
Tables for 
Exam STAM 



The reading material for Exam STAM includes a variety of textbooks.  
Each text has a set of probability distributions that are used in its readings.  
For those distributions used in more than one text, the choices of 
parameterization may not be the same in all of the books.  This may be of 
educational value while you study, but could add a layer of uncertainty in 
the examination.  For this latter reason, we have adopted one set of 
parameterizations to be used in examinations.  This set will be based 
on Appendices A & B of Loss Models:  From Data to Decisions by 
Klugman, Panjer and Willmot.  A slightly revised version of these 
appendices is included in this note.  A copy of this note will also be distributed 
to each candidate at the examination. 

Each text also has its own system of dedicated notation and 
terminology. Sometimes these may conflict.  If alternative meanings could 
apply in an examination question, the symbols will be defined.  

For Exam STAM, in addition to the abridged table from Loss Models, 
sets of values from the standard normal and chi-square distributions 
will be available for use in examinations.  These are also included in this note. 

When using the normal distribution, choose the nearest z-value to find the 
probability, or if the probability is given, choose the nearest z-value.  No 
interpolation should be used.  

Example:  If the given z-value is 0.759, and you need to find Pr(Z < 0.759) from 
the normal distribution table, then choose the probability for z-value = 0.76: Pr(Z 
< 0.76) = 0.7764. 

When using the normal approximation to a discrete distribution, use the 
continuity correction. 

The density function for the standard normal distribution is 
21
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Appendix A

An Inventory of Continuous Distributions

A.1 Introduction

The incomplete gamma function is given by

Γ(α;x) =
1

Γ(α)

∫ x

0
tα−1e−t dt, α > 0, x > 0,

with

Γ(α) =

∫ ∞
0

tα−1e−t dt, α > 0.

Also, define

G(α;x) =

∫ ∞
x

tα−1e−t dt, x > 0.

At times we will need this integral for nonpositive values of α. Integration by parts produces
the relationship

G(α;x) = −x
αe−x

α
+

1

α
G(α+ 1;x).

This process can be repeated until the first argument of G is α + k, a positive number.
Then it can be evaluated from

G(α+ k;x) = Γ(α+ k)[1− Γ(α+ k;x)].

The incomplete beta function is given by

β(a, b;x) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1 dt, a > 0, b > 0, 0 < x < 1.
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A.2 Transformed Beta Family

A.2.2 Three-Parameter Distributions

A.2.2.1 Generalized Pareto—α, θ, τ

f(x) =
Γ(α+ τ)

Γ(α)Γ(τ)

θαxτ−1

(x+ θ)α+τ
, F (x) = β(τ, α;u), u =

x

x+ θ
,

E[Xk] =
θkΓ(τ + k)Γ(α− k)

Γ(α)Γ(τ)
, −τ < k < α,

E[Xk] =
θkτ(τ + 1) · · · (τ + k − 1)

(α− 1) · · · (α− k)
if k is a positive integer,

E[(X ∧ x)k] =
θkΓ(τ + k)Γ(α− k)

Γ(α)Γ(τ)
β(τ + k, α− k;u) + xk[1− F (x)], k > −τ,

Mode = θ
τ − 1

α+ 1
, τ > 1, else 0.

A.2.2.2 Burr—α, θ, γ

(Burr Type XII, Singh–Maddala)

f(x) =
αγ(x/θ)γ

x[1 + (x/θ)γ ]α+1
, F (x) = 1− uα, u =

1

1 + (x/θ)γ
,

VaRp(X) = θ[(1− p)−1/α − 1]1/γ ,

E[Xk] =
θkΓ(1 + k/γ)Γ(α− k/γ)

Γ(α)
, −γ < k < αγ,

E[(X ∧ x)k] =
θkΓ(1 + k/γ)Γ(α− k/γ)

Γ(α)
β(1 + k/γ, α− k/γ; 1− u) + xkuα, k > −γ,

Mode = θ

(
γ − 1

αγ + 1

)1/γ

, γ > 1, else 0.
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A.2.2.3 Inverse Burr—τ, θ , γ

f(x) =
τγ(x/θ)γτ

x[1 + (x/θ)γ ]τ+1
, F (x) = uτ , u =

(x/θ)γ

1 + (x/θ)γ
,

VaRp(X) = θ(p−1/τ − 1)−1/γ ,

E[Xk] =
θkΓ(τ + k/γ)Γ(1− k/γ)

Γ(τ)
, −τγ < k < γ,

E[(X ∧ x)k] =
θkΓ(τ + k/γ)Γ(1− k/γ)

Γ(τ)
β(τ + k/γ, 1− k/γ;u) + xk[1− uτ ], k > −τγ,

Mode = θ

(
τγ − 1

γ + 1

)1/γ

, τγ > 1, else 0.

A.2.3 Two-Parameter Distributions

A.2.3.1 Pareto—α, θ

(Pareto Type II, Lomax)

f(x) =
αθα

(x+ θ)α+1
, F (x) = 1−

(
θ

x+ θ

)α
,

VaRp(X) = θ[(1− p)−1/α − 1],

E[Xk] =
θkΓ(k + 1)Γ(α− k)

Γ(α)
, −1 < k < α,

E[Xk] =
θkk!

(α− 1) · · · (α− k)
, if k is a positive integer,

E[X ∧ x] =
θ

α− 1

[
1−

(
θ

x+ θ

)α−1]
, α 6= 1,

E[X ∧ x] = −θ ln

(
θ

x+ θ

)
, α = 1,

TVaRp(X) = VaRp(X) +
θ(1− p)−1/α

α− 1
, α > 1,

E[(X ∧ x)k] =
θkΓ(k + 1)Γ(α− k)

Γ(α)
β[k + 1, α− k;x/(x+ θ)]

+xk
(

θ

x+ θ

)α
, k > −1, k 6= α,

E[(X ∧ x)α] = θα
(

x

x+ θ

)α [
1 + α

∞∑
n=0

[x/(x+ θ)]n+1

α+ n+ 1

]
,

Mode = 0.
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A.2.3.2 Inverse Pareto—τ, θ

f(x) =
τθxτ−1

(x+ θ)τ+1
, F (x) =

(
x

x+ θ

)τ
,

VaRp(X) = θ[p−1/τ − 1]−1,

E[Xk] =
θkΓ(τ + k)Γ(1− k)

Γ(τ)
, −τ < k < 1,

E[Xk] =
θk(−k)!

(τ − 1) · · · (τ + k)
if k is a negative integer,

E[(X ∧ x)k] = θkτ

∫ x/(x+θ)

0
yτ+k−1(1− y)−kdy + xk

[
1−

(
x

x+ θ

)τ]
, k > −τ,

Mode = θ
τ − 1

2
, τ > 1, else 0.

A.2.3.3 Loglogistic—γ, θ

(Fisk)

f(x) =
γ(x/θ)γ

x[1 + (x/θ)γ ]2
, F (x) = u, u =

(x/θ)γ

1 + (x/θ)γ
,

VaRp(X) = θ(p−1 − 1)−1/γ ,

E[Xk] = θkΓ(1 + k/γ)Γ(1− k/γ), −γ < k < γ,

E[(X ∧ x)k] = θkΓ(1 + k/γ)Γ(1− k/γ)β(1 + k/γ, 1− k/γ;u) + xk(1− u), k > −γ,

Mode = θ

(
γ − 1

γ + 1

)1/γ

, γ > 1, else 0.

A.2.3.4 Paralogistic—α, θ

This is a Burr distribution with γ = α.

f(x) =
α2(x/θ)α

x[1 + (x/θ)α]α+1
, F (x) = 1− uα, u =

1

1 + (x/θ)α
,

VaRp(X) = θ[(1− p)−1/α − 1]1/α,

E[Xk] =
θkΓ(1 + k/α)Γ(α− k/α)

Γ(α)
, −α < k < α2,

E[(X ∧ x)k] =
θkΓ(1 + k/α)Γ(α− k/α)

Γ(α)
β(1 + k/α, α− k/α; 1− u) + xkuα, k > −α,

Mode = θ

(
α− 1

α2 + 1

)1/α

, α > 1, else 0.
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A.2.3.5 Inverse Paralogistic—τ, θ

This is an inverse Burr distribution with γ = τ .

f(x) =
τ2(x/θ)τ

2

x[1 + (x/θ)τ ]τ+1
, F (x) = uτ , u =

(x/θ)τ

1 + (x/θ)τ
,

VaRp(X) = θ(p−1/τ − 1)−1/τ ,

E[Xk] =
θkΓ(τ + k/τ)Γ(1− k/τ)

Γ(τ)
, −τ2 < k < τ,

E[(X ∧ x)k] =
θkΓ(τ + k/τ)Γ(1− k/τ)

Γ(τ)
β(τ + k/τ, 1− k/τ ;u) + xk[1− uτ ], k > −τ2,

Mode = θ (τ − 1)1/τ , τ > 1, else 0.

A.3 Transformed Gamma Family

A.3.2 Two-Parameter Distributions

A.3.2.1 Gamma—α, θ

(When α = n/2 and θ = 2, it is a chi-square distribution with n degrees of freedom.)

f(x) =
(x/θ)αe−x/θ

xΓ(α)
, F (x) = Γ(α;x/θ),

E[Xk] =
θkΓ(α+ k)

Γ(α)
, k > −α,

E[Xk] = θk(α+ k − 1) · · ·α if k is a positive integer,

E[(X ∧ x)k] =
θkΓ(α+ k)

Γ(α)
Γ(α+ k;x/θ) + xk[1− Γ(α;x/θ)], k > −α,

E[(X ∧ x)k] = α(α+ 1) · · · (α+ k − 1)θkΓ(α+ k;x/θ)

+xk[1− Γ(α;x/θ)] if k is a positive integer,

M(t) = (1− θt)−α, t < 1/θ,

Mode = θ(α− 1), α > 1, else 0.
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A.3.2.2 Inverse Gamma—α, θ

(Vinci)

f(x) =
(θ/x)αe−θ/x

xΓ(α)
, F (x) = 1− Γ(α; θ/x),

E[Xk] =
θkΓ(α− k)

Γ(α)
, k < α,

E[Xk] =
θk

(α− 1) · · · (α− k)
if k is a positive integer,

E[(X ∧ x)k] =
θkΓ(α− k)

Γ(α)
[1− Γ(α− k; θ/x)] + xkΓ(α; θ/x)

=
θkG(α− k; θ/x)

Γ(α)
+ xkΓ(α; θ/x), all k,

Mode = θ/(α+ 1).

A.3.2.3 Weibull—θ, τ

f(x) =
τ(x/θ)τe−(x/θ)

τ

x
, F (x) = 1− e−(x/θ)τ ,

VaRp(X) = θ[− ln(1− p)]1/τ ,
E[Xk] = θkΓ(1 + k/τ), k > −τ,

E[(X ∧ x)k] = θkΓ(1 + k/τ)Γ[1 + k/τ ; (x/θ)τ ] + xke−(x/θ)
τ
, k > −τ,

Mode = θ

(
τ − 1

τ

)1/τ

, τ > 1, else 0.

A.3.2.4 Inverse Weibull—θ, τ

(log-Gompertz)

f(x) =
τ(θ/x)τe−(θ/x)

τ

x
, F (x) = e−(θ/x)

τ
,

VaRp(X) = θ(− ln p)−1/τ ,

E[Xk] = θkΓ(1− k/τ), k < τ,

E[(X ∧ x)k] = θkΓ(1− k/τ){1− Γ[1− k/τ ; (θ/x)τ ]}+ xk
[
1− e−(θ/x)τ

]
,

= θkG[1− k/τ ; (θ/x)τ ] + xk
[
1− e−(θ/x)τ

]
, all k,

Mode = θ

(
τ

τ + 1

)1/τ

.
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A.3.3 One-Parameter Distributions

A.3.3.1 Exponential—θ

f(x) =
e−x/θ

θ
, F (x) = 1− e−x/θ,

VaRp(X) = −θ ln(1− p),
E[Xk] = θkΓ(k + 1), k > −1,

E[Xk] = θkk! if k is a positive integer,

E[X ∧ x] = θ(1− e−x/θ),
TVaRp(X) = −θ ln(1− p) + θ,

E[(X ∧ x)k] = θkΓ(k + 1)Γ(k + 1;x/θ) + xke−x/θ, k > −1,

E[(X ∧ x)k] = θkk!Γ(k + 1;x/θ) + xke−x/θ if k > −1 is an integer,

M(z) = (1− θz)−1, z < 1/θ,

Mode = 0.

A.3.3.2 Inverse Exponential—θ

f(x) =
θe−θ/x

x2
, F (x) = e−θ/x,

VaRp(X) = θ(− ln p)−1,

E[Xk] = θkΓ(1− k), k < 1,

E[(X ∧ x)k] = θkG(1− k; θ/x) + xk(1− e−θ/x), all k,

Mode = θ/2.

A.5 Other Distributions

A.5.1.1 Lognormal—µ,σ

(µ can be negative)

f(x) =
1

xσ
√

2π
exp(−z2/2) = φ(z)/(σx), z =

lnx− µ
σ

,

F (x) = Φ(z),

E[Xk] = exp
(
kµ+ 1

2k
2σ2
)
,

E[(X ∧ x)k] = exp
(
kµ+ 1

2k
2σ2
)

Φ

(
lnx− µ− kσ2

σ

)
+ xk[1− F (x)],

Mode = exp(µ− σ2).
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A.5.1.2 Inverse Gaussian—µ, θ

f(x) =

(
θ

2πx3

)1/2

exp

(
−θz

2

2x

)
, z =

x− µ
µ

,

F (x) = Φ

[
z

(
θ

x

)1/2
]

+ exp

(
2θ

µ

)
Φ

[
−y
(
θ

x

)1/2
]
, y =

x+ µ

µ
,

E[X] = µ, Var[X] = µ3/θ,

E[Xk] =

k−1∑
n=0

(k + n− 1)!

(k − n− 1)!n!

µn+k

(2θ)n
, k = 1, 2, . . . ,

E[X ∧ x] = x− µzΦ

[
z

(
θ

x

)1/2
]
− µy exp(2θ/µ)Φ

[
−y
(
θ

x

)1/2
]
,

M(z) = exp

[
θ

µ

(
1−

√
1− 2µ2

θ
z

)]
, z <

θ

2µ2
.

A.5.1.3 Log-t—r, µ, σ

(µ can be negative) Let Y have a t distribution with r degrees of freedom. Then X =
exp(σY +µ) has the log-t distribution. Positive moments do not exist for this distribution.
Just as the t distribution has a heavier tail than the normal distribution, this distribution
has a heavier tail than the lognormal distribution.

f(x) =

Γ

(
r + 1

2

)
xσ
√
πrΓ

(r
2

)[
1 +

1

r

(
lnx− µ

σ

)2
](r+1)/2

,

F (x) = Fr

(
lnx− µ

σ

)
with Fr(t) the cdf of a t distribution with r df,

F (x) =



1

2
β

r2 , 1

2
;

r

r +

(
lnx− µ

σ

)2

 , 0 < x ≤ eµ,

1− 1

2
β

r2 , 1

2
;

r

r +

(
lnx− µ

σ

)2

 , x ≥ eµ.
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A.5.1.4 Single-Parameter Pareto—α, θ

f(x) =
αθα

xα+1
, x > θ, F (x) = 1−

(
θ

x

)α
, x > θ,

VaRp(X) = θ(1− p)−1/α,

E[Xk] =
αθk

α− k
, k < α,

E[(X ∧ x)k] =
αθk

α− k
− kθα

(α− k)xα−k
, x ≥ θ, k 6= α,

E[(X ∧ x)α] = θα[1 + α ln(x/θ)],

TVaRp(X) =
αθ(1− p)−1/α

α− 1
, α > 1,

Mode = θ.

Note: Although there appear to be two parameters, only α is a true parameter. The
value of θ must be set in advance.

A.6 Distributions with Finite Support

For these two distributions, the scale parameter θ is assumed known.

A.6.1.1 Generalized Beta—a, b, θ, τ

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
ua(1− u)b−1

τ

x
, 0 < x < θ, u = (x/θ)τ ,

F (x) = β(a, b;u),

E[Xk] =
θkΓ(a+ b)Γ(a+ k/τ)

Γ(a)Γ(a+ b+ k/τ)
, k > −aτ,

E[(X ∧ x)k] =
θkΓ(a+ b)Γ(a+ k/τ)

Γ(a)Γ(a+ b+ k/τ)
β(a+ k/τ, b;u) + xk[1− β(a, b;u)].
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A.6.1.2 Beta—a, b, θ

The case θ = 1 has no special name but is the commonly used version of this distribution.

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
ua(1− u)b−1

1

x
, 0 < x < θ, u = x/θ,

F (x) = β(a, b;u),

E[Xk] =
θkΓ(a+ b)Γ(a+ k)

Γ(a)Γ(a+ b+ k)
, k > −a,

E[Xk] =
θka(a+ 1) · · · (a+ k − 1)

(a+ b)(a+ b+ 1) · · · (a+ b+ k − 1)
if k is a positive integer,

E[(X ∧ x)k] =
θka(a+ 1) · · · (a+ k − 1)

(a+ b)(a+ b+ 1) · · · (a+ b+ k − 1)
β(a+ k, b;u)

+xk[1− β(a, b;u)].
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Appendix B

An Inventory of Discrete Distributions

B.1 Introduction

The 16 models presented in this appendix fall into three classes. The divisions are based
on the used to compoute the probabilities. For some of the more familiar distributions
these formulas will look different from the ones you may have learned, but they produce
the same probabilities. After each name, the parameters are given. All parameters are
positive unless otherwise indicated. In all cases, pk is the probability of observing k losses.
inxx For finding moments, the most convenient form is to give the factorial moments. The
jth factorial moment is µ(j) = E[N(N − 1) · · · (N − j + 1)]. We have E[N ] = µ(1) and
Var(N) = µ(2) + µ(1) − µ2(1).

The estimators presented are not intended to be useful estimators but, rather, provide
starting values for maximizing the likelihood (or other) function. For determining starting
values, the following quantities are used (where nk is the observed frequency at k [if, for
the last entry, nk represents the number of observations at k or more, assume it was at
exactly k] and n is the sample size):

µ̂ =
1

n

∞∑
k=1

knk, σ̂2 =
1

n

∞∑
k=1

k2nk − µ̂2.

When the method of moments is used to determine the starting value, a circumflex (e.g., λ̂)
is used. For any other method, a tilde (e.g., λ̃) is used. When the starting value formulas
do not provide admissible parameter values, a truly crude guess is to set the product of
all λ and β parameters equal to the sample mean and set all other parameters equal to 1.
If there are two λ or β parameters, an easy choice is to set each to the square root of the
sample mean.

The last item presented is the probability generating function,

P (z) = E[zN ].
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B.2 The (a, b, 0) Class

The distributions in this class have support on 0, 1, . . . . For this class, a particular distri-
bution is specified by setting p0 and then using pk = (a+ b/k)pk−1. Specific members are
created by setting p0, a, and b. For any member, µ(1) = (a+ b)/(1− a), and for higher j,
µ(j) = (aj + b)µ(j−1)/(1− a). The variance is (a+ b)/(1− a)2.

B.2.1.1 Poisson—λ

p0 = e−λ, a = 0, b = λ, pk =
e−λλk

k!
,

E[N ] = λ, Var[N ] = λ,

λ̂ = µ̂,

P (z) = eλ(z−1).

B.2.1.2 Geometric—β

p0 =
1

1 + β
, a =

β

1 + β
, b = 0, pk =

βk

(1 + β)k+1
,

E[N ] = β, Var[N ] = β(1 + β),

β̂ = µ̂,

P (z) = [1− β(z − 1)]−1, −(1 + 1/β) < z < 1 + 1/β.

This is a special case of the negative binomial with r = 1.

B.2.1.3 Binomial—q,m

(0 < q < 1, m an integer)

p0 = (1− q)m, a = − q

1− q
, b =

(m+ 1)q

1− q
,

pk =

(
m

k

)
qk(1− q)m−k, k = 0, 1, . . . ,m,

E[N ] = mq, Var[N ] = mq(1− q),
q̂ = µ̂/m,

P (z) = [1 + q(z − 1)]m.
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B.2.1.4 Negative Binomial—β, r

p0 = (1 + β)−r, a =
β

1 + β
, b =

(r − 1)β

1 + β
,

pk =
r(r + 1) · · · (r + k − 1)βk

k!(1 + β)r+k
,

E[N ] = rβ, Var[N ] = rβ(1 + β),

β̂ =
σ̂2

µ̂
− 1, r̂ =

µ̂2

σ̂2 − µ̂
,

P (z) = [1− β(z − 1)]−r, −(1 + 1/β) < z < 1 + 1/β.

B.3 The (a, b, 1) Class

To distinguish this class from the (a, b, 0) class, the probabilities are denoted Pr(N =
k) = pMk or Pr(N = k) = pTk depending on which subclass is being represented. For this
class, pM0 is arbitrary (i.e., it is a parameter), and then pM1 or pT1 is a specified function
of the parameters a and b. Subsequent probabilities are obtained recursively as in the
(a, b, 0) class: pMk = (a + b/k)pMk−1, k = 2, 3, . . . , with the same recursion for pTk . There
are two subclasses of this class. When discussing their members, we often refer to the
“corresponding” member of the (a, b, 0) class. This refers to the member of that class with
the same values for a and b. The notation pk will continue to be used for probabilities for
the corresponding (a, b, 0) distribution.

B.3.1 The Zero-Truncated Subclass

The members of this class have pT0 = 0, and therefore it need not be estimated. These
distributions should only be used when a value of zero is impossible. The first factorial
moment is µ(1) = (a+b)/[(1−a)(1−p0)], where p0 is the value for the corresponding member
of the (a, b, 0) class. For the logarithmic distribution (which has no corresponding member),
µ(1) = β/ ln(1 + β). Higher factorial moments are obtained recursively with the same
formula as with the (a, b, 0) class. The variance is (a+b)[1−(a+b+1)p0]/[(1−a)(1−p0)]2.
For those members of the subclass that have corresponding (a, b, 0) distributions, pTk =
pk/(1− p0).

14



B.3.1.1 Zero-Truncated Poisson—λ

pT1 =
λ

eλ − 1
, a = 0, b = λ,

pTk =
λk

k!(eλ − 1)
,

E[N ] = λ/(1− e−λ), Var[N ] = λ[1− (λ+ 1)e−λ]/(1− e−λ)2,

λ̃ = ln(nµ̂/n1),

P (z) =
eλz − 1

eλ − 1
.

B.3.1.2 Zero-Truncated Geometric—β

pT1 =
1

1 + β
, a =

β

1 + β
, b = 0,

pTk =
βk−1

(1 + β)k
,

E[N ] = 1 + β, Var[N ] = β(1 + β),

β̂ = µ̂− 1,

P (z) =
[1− β(z − 1)]−1 − (1 + β)−1

1− (1 + β)−1
, −(1 + 1/β) < z < 1 + 1/β.

This is a special case of the zero-truncated negative binomial with r = 1.

B.3.1.3 Logarithmic—β

pT1 =
β

(1 + β) ln(1 + β)
, a =

β

1 + β
, b = − β

1 + β
,

pTk =
βk

k(1 + β)k ln(1 + β)
,

E[N ] = β/ ln(1 + β), Var[N ] =
β[1 + β − β/ ln(1 + β)]

ln(1 + β)
,

β̃ =
nµ̂

n1
− 1 or

2(µ̂− 1)

µ̂
,

P (z) = 1− ln[1− β(z − 1)]

ln(1 + β)
, −(1 + 1/β) < z < 1 + 1/β.

This is a limiting case of the zero-truncated negative binomial as r → 0.
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B.3.1.4 Zero-Truncated Binomial—q,m,

(0 < q < 1, m an integer)

pT1 =
m(1− q)m−1q
1− (1− q)m

, a = − q

1− q
, b =

(m+ 1)q

1− q
,

pTk =

(
m
k

)
qk(1− q)m−k

1− (1− q)m
, k = 1, 2, . . