
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Section 4: Inundation Probability Assessment 

4.1 PROBABILISTIC CLASSIFCIATION OF INUNDATION 

The first step of our regional analysis led to a distribution of annual peak streamflow at a nearby gauge 

(Section 2). Our second step is to derive a relation that, given the peak streamflow rate, will 

probabilistically classify whether each property in the region will be inundated in a year, based on the 

inundation extent data generated by HEC-RAS (Section 3). 

The data contain records for 1,681 locations, including their longitudes, latitudes, and HANDs, near Spring 

Creek around Axemann/Bellefonte of Pennsylvania, as shown in Figure 12. 

Figure 12 

LOCATIONS INCLUDED IN THE REGIONAL ANALYSIS FOR SPRING CREEK NEAR AXEMANN AND 

BELLEFONTE, PENNSYLVANIA. 

 

Data Source: Authors’ selections 

As a recap, we ran HEC-RAS for different rates of streamflow at USGS gage 01546500 to obtain the 

inundation levels at each of the locations. The inundation level changes with respect to the streamflow 

rate. We run the model for 15 different levels of streamflow rates ranging from 20 cms to 400 cms.  

A visualization of the data through Figure 13 and Figure 14 helps us better understand the relation 

between the inundation probability/level and variables such as peak streamflow and the HAND at the 

location. 

Figure 13 shows the boxplots of inundation levels at the locations, grouped by the streamflow rates. The 

groups in the left graph are equally spaced on the x-axis, while the spacing for those in the right graph is 

scaled based on the flow rate values and is likely more revealing about the functional relation between the 

flow rate and inundation level. In Figure 14, we use the red dots to represent the locations that are not 

inundated, and the light-blue ones to represent those that are inundated. Larger dots mean higher water 

levels. 
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Figure 13 

BOXPLOTS OF THE INUNDATION LEVELS AT THE LOCATIONS INCLUDED IN THE REGIONAL ANALYSIS, 

GROUPED BY PEAK FLOW RATES. THE GROUPS IN THE LEFT GRAPH ARE EQUALLY SPACED ON THE X-AXIS, 

AND THE SPACING FOR THOSE IN THE RIGHT GRAPH IS SCALED BASED ON THE FLOW RATES. 

 

Data Source: HEC-RAS models 

Figure 14 

INUNDATION LEVELS AT EACH OF THE LOCATIONS IN THE REGIONAL ANALYSIS. THE BROWN DOTS ARE 

THE LOCATIONS THAT ARE INUNDATED AND THE LIGHT-BLUE DOTS ARE THOSE THAT ARE NOT. THE 

LARGER LIGHT-BLUE DOTS INDICATE HIGHER WATER LEVELS. 

 

Data Source: HEC-RAS models 

Apparently, both figures show that the greater the flow rate, the more likely the location is inundated and 

the higher the inundation level. The same can be concluded if the HAND at the location is lower. 

In our pricing model, we focus more on the inundation probability than the actual inundation level, mainly 

because we treat inundation probability and not inundation level as a component of the pricing model. It is 

worth pointing out that despite some recent research that shows the importance of inundation level in 

determining building damage, their exact relation is far from clear. 
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As a proof of concept, we propose to use the annual peak flow rate and the HAND as the predictors of 

annual inundation probability; obviously, other variables such as distance to water can also be included in 

the model. In fact, some of the other variables have been found important in determining flood risk; for 

example, Giovannettone et al. (2018) find that elevation and distance to water have strong influence on 

flood risk in the urban and coastal subregions, whereas distance to water and surface geology have 

dominating influence in the rural subregion. As a comparison, the HAND, as a measurement of the height 

above the nearest drainage, is likely to have a more important role to play than elevation (above sea level) 

when evaluating in-land flood risks. 

We randomly choose 70% of the data to train the following logistic regression model as a probabilistic 

classifier about whether a property is inundated: 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝐼𝑛𝑢𝑛𝑑𝑎𝑡𝑒𝑑|𝐻𝐴𝑁𝐷, 𝐹𝑙𝑜𝑤)) = 𝛽0 + 𝛽1𝐻𝐴𝑁𝐷 + 𝛽2𝐹𝑙𝑜𝑤, 

where HAND and Flow are the HAND (in feet) at the location and the annual peak flow rate (in cms) at the 

nearest gage. The estimation results are summarized in Table 3. 

Table 3 

LOGISTIC REGRESSION ESTIMATION RESULTS. 

     
Coefficients   

  Estimate Std. Error z value p value 

 (Intercept) -0.287 0.034 -8.41 0.000*** 

 HAND -0.260 0.008 -33.42 0.000*** 

 Flow 0.015 0.000 47.53 0.000*** 

  

Significance code:                 0 '***'           0.001 '**'           0.01 '*'            0.05 '.'  

   

Deviance Residuals   

 Min 1Q Median 3Q Max 

 -2.980 -0.990 0.322 0.814 2.339 

     

AIC               16,998.3     

BIC               17,021.6     

 

The negative coefficient of HAND and positive coefficient of Flow are consistent with our intuition that 

larger flows and lower HAND lead to higher probabilities of inundation. Moreover, a test with the 

remaining 30% of the data shows that the predication accuracy of the model is high at 77%. 

4.2 UNCONDITIONAL PROBABILITY OF INUNDATION 

With a model for the annual peak flow rate and a model for conditional inundation probability that takes 

the flow rate as an input—and noting that the HAND at a location is deterministic—we are ready to derive 

the unconditional inundation probability. Specifically, the annual inundation probability for a property in 

the region with HAND ℎ is given by  

𝑝(ℎ) = ∫
exp{𝛽0 + 𝛽1ℎ + 𝛽2𝑥}

1 + exp{𝛽0 + 𝛽1ℎ + 𝛽2𝑥}

𝑑

𝑑𝑥
𝐺𝜉;𝜇,𝜎(𝑥)

∞

𝜇−
𝜎
𝜉

 

=
1

𝜉
 ∫

exp{𝛽0 + 𝛽1ℎ + 𝛽2𝑥}

1 + exp{𝛽0 + 𝛽1ℎ + 𝛽2𝑥}
exp {− [1 +

𝜉(𝑥 − 𝜇)

𝜎
]

−
1
𝜉

} [1 +
𝜉(𝑥 − 𝜇)

𝜎
]

−
1
𝜉

−1

𝑑𝑥
∞

𝜇−
𝜎
𝜉
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=
exp{𝛽0 + 𝛽1ℎ}

𝜉
 ∫

exp{𝛽2𝑥 − [1 + 𝜉(𝑥 − 𝜇)/𝜎]−1/𝜉}

1 + exp{𝛽0 + 𝛽1ℎ + 𝛽2𝑥}
[1 +

𝜉(𝑥 − 𝜇)

𝜎
]

−
1
𝜉

−1

𝑑𝑥
∞

𝜇−
𝜎
𝜉

 

where 𝛽0, 𝛽1, 𝛽2, 𝜇, 𝜎, and 𝜉 are the estimated parameter values from the logistic regression and fitting of 

the generalized extreme value distribution. We numerically evaluate the integration to obtain the 

inundation probabilities for different locations with given HANDs. 

In the examples given in Section 1.4, the flood insurance premia are calculated using the inundation 

probability given above. It is important to remember that the inundation probability function is derived 

from this particular regional analysis and will need to be adjusted accordingly for a different target region.  
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Section 5: Claims Modeling 

This section aims at modeling the expected claim amounts for buildings that are inundated. 

5.1 DATA 

We mainly rely on two datasets for our claims modeling: the American Community Survey (ACS) data on 
property values and the NFIP claims data. 

The property value dataset is collected from the U.S. Census Bureau14, which estimates the median 

property values for housing units through the ACS at census tract level. For census tracts where the 

estimated median property value is missing, we use mean imputation that imputes the value with the 

average of the estimates across the census tracts in the same county15. Moreover, the estimated median 

property values are censored from below at $10,000 or from above at $2,000,000. For those censored 

records, the censored values of $10,000 and $2,000,000 are used for our normalization. 

We remove those census tracts for which median property values are not available. In total, our data set 

contains median property values for 74,001 of the 84,414 census tracts in the U.S. 

The NFIP claims dataset used for our analysis is publicly available at FEMA. The records for our analysis 
were accessed on June 25, 2021 and were last refreshed by FEMA in May 2021.16 

The claims data range from 1970 to 2021, consisting of around 2.5 million records. The policies cover 

single-family homes, multi-unit residential buildings, as well as non-residential buildings. Among the 2.5 

million records, over 2 million records are claims from single-family homes. Given that the majority of 

policies are for single-family homes, and multi-unit buildings and non-residential buildings could have 

coverage limits that are very different from single-family homes—for example, for residential properties, 

the current coverage limit is $250,000 for the building and $100,000 for the contents, while for commercial 

properties, the current coverage limit is $500,000 for both the building and the contents—we focus our 

analysis on single-family homes. 

The dataset contains forty features17. We ignore the features that are not indicative of the flood risk, such 

as the indicator of whether a building is reported as being a non-profit in the policy application, the 

indicator of whether a building is reported as being a house of worship in the policy application, the original 

date of the flood policy, and the unique ID assigned to the record. 

Among the variables selected for our study, in addition to the continuous variables and date variables, 

there are nine categorical variables: basement type, whether the property is elevated, whether it has an 

elevation certificate, the number of floors, the location of contents, obstruction type, whether the property 

is the primary residence, whether its construction started before or after publication of the Flood Insurance 

Rate Map (FIRM), and the flood zone the property is located in. 

 

 

14 See https://data.census.gov/cedsci/table?hidePreview=true&tid=ACSDT1Y2019.B25077. The estimates provided by the U.S. Census Bureau 
are not available for every year; the estimates are calculated every few years. We use the 2019 property values. 
15 There are three counties where median property value data are not available for any of the census tracts. For census tracts in those counties, 
we use the state-level average to impute the missing records.  
16 The dataset was retrieved through https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1. This report uses the Federal 
Emergency Management Agency’s OpenFEMA API but is not endorsed by FEMA. The Federal Government or FEMA cannot vouch for the data 
or analyses derived from these data after the data have been retrieved from the Agency’s website(s). 
17 See https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1 for more details. 

https://data.census.gov/cedsci/table?hidePreview=true&tid=ACSDT1Y2019.B25077
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v1
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A property’s flood zone has been a good indicator of its flood risk and has been a rating factor before FEMA 

implemented its new rating system, Risk Rating 2.0, in October 2021. FEMA designated flood zones include 

those in the Special Flood Hazard Areas (SFHAs) (i.e., Zones A, AE, A1-A30, AH, AO, AR, A99, V, VE, V1-V30), 

the areas of moderate flood hazard (i.e., Zones B and X (shaded)), the areas of minimal flood hazard (i.e., 

Zones C and X (unshaded)), and the areas of undetermined flood hazard where flooding is possible.18 

Among those in the A Zones, about 89% are in Zones AE, A1-A30, or AH, and among those in the V Zones, 

about 98% are in Zones VE or V1-V30. This means that most of those properties have Base Flood Elevation 

(BFE) derived.19 

Following the literature (see, e.g., Wing et al. (2020)), we group the flood zones into high-risk areas, which 

include the SFHAs, and low-risk areas, which include all other areas.20 Among all the records, about 30% are 

from properties in low-risk areas and about 70% in high-risk areas. 

We also create a variable out of the features in the data: the age of the property at the date of loss, 

calculated as the date of loss minus the date when the original construction date of the property. 

Apparently, the age of the property reflects the risk of damage better than the dates per se. 

We remove entries that are obviously erroneous. For example, 

• we remove claim amounts and coverage limits that are greater $250,000, which is the upper limit 
of NFIP coverage on building for single family homes, 

• we remove the records with claim amount greater than coverage, 

• we remove entries with zero amount on building21, and 

• to produce the figures for visualization, we removed records with latitude and longitude 
coordinates outside the U.S. territory. 

In addition, we notice that there are many missing or unreasonable values of elevation difference, which 

we believe has a strong impact on our damage estimation. Therefore, we manually calculate the elevation 

difference by subtracting the BFE from the lowest floor elevation of the property—this is how elevation 

difference is defined. We remove the records with unreasonable elevation differences: those above 500 

feet or below -500 feet. These values are most likely entered with error, some are possibly in inches and 

others hard to explain; see Wing et al. (2020) for similar discussions about possible errors in FEMA 

datasets. 

In our models, if there are missing values in the response variable, we omit those records. In the end, the 

clean dataset has about 1.4 million records for our analysis. 

We note that what we are analyzing is the insurance payouts, not the losses. To derive the actual losses 

from the floods, one would need to the deductible levels of the corresponding policies. According to FEMA 

policy data22 that contain about 50 million records of policies on single family homes, for coverage on 

building for single family homes, about 82% of the policies have deductible of 1000, 1250, or 1500, with 

 

 

18 See, e.g., https://www.grar.org/wp-content/uploads/2017/07/Realist-Flood-Zone-Codes.pdf. 
19 BFE is provided, possibly at selected intervals, for Zones AE, A1-A30, AH, VE, and V1-V30. 
20 Note that we treat zones AR and A99 as low-risk zones, even though they appear under FEMA's list of high-risk zones. This is consistent with 
the treatment by the Community Rating System. Note that AR zones are areas with a temporarily increased flood risk (due to the building or 
restoration of a flood control system), and A99 zones are defined as areas “with a 1% annual chance of flooding that will be protected by a 
Federal flood control system where construction has reached specified legal requirements.” 
21 Some claims only have payments for content loss or increased cost of compliance. 
22 Accessed on July 29, 2021, through https://www.fema.gov/openfema-data-page/fima-nfip-redacted-policies-v1. 

https://www.grar.org/wp-content/uploads/2017/07/Realist-Flood-Zone-Codes.pdf
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-policies-v1
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the former two accounting for about 72%. As of November 2021, the minimum deductible levels for 

building coverage of $100,000 or less is $1,000 and that for building coverage over $100,000 is $1,250, 

except that for Pre-FIRM buildings (i.e., buildings that were constructed or substantially improved on or 

before December 31, 1974, or before the effective date of an initial FIRM), the minimum deductible for 

building coverage is $1,50023. For coverage on content for single-family homes, about 80% of the policies 

have deductible of $500, $1,000, or $1,250. The options have changed in the history of NFIP, and other 

options were available. Currently, there are six levels of choice for deductibles for single family homes, up 

to $10,000 for both building and contents, but there is not great heterogeneity in policyholders’ choices. 

Therefore, studying the claims does shed light on the ground-up losses. 

5.2 VISUALIZATION 

We first show a few figures to visualize the geospatial characteristics of the flood insurance claims. Figure 
15 shows the inflation-adjusted claims paid on building (in 2020 dollars), aggregated over the years of 
1970–2021, at county level across the nation. 

Figure 15 

COUNTY-LEVEL PLOT OF AMOUNT PAID ON BUILDING CLAIMS, SMOOTHED USING POWER 

TRANSORMATION, ACROSS THE CONTIGUOUS UNITED STATES. THE AMOUNTS ARE INFLATION ADJUSTED 

TO 2020 DOLLARS USING CPI DATA FROM THE U.S. BUREAU OF LABOR STATISTICS.24
  

  

Data Source: Federal Emergency Management Agency (FEMA) and U.S. Bureau of Labor Statistics (BLS) 

 

It is clear that the largest amounts of claims come from coastal areas as well as the Mississippi river basin. 

The county with the highest aggregated claims across the nation is Harris County in Texas. Figure 16 shows 

in more detail the claims from Texas, one of the states that are most susceptible to flood risk. 

 

 

23 See page 3-42 of https://www.fema.gov/sites/default/files/documents/fema_nfip-flood-insurance-manual-sections-1-6_oct2021.pdf for 
more details. 
24 For a better visual effect, we smooth the claim amounts by taking a one fifth power. 

https://www.fema.gov/sites/default/files/documents/fema_nfip-flood-insurance-manual-sections-1-6_oct2021.pdf
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In Figure 16, the left graph is a county-level plot of the paid-on building in Texas. The right graph is a scatter 

plot of the inflation-adjusted amounts paid on building in Texas25. Scatter points of larger size indicate 

larger claim amounts and darker color indicates higher claim frequencies. We see that the Houston area 

(mainly Harris County, but also Fort Bend and Montgomery, etc.) has by far the largest amount of claims. 

Substantial amounts of claims also come from Beaumont, Dallas, and San Antonio areas. 

Figure 16 

AGGREGATED CLAIM AMOUNTS PAID ON BUILDING (TEXAS). THE AMOUNTS ARE INFLATION ADJUSTED 

TO 2020 DOLLARS USING CPI DATA FROM THE U.S. BUREAU OF LABOR STATISTICS. 

 

Data Source: Federal Emergency Management Agency (FEMA) and U.S. Bureau of Labor Statistics (BLS) 

Figure 17 

AGGREGATED CLAIM AMOUNTS PAID ON BUILDING (PENNSYLVANIA). THE AMOUNTS ARE INFLATION 

ADJUSTED TO 2020 DOLLARS USING CPI DATA FROM THE U.S. BUREAU OF LABOR STATISTICS. 

 

Data Source: Federal Emergency Management Agency (FEMA) and U.S. Bureau of Labor Statistics (BLS) 

Lastly, we show the claims from Pennsylvania in Figure 17 as another example. Similarly, the left graph is a 

county-level plot of the inflation adjusted and smoothed claim amounts paid on building in Pennsylvania. 

The right graph is a scatter plot of the inflation-adjusted claim amounts paid on building. It is clear that the 

 

 

25 Again, the amounts are smoothed by raising to the one fifth power. 
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Philadelphia area (Bucks and Montgomery Counties) has produced the largest amounts of claims while 

some counties in central Pennsylvania also face significant flood risk. 

5.3 A MIXED (GENERALIZED) BETA MODEL FOR CLAIMS MODELING 

We focus on the claims paid on building and therefore exclude the variables that are only related to the 

content coverage of the policy. Ultimately, we hope the model the claim amounts as a percentage of the 

property value. However, because of the Privacy Act passed by Congress in 1974, FEMA does not release 

property value data. We instead use the median property value in the county as a benchmark and define a 

response variable by the ratio of the claim amount paid on building to the median property value. 

We now explore a few candidate models for claim amounts and investigate the link between the expected 

damage and property characteristics. Recent research by Wing et al. (2020) studies the relation between 

flood damage and inundation depth concludes that flood damages follow a beta distribution and the 

distribution shifts when the water depth varies. Motivated by this research, we fit a conditional generalized 

beta model to the flood damages. In our model, the distribution of flood damage shifts according to, not 

only possible water depth, but also other variables and their interactions. This can be viewed as a 

generalization of the model in Wing et al. (2020). Specifically, we consider a (generalized) beta regression 

model (see Ferrari and Cribari-Neto (2004)) that regresses the damage ratio—that is, the damage as a 

percentage of property value—against the relevant variables. 

Note that a standard beta distribution with parameters 𝑎 > 0 and 𝑏 > 0 has density function 

𝑓(𝑦) =
𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑏−1,   0 < 𝑦 < 1, 

where 𝛤(⋅) is the gamma function. A different parametrization of 𝜇 = 𝑎/(𝑎 + 𝑏)—which represents the 

mean of the distribution—and 𝜙 = 𝑎 + 𝑏 enables us to write it as 

𝑓(𝑦) =
𝛤(𝜙)

𝛤(𝜇𝜙)𝛤((1 − 𝜇)𝜙)
𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1,   0 < 𝑦 < 1. 

We assume that conditional on the feature variable 𝐗 with 𝑚 features, the response variables 𝑌1, … , 𝑌𝑛 are 

independent, following beta distributions with respective means 𝜇1, … , 𝜇𝑛
26. Moreover, suppose that, for a 

link function 𝑔(⋅), the conditional mean of the response variable satisfies 

𝑔(𝐸[𝑌𝑖|𝐗]) = ∑ 𝐗𝑖𝑗

𝑚

𝑗=1

𝛽𝑗 ,   𝑖 = 1, … , 𝑛, 

or, simply, 

𝑔(𝜇𝑖) = ∑ 𝑥𝑖𝑗

𝑚

𝑗=1

𝛽𝑗 ,   𝑖 = 1, … , 𝑛, 

 

 

26 Independence may be a strong assumption for claims from the same geographical region. Nonetheless, spatial dependence would be more 
of a problem for the risk of inundation than for flood damages, because, for the latter, property characteristics of the building in the region 
could be diverse enough to justify the independence assumption. 
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where 𝛽 = (𝛽1, … , 𝛽𝑚) is the vector of regression parameters. The explanatory variables we use for our 

beta regression model are listed in Table 4. 

Table 4 

DEFINITION OF VARIABLES. 

Variable Value Description 
damageRatio Continuous The ratio of claim amount to the median property value for 

the census tract, standardized to values in (0,1). 

coverage Continuous Total Insurance Amount in dollars on the building 

elevationDifference Continuous, 
in number of feet 

Difference between the elevation of the lowest floor used for 
rating or the floodproofed elevation and the base flood 
elevation (BFE). BFE is the elevation, in feet, at which there is a 
1% chance per year of flooding from the elevation certificate. 

age Continuous,  
in years 

Age of the building at the time of loss.  Calculated as the year 
of loss minus the year of building construction. 

postFIRM 1 for post FIRM building, 
0 otherwise 

If the construction of the building or a substantial 
improvement of the building was started after publication of 
the Flood Insurance Rate Map (FIRM) on December 31, 1974, 
and after the effective date of the initial FIRM for the 
community, it is considered as a post FIRM building. 

crs Continuous Rating of the policy by the Community Rating System (CRS), 
ranging from 0 to 10 

SFHA 1 if in a SFHA, 
0 otherwise 

Indicator of whether the building is in a SFHA zone 

crsSFHA  Interaction term between CRS and SFHA 

basementType1 1 if type 1 basement,  
0 otherwise 

Indicator of whether the building has a finished 
basement/enclosure 

basementType2 1 if type 2 basement,  
0 otherwise 

Indicator of whether the building has an unfinished 
basement/enclosure or crawlspace (above-grade or below-
grade) 

floors2 1 if two-story property,  
0 otherwise 

Indicator of whether the building is a two-story building 

floors3 1 if three or more floors,  
0 otherwise 

Indicator of whether the building has three or more stories 

 

Note that the standard beta regression requires the response variable to be in (0,1), while for our 

response variable, the estimated median property value could be smaller than the claim amount, leading to 

responses that exceed 1. We do a uniform transformation to bring the response variable into (0,1). Using a 

logit link function, we estimate the following three models and summarize the results in Table 5–Table 7. 

First, we estimate Model I, given as follows: 

𝑔(𝑑𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜)

= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽1𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝛽2𝑆𝐹𝐻𝐴 + 𝛽3𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒1 + 𝛽4𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒2

+ 𝛽5𝑐𝑟𝑠 + 𝛽6𝑓𝑙𝑜𝑜𝑟𝑠2 + 𝛽7𝑓𝑙𝑜𝑜𝑟𝑠3 + 𝛽8𝑝𝑜𝑠𝑡𝐹𝐼𝑅𝑀 + 𝛽9𝑎𝑔𝑒

+ 𝛽10𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 

The results are presented in Table 5. 

Most of the estimation results for Model I make intuitive sense. For example, the damage ratio is expected 

to be larger for buildings with higher coverage limits and for older buildings. On average, damage ratios for 

buildings with basement are lower, because, presumably, the building materials and other covered items 

are generally less costly than those above grade. 
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Table 5 

BETA REGRESSION RESULTS FOR MODEL I. 

Model I     
Coefficients   

  Estimate Std. Error z value p value 

 (Intercept) -2.921 0.068 -43.024 0.000*** 

 coverage 5.962e-07 5.297e-08 11.256 0.000*** 

 SFHA 0.005 0.065 0.080 0.936 

 basementType1 -0.408 0.014 -29.384 0.000*** 

 basementType2 -0.297 0.009 -31.758 0.000*** 

 crs 0.092 0.002 39.115 0.000*** 

 floors2 -0.364 0.009 -39.424 0.000*** 

 floors3 -0.495 0.012 -41.352 0.000*** 

 postFIRM -0.119 0.008 -15.183 0.000*** 

 age 6.596e-06 5.264e-07 12.529 0.000*** 

 elevationDifference -0.005 0.001 -4.652 0.000*** 

  

Significance code:                 0 '***'      0.001 '**'       0.01 '*'      0.05 '.'      0.1  

Pseudo R-squared:                0.1707   

   

Standardized weighted residuals   

 Min 1Q Median 3Q Max 

 -5.4462 -0.5168 0.0538 0.6131 4.3146 

     

AIC               -304,209.3     

BIC               -304,098.1     

 

Buildings with a better CRS rating (i.e., a lower value) are expected to experience a lower damage ratio. 

This is because CRS credits are usually obtained when, e.g., flood protection techniques such as dry and/or 

wet floodproofing are used, where dry floodproofing refers to, e.g., making walls and floor watertight so 

that flood cannot enter the building, and wet floodproofing refers to, e.g., taking measures to reduce the 

damage once water enters the building.27 These flood protection techniques are often effective in reducing 

flood damages. 

Moreover,  

• the more floors a building has, the smaller damage ratio we generally expect, because, for the 

same water level, the proportion of under water is expected to be smaller for a building with more 

floors; 

• post FIRM buildings, when inundated, are expected to result in smaller damages, because they are 

subject to more stringent building codes; 

• with building materials aging, it renders older buildings less likely to withstand water damage; 

 

 

27 See NFIP Community Rating Coordinator’s Manual 2017 at https://www.fema.gov/sites/default/files/documents/fema_community-rating-
system_coordinators-manual_2017.pdf. 
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• the higher the building is elevated, the smaller the damage ratio is expected to be. A higher 

elevation means a lower water level for a given flood and hence a smaller damage, as is 

documented in the literature (Wing et al. (2020)). 

Note that the coefficient of SFHA is not significant. The expected damage for buildings in SFHAs is not clear 

as compared to those outside SFHAs. It is possible that buildings in SFHA are subject to more stringent 

building codes28 and are thus more resilient to flood damage, but also possible that the water level is likely 

higher for SFHA properties when inundated. While Model I seems to suggest the latter—although not 

conclusively—Models II and III below are more indicative of the former. 

It is worth pointing out that in FEMA’s new rating system Risk Rating 2.0, flood zone is no longer used for 

flood insurance premium calculation; see Horn (2021). It is, however, not entirely clear that ignoring the 

building’s flood zone when pricing its flood insurance is a wise decision. As we will see in our Models II and 

III, flood zone does play a significant role in determining the property’s damage ratio when its interaction 

with CRS rating is accounted for. 

Table 6 

BETA REGRESSION RESULTS FOR MODEL II. 

Model II     
Coefficients   

  Estimate Std. Error z value p value 

 (Intercept) -2.049 0.286 -7.172 0.000*** 

 coverage 5.96E-07 5.30E-08 11.245 0.000*** 

 SFHA -0.869 0.286 -3.039 0.002** 

 basementType1 -0.407 0.014 -29.340 0.000*** 

 basementType2 -0.297 0.009 -31.751 0.000*** 

 crs -0.038 0.427 -0.899 0.368 

 floors2 -0.364 0.009 -39.414 0.000*** 

 floors3 -0.495 0.012 -41.363 0.000*** 

 postFIRM -0.119 0.008 -15.219 0.000*** 

 age 6.57E-06 5.27E-07 12.486 0.000*** 

 elevationDifference -0.005 0.001 -4.667 0.000*** 

 crsSFHA 1.308 0.043 3.059 0.002** 

  

Significance code:                 0 '***'      0.001 '**'      0.01 '*'      0.05 '.'      0.1  

Pseudo R-squared:                0.1709   

   

Standardized weighted residuals   

 Min 1Q Median 3Q Max 

 -5.446 -0.5170 0.0539 0.613 4.316 

     

AIC               -304,217.4     

BIC               -304,096.9     

 

Second, considering that premium credits earned by the same CRS rating are different for SFHA properties 

and non-SFHA properties, we introduce an interaction term between CRS and flood zone. We then 

estimate Model II, given by 

 

 

28 See, e.g., https://www.teamcomplete.com/wp-content/uploads/2017/02/Floodplain-Management-Regulations.pdf. 
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𝑔(𝑑𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜)

= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽1𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝛽2𝑆𝐹𝐻𝐴 + 𝛽3𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒1 + 𝛽4𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒2

+ 𝛽5𝑐𝑟𝑠 + 𝛽6𝑓𝑙𝑜𝑜𝑟𝑠2 + 𝛽7𝑓𝑙𝑜𝑜𝑟𝑠3 + 𝛽8𝑝𝑜𝑠𝑡𝐹𝐼𝑅𝑀 + 𝛽9𝑎𝑔𝑒

+ 𝛽10𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝛽11𝑐𝑟𝑠𝑆𝐹𝐻𝐴. 

The results are presented in Table 6. As mentioned above, in Model II, flood zone plays a significant role in 

determining the expected flood damage. The model also indicates that, for SFHA properties, a better CRS 

rating means a lower expected flood damage. For non-SFHA properties, the CRS rating is not significant, 

meaning that in low flood risk areas, a better rating does not necessarily mean a lower damage ratio for an 

inundated property. This is roughly in line with NFIP’s rating system: for properties not in SFHA’s, FEMA will 

give no more than 10% premium credit even for the best CRS rating—the three premium credit levels are 

0, 5%, and 10%—as compared to the 45% premium credit for those in SFHA with best CRS rating29. 

To compare the two models above, we observe that Model I is favored based on the BIC criterion and 

Model II is favored based on the AIC criterion. We recommend Model II, because it accounts for the 

different impacts the change of CRS rating could have on the expected claim amount for properties in 

different flood zones. 

Table 7 

BETA REGRESSION RESULTS FOR MODEL III. 

Model III     
Coefficients   

  Estimate Std. Error z value p value 

 (Intercept) -2.593 1.714 -151.30 0.000*** 

 coverage 7.25E-07 2.542-08 28.81 0.000*** 

 SFHA -0.218 0.019 -11.48 0.000*** 

 basementType1 -0.531 0.007 -79.42 0.000*** 

 basementType2 -0.397 0.006 -66.68 0.000*** 

 crs 0.032 0.002 13.79 0.000*** 

 floors2 -0.322 0.006 -53.92 0.000*** 

 floors3 -0.425 0.007 -59.19 0.000*** 

 postFIRM -0.062 0.004 -14.15 0.000*** 

 age 8.79E-06 2.03E-07 43.23 0.000*** 

 crsSFHA 0.028 0.003 10.20 0.000*** 

  

Significance code:                 0 '***'      0.001 '**'      0.01 '*'      0.05 '.'      0.1  

Pseudo R-squared:                0.1975   

   

Standardized weighted residuals   

 Min 1Q Median 3Q Max 

 -7.4318 -0.4888 0.0527 0.5697 8.6971 

     

AIC               -1,017,707     

BIC               -1,017,582     

 

Lastly, note that despite the significance of elevation difference as rating variable in the two models above, 

it may not always be available, because, e.g., the insured may not have an elevation certificate or the BFE 

 

 

29 The implementation of Risk Rating 2.0 did not result in changes to these credits. 
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of the building may be unknown. It is important to be able to price the insurance without knowing the 

building’s elevation difference. Therefore, we fit a model, Model III, with elevation difference excluded 

from the explanatory variables. We keep the interaction term between the CRS rating and the property’s 

flood zone in the model. Model III is given by: 

𝑔(𝑑𝑎𝑚𝑎𝑔𝑒𝑅𝑎𝑡𝑖𝑜)

= 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝛽1𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝛽2𝑆𝐹𝐻𝐴 + 𝛽3𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒1 + 𝛽4𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒2

+ 𝛽5𝑐𝑟𝑠 + 𝛽6𝑓𝑙𝑜𝑜𝑟𝑠2 + 𝛽7𝑓𝑙𝑜𝑜𝑟𝑠3 + 𝛽8𝑝𝑜𝑠𝑡𝐹𝐼𝑅𝑀 + 𝛽9𝑎𝑔𝑒 + 𝛽10𝑐𝑟𝑠𝑆𝐹𝐻𝐴. 

We present the estimation results in Table 7. As we can see, the coefficients of Model III estimations are all 

significant and consistent with our intuition. 

Among the three models, we favor Model III according to both the AIC and BIC criteria. Nonetheless, we 

argue that Model II could be an alternative when accurate data on the property’s elevation difference is 

available. As pointed out by Wing et al. (2020), inundation depth is a crucial variable in determining 

building damage. Everything else being equal, a larger elevation difference would mean a lower inundation 

depth and hence a smaller damage ratio. We will further explore the relevance of elevation difference as a 

pricing factor in Appendix C. As suggested by the regression tree and random forest in Appendix C, 

elevation difference is one of the most important variables for claim modeling. 

In summary, our choice of model is Model II when elevation difference is known and Model III when it is 

not. 

  

https://soa.qualtrics.com/jfe/form/SV_9XgKKvd1GBxrhqe
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Appendix A: A Review of EVT 

In this appendix, we briefly review univariate EVT, the application of which is rooted in the Fisher–Tippett–

Gnedenko theorem and the Pickands-Balkema-de Haan theorem. 

By the Fisher–Tippett–Gnedenko theorem, under some mild conditions, the normalized maximum 

asymptotically follows a generalized extreme value (GEV) distribution. Precisely, let 𝐹 be the distribution 

function of a risk variable 𝑋, and let 𝑀𝑛 be the maximum of an independent and identically distributed 

(i.i.d.) sample of size 𝑛 from 𝐹. We say that 𝐹 belongs to the max-domain of attraction of a non-degenerate 

distribution 𝐺, written as 𝐹 ∈ 𝑀𝐷𝐴(𝐺), if there are normalizing constants 𝑐𝑛  >  0 and 𝑑𝑛 ∈ ℝ such that  

𝑀𝑛 − 𝑑𝑛

𝑐𝑛

→𝑑 𝐺,        𝑛 → ∞, 

where →𝑑 denotes convergence in distribution. In fact, the distribution 𝐺 must be a member of the family 

of GEV distributions, with standard form  

𝐺𝜉(𝑥) = exp {−(1 + 𝜉𝑥)
−

1
𝜉} ,        1 + 𝜉𝑥 > 0, 

where in the case of 𝜉 = 0 the term (1 + 𝜉𝑥)−1/𝜉 is interpreted as its limit when 𝜉 approaches 0, that is 

𝑒−𝑥. The GEV distribution above is a general representation for three types of extreme value distributions: 

Fréchet (𝜉 > 0), Gumbel (𝜉 = 0), and Weibull (𝜉 < 0). The distribution has a heavy tail when 𝜉 > 0, an 

exponential tail when 𝜉 = 0, and an upper-bounded tail when 𝜉 < 0. Given the explicit parametric 

structure of the GEV distribution, likelihood-based approaches are usually used to estimate the 

parameters, although in the hydrology literature, the probability weighted moments (PWM) method, owing 

largely to its computational simplicity and small-sample performance, is also a popular choice. 

In both actuarial literature and hydrology literature, it is customary to base statistical inference on the 

limiting distributions, i.e., the GEV distribution, as an approximation of the true underlying distribution. In 

some cases, one would need to estimate the normalizing constants for the purpose of, e.g., transforming 

the marginal distribution to a standard distribution, such as Fréchet distribution with shape parameter 1, as 

is usually done in multivariate extreme analysis. In other cases, the normalizing constants can be absorbed 

into the location and scale parameters of the distribution without need for special treatment.  

In practice, given a sample of 𝑛 × 𝑚 observations, one could divide them into 𝑚 blocks and assume the 

common distribution of the block maxima 𝑀𝑛𝑗, 𝑗 =  1, . . . , 𝑚, is 

𝐺𝜉;𝜇,𝜎(𝑥) = exp {− [1 +
𝜉(𝑥 − 𝜇)

𝜎
]

−
1
𝜉

} ,        1 +
𝜉(𝑥 − 𝜇)

𝜎
> 0, 

which belongs to a three-parameter family with shape parameter 𝜉 ∈ ℝ, location parameter 𝜇 ∈ ℝ, and 

scale parameter 𝜎 > 0. 

Under the GEV model, one can easily derive the return level. For 0 < 𝑝 < 1, its 1/𝑝-year return level is 

given by 

𝐺𝜉;𝜇,𝜎
−1 (1 − 𝑝) = 𝜇 +

𝜎

𝜉
((−ln(1 − 𝑝))−𝜉 − 1). 
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For example, if the annual maximum streamflow is modeled by the GEV above, then the 100-year 

streamflow is given by  

𝐺𝜉;𝜇,𝜎
−1 (1 −

1

100
) = 𝜇 +

𝜎

𝜉
((−ln (1 −

1

100
))

−𝜉

− 1). 

When the interest is in modeling, e.g., high water level or inundation level, researchers have employed the 

PDS/POT approach, which fits a generalized Pareto distribution (GPD) to the excess over a high threshold. 

The underlying theory justifying such an application—the Pickands-Balkema-de Haan theorem—states that, 

for a random variable 𝑋 following distribution 𝐹 ∈ 𝑀𝐷𝐴(𝐺𝜉;𝜇,𝜎) with upper endpoint 𝑥𝐹  (finite or infinite), 

there exists a positive scale function 𝑎(⋅) such that,  

lim
𝑦↑𝑥𝐹

𝑃 (
𝑋 − 𝑦
𝑎(𝑦)

≤ 𝑥|𝑋 > 𝑦)   = 1 − (1 + 𝜉𝑥)
−

1
𝜉 ,        𝑥 > 0, 1 + 𝜉𝑥 > 0. 

This means that the scaled excess over a high threshold 𝑦 converges weakly to the GPD, justifying the use 

of the exceedances in the data to estimate the tail of the risk. The asymptotic result allows us to 

approximate the conditional distribution of 𝑋 − 𝑦 given 𝑋 > 𝑦 by  

𝐻𝜉,𝛽(𝑥) = 1 − (1 + 𝜉
𝑥

𝜎̃
)

−
1
𝜉

,       𝑥 > 0, 1 + 𝜉
𝑥

𝜎̃
> 0, 

where 𝜎̃ = 𝜎 + 𝜉(𝑦 − 𝜇).  

Note the correspondence above between the GEV parameters and the GPD parameters. Such duality 

enables one to, for example, estimate the GEV parameters using a PDS. In fact, both the AMS and PDS 

methods can be unified using a point process approach. The theory underlying the point process approach 

concludes that if the risk variables 𝑋1, … , 𝑋𝑛 are i.i.d. following common distribution 𝐹 ∈ 𝑀𝐷𝐴(𝐺𝜉;𝜇,𝜎), 

such that, for constants 𝑐𝑛  >  0 and 𝑑𝑛 ∈ ℝ, the distributions of the normalized maxima 

(max
1≤i≤n

𝑋𝑖 − 𝑑𝑛) /𝑐𝑛 converge to 𝐺𝜉;𝜇,𝜎, then we have the weak convergence of the normalized point 

processes to a Poisson point process; that is, 

𝑁𝑛 ≔ (
𝑖

𝑛 + 1
,
𝑋𝑖 − 𝑑𝑛

𝑐𝑛

)
1≤𝑖≤𝑛

⇒ 𝑁,        𝑛 → ∞ 

on (0,1) × [𝑢, ∞) for any 𝑢 above the lower endpoint of 𝐺𝜉;𝜇,𝜎, where ⇒ denotes weak convergence, and 

𝑁 is a Poisson point process with mean measure Λ defined by 

Λ(𝐴) = (𝑡2 − 𝑡1) (1 + 𝜉
𝑥 − 𝜇

𝜎
)

−
1
𝜉

,        𝐴 = [𝑡2 − 𝑡1] × [𝑥, 𝑥𝐺), 

with 𝑥𝐺  being the upper endpoint of 𝐺𝜉;𝜇,𝜎. See Chapter 7 of Coles (2001) for more details. Such a 

characterization enables us to estimate the GEV parameters alternatively with likelihood functions derived 

from the limiting point process. 
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Appendix B. Background Information About Flood Modeling 

B.1 BACKGROUND INFORMATION 

This section serves as a concise introduction into the pieces of flood modeling to help the reader understand the 

background of flood inundation modeling and the relevant science employed in the study. It is not meant to be 

thorough, but as an introduction or refresher as needed. 

B.1.1. HYDROLOGIC MODELING 

Physical flood modeling’s tasks include predicting the frequency of floods, their magnitudes, and the potential 

inundation extent. Few models can handle all of these tasks well, so specialization is required. Here we focus on 

predicting the long-term discharge of a river, or its future distribution of flows (from which we determine the risk of 

flooding under future climates). 

To this end, hydrologic models operate on long time scales (a few years to decades) and typically predict daily or 

hourly discharge along different points in a river network. These models accept input information about 

meteorological climate forcings (rainfall, temperature, radiation, humidity, etc.) and attributes about the basins of 

interest (slope, land cover, soil texture, geology, etc.). They output discharge and potentially other diagnostic 

variables, e.g., soil moisture, water storage, groundwater, evapotranspiration (ET), to provide a full narrative of the 

simulation history. 

Then, flood inundation models take discharge (either from direct observations or outputs from hydrologic models) 

and use topographic information to predict where the water might be given a certain discharge condition. Such 

flooding processes occur rapidly, so dynamical flood inundation models operate on minute time steps and often use 

a high spatial resolution. It should be noted that the resolution of the model does not guarantee its quality or 

accuracy. 

Different types of hydrologic models have been developed in the past. Traditionally there have been conceptual 

hydrologic models (with simple, box-type descriptions of hydrology), statistical hydrologic models (which try to 

describe streamflow distributions using past data patterns), and physics-based models (which solve lab-verified 

partial differential equations). These different model types have come in and out of favor throughout different time 

periods and the debates have never fully. The general consensus is that when one needs detailed descriptions or 

narratives of the progression of events, physics-based models are typically more useful, while data-driven (statistical 

or machine learning) models tend to have higher accuracy. Despite the many of types of models, however, accurate 

prediction of floods, to this day, very much remains a challenging task. 

B.1.2. DEEP LEARNING HYDROLOGIC MODELS 

Recently, there has been a surging interest in deep learning (DL) hydrologic models. DL is a rebranding of neural 

networks featuring large capacity (lots of neurons) and depth (with two or more hidden layers). The main reason for 

this surge of interest is that, quite refreshingly, DL models have vastly outperformed our traditional hydrologic 

models. For a discharge time series that we are interested in predicting, a typical metric of success is the Nash-

Sutcliffe model efficiency coefficient (NSE)30. Recent benchmarks using 571 basins across the United States showed 

that traditional models typically produced a median NSE of around 0.63 even when they were calibrated to each 

 

 

30 NSE can be interpreted as roughly the variance explained by the model divided by the total variance of the variable. Its value can be negative but is 0 if 
equivalent to using the mean of a time series as the predictor for the whole time series and is 1 for a perfect prediction.   
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basin individually, whereas the new DL models can reach 0.74 for the same metric (Feng et al., 2020; Kratzert et al., 

2019) (Figure 18). It should be noted, however, that even though the present DL models are much stronger than 

previous models, they are still not perfectly predicting discharge. There are many other sources of errors with 

forcing data (weather), physical attributes that describe the landscape (slope, soil texture, land cover, geology, etc.), 

and also model imperfections (unknown mechanisms). Nonetheless, this step change in our predictive capacity has 

revealed that, when properly constrained, DL models can serve as practical and strong tools for flooding prediction. 

Figure 18 

MAP OF 531 BASINS IN THE CAMELS DATASET. COLORS INDICATE THE NSE VALUES FROM A DL MODEL FROM FENG 

ET AL. (2020). 

 

Data Source: Feng et al., 2020 

B.1.3. PREDICTION IN UNGAUGED BASINS 

Hydrologic models often perform better when they are “calibrated”, meaning some parameters for these models 

have been tuned so that the model output matches the observations at a site. For DL models, we do not calibrate. 

Rather, we train the model on a large number of sites, as data-fitting is an inherent component of the model 

building process. Because not all the attributes of a basin (like geologic conditions) are known in detail, available 

inputs can approximately but not exactly describe a basin. To calibrate a model requires discharge observations, 

which implies that calibration can only occur at places where discharge data are available, which is only a very small 

subset of the locations where we need the predictions.   

Calibrated and trained models can technically be applied to “ungauged” basins because the model simulation itself 

does not require discharge data, and a prediction can be made as long as we have the input data (meteorological 

forcings and basin attributes). Typically, this results in a deterioration of model performance, because each basin 

behaves differently. Even if there is a neighboring basin where the model is calibrated, there will be slight 

differences between the neighbors, which may not be captured in the available basin attributes. How to effectively 

extrapolate/interpolate the parameters one obtained from the calibrated basins to the ungauged ones is called the 

Prediction in Ungauged Basins (PUB) problem, which has long been a central research topic in hydrology. Because of 

the limited discharge data available, PUB performance is the true performance we can expect to generally have 

across the entire domain. 

B.2. DEEP LEARNING STREAMFLOW MODELS FOR THE SUSQUEHANNA RIVER BASIN 

The hydraulic modeling part of this project (Section 3) used observed streamflow. However, here we explain that 

streamflow can be generated from a model for ungauged locations. We focus on obtaining streamflow predictions 

in the Susquehanna River basin, for not only gauged basins but also ungauged basins, and for not only “reference” 
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basins (having minimal anthropogenic impacts) but also basins with major reservoirs31. This system would be 

generically applicable across the US and can produce daily streamflow predictions under known climate conditions, 

or future streamflow distributions under future climate scenarios.  

Figure 19 

MAP OF THE SUSQUEHANNA RIVER BASIN. 

 

Data Source: Author’s visualization using ArcMap. 

B.2.1. THE LONG SHORT-TERM MEMORY (LSTM) NETWORK 

LSTM is a type of recurrent neural network, which, in layman’s words, can be explained as a self-trained memory 

system. It can learn patterns from sequential data and predict future sequences. LSTM was previously the 

underlying technology behind artificial intelligence tools such as Google Translate and Siri, until it was replaced by 

more advanced algorithms such as Transformers. These networks are composed of memory cells, the keys to which 

are the “cell states” and “gates” that control information flow within the LSTM algorithm. Cell states allow 

information to be stored over long time periods, which is important for modeling catchment processes like snow, 

subsurface flow, and reservoir storage. 

In hydrology, LSTM has been shown to be highly effective for modeling a range of problems such as soil moisture, 

streamflow, and water quality (Fang et al. 2017; Feng, Fang, and Shen 2020; Rahmani et al. 2021; Zhi et al. 2021). 

B.2.2. SETUP OF THE LSTM MODEL 

We have collected input data for thousands of basins in the United States and trained one uniform LSTM network. 

This dataset contains attributes, forcings, reservoir attributes and streamflow data for 3557 basins from GAGES-II 

(Figure 20). Among these, reservoir attributes were an original contribution. Basins with complete streamflow 

records from 1 January 1990 through 31 December 2009 were selected from the Geospatial Attributes of Gages for 

Evaluating Streamflow II (GAGES-II) dataset (Falcone 2011). 

 

 

31 Reservoirs exert substantial control on streamflow and also tend to reduce model accuracy downstream. Acting as storages, they shave off the discharge 
peaks and can release water when flow is too low. Different types of reservoirs (for example, hydroelectric vs irrigation) have different logic behind their 
operations. 
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We selected 30 static physical attributes which fit into six categories: (1) basic identification and topographic 

characteristics, (2) percentages of land cover in the watershed, (3) soil characteristics, (4) geological characteristics, 

(5) local and cumulative dam variables, and (6) other disturbance variables. Basin mean forcing data for the period 

01/01/1990–12/31/2009 was generated using the same method as for the CAMELS dataset, which was done by 

mapping a daily, gridded meteorological dataset, Daymet Version 3 (Thornton et al., 2016) to the chosen basin 

polygons. 

We trained the LSTM model on the large dataset and fine-tuned it mildly for the subbasins in the Susquehanna River 

watershed. We carefully controlled the hyperparameters so that they are not overfitted. To reduce overfitting, we 

employed dropout regularization, which stochastically sets some network connections to zero. We trained the 

model on sequences of a fixed length (365 days) and neglected the warm-up period as warm-up did not show any 

advantages. 

To obtain the reservoir attributes, dams listed in the National Inventory of Dams (NID) database (US Army Corps of 

Engineers 2018) were extracted to separate basins. For every basin, the sum of the reservoir's normal capacity 

associated with each dam purpose was calculated. The purpose with the largest associated capacity was considered 

to be the major purpose of the collective dams in the basin. 

Figure 20 

THE LOCATIONS OF THE BASINS IN OUR TRAINING DATASET. THE COLORS INDICATE THE TOTAL NORMAL 

RESERVOIR STORAGE VOLUME IN A BASIN, MEGALITERS OF TOTAL STORAGE PER SQ KM. 

 

Data Source: Author’s visualization based on GAGES-II dataset. 

 

B.2.3. STREAMFLOW RESULTS  

We show the NSE values from LSTM for the continental United States (Figure 21). To show the level of improvement 

over traditional models, we compare LSTM with an operational hydrologic model, Sacramento Soil Moisture 

Accounting Model (SAC-SMA), over a subset of the basins known as the CAMELS dataset with 531 mostly-reference 

basins (this is because SAC-SMA is only available for this subset. Here reference basins means they do not have 

major reservoirs). We show the time series comparisons for some of the basins in the Susquehanna River Basin. We 

also compared our results with some previous models with a reservoir component (Ouyang et al. 2021). 

We notice that LSTM achieved much higher performance than SAC-SMA over the CAMELS dataset. In addition, it 

performed decently well for the larger dataset that contains mostly basins with major reservoirs (median NSE=0.74). 

There is a mild deterioration of performance from the CAMELS-only dataset (median NSE=0.75) to the >3000 basin 

dataset (Figure 20) due to the prevalence of reservoirs in the other basins not included in CAMELS. However, even if 

the case of major reservoirs, LSTM is stronger than SAC-SMA (median NSE=0.63) by a large margin. If SAC-SMA is 
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applied to the basins with major reservoir, one can expect large deterioration in performance. LSTM is highly 

competitive compared to the models in the literature. 

This result means that LSTM well captured the pattern of reservoir management. Even though LSTM did not know 

anything about the management policies or priorities, it was not informed of the water demand in the basin, even 

though human operators sometimes do not follow their own handbooks, LSTM was able to predict their future 

behaviors based on what it has seen in the past. In layman terms, LSTM “understood” human operators as long as 

there are records of what they did in the past, and humans appear to be more predictable than we think. We 

further investigate the daily distribution of flows (Figure 22) comparing the observed value, LSTM and SAC-SMA. 

Figure 21 

CUMULATIVE DENSITY FUNCTION OF THE NSES OF THE MODELS. THE LEFT GRAPH SHOW THE LSTM 

PERFORMANCE OVER THE ENTIRE CONUS. RED LINE: THE LSTM TRAINED ON >3000 BASINS AND TESTED ON 

CAMELS; BLUE LINE: TRAINED AND TESTED ON 523 CAMELS BASINS; BLACK-DOTTED LINE: TRAINED AND TESTED 

ON >3000 BASINS (INCLUDING REFERENCE BASINS AND BASINS WITH MAJOR RESERVOIRS). THE RIGHT GRAPH 

COMPARES LSTM AND SAC-SMA OVER THE CAMELS DATASET. A CURVE TOWARD THE RIGHT-HAND SIDE IS 

BETTER. 

 

   

Data Source: Author’s calculation 

 

Figure 22 

COMPARISONS OF SIMULATED VS. OBSERVED TIME SERIES FOR LSTM AND SAC-SMA. THE TOP PANEL SHOWS THE 

DAILY TIME SERIES. THE SECOND PANEL SHOWS THE DISTRIBUTION OF STREAMFLOW (FLOW DURATION CURVE). 

THE THIRD PANEL SHOWS THE EXCEEDANCE PROBABILITY CURVE AND DESCRIBES THE FREQUENCY (X-AXIS, IN 
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PERCENTAGE) OF THE TIME A GIVEN FLOW MAGNITUDE (Y-AXIS) IS EXCEEDED. THE BOTTOM PANEL SHOWS THE 

FLOW DURATION CURVE ZOOMED TO THE EXTREME PART. 
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Data Source: Author’s calculation 

B.2.4. IMPLICATIONS 

We have trained a powerful deep learning neural network that outputs daily discharge value at unprecedentedly 

high (yet still not perfect) accuracy. We customized and fine-tuned it for the Susquehanna River Basin. The 

implications of the work for the insurance industry are trifold: (1) Improved predictions of streamflow with the help 

of DL will soon be available widely for large spatial scales; (2) Even given the state-of-the-art models, precisely 

predicting the magnitudes of the events is still going to be challenging given the available data quality (especially of 

precipitation). Predicting the distributions of the flow will be a little easier but still not perfect. This could serve as a 

starting point for thinking about nationwide strategies for flood insurance modeling. 

There are also limitations. For gauged locations, the results suggest there still exists a noticeable gap between 

observed and simulated, even if it is now much narrower than the traditional hydrologic model (a site-by-site 

calibrated SAC-SMA here serves as the example). Hence, where long-term records exist, the observed data remains 

the best source of information for flood inundation modeling for gauged locations, and this is what we choose to 

demonstrate in Section 3. Deep learning models can fill the gap for locations away from gauges. 
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Appendix C: More About Elevation Difference as a Rating Factor 

In this appendix, we present some more evidence supporting the use of Model II derived in Section 5 when 

elevation difference is available. 

C.1 GRAPHICAL INSPECTION 

We inspect the distributions of claim amounts paid on building damage for properties with different levels of 

elevation difference. The graphs in Figure 23, from top to bottom, are the histograms of the claim amounts for 

elevation differences ranging from -2 to 1.5 feet, from 1.5 to 5 feet, 5 to 8.5 feet, and 8.5 to 12 feet. 

Figure 23 

HISTOGRAMS GROUPED BY ELEVATION DIFFERENCES OF THE PROPERTIES. 

 

Data Source: Federal Emergency Management Agency (FEMA) and U.S. Bureau of Labor Statistics (BLS) 

Figure 23 seems to suggest that, given that there is a flood damage to the building, those with larger elevation 

difference tend to experience smaller losses, with the claim distribution concentrated more on the left. This is 

consistent with the observations by Wing et al. (2020). 

C.2 RESULTS FROM REGRESSION TREE AND RANDOM FOREST 

As is observed in the mixed beta model, interactions of variables can play important roles in estimating the flood 

damage. To account for the interactions, we employ a regression tree as an alternative model to investigate the 

significance of variables such as elevation difference in determining the flood risk. 

We first use a single tree to explore if the splits are logical. We use a tree with maximum depth of 15, complexity 

parameter of 0.0005 and a minimum bucket size of 5. After inspecting splits with elevation difference, we do 

observe that more elevated building experience less damage. 

Next, we use random forest to model damage to get a more consistent result and to see how important elevation 

difference is compared to other features. The random forest method can only take complete data. Thus, we remove 
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two insignificant features from previous models and all the claims with missing data. We are remained with 30,910 

claims for random forest modeling. 

The forest has 200 trees, each built with 60% of the claims and each split uses 6 out of 8 of the variables. The trees 

stop splitting with a minimum number of 100 claims in each leaf. The variable importance plots below show that, 

based on importance measurements using both the increase in MSE and increase in node purity, elevation 

difference is among the factors with greatest impact on building damage. 

Figure 24 

VARIABLE IMPORTANCE PLOTS, WITH THE LEFT PLOT SHOWING THE PERCENTAGE INCREASE IN MSE AND THE 

RIGHT PLOT SHOWING THE INCREASE IN NODE PURITY. 

 

Data Source: Federal Emergency Management Agency (FEMA)  
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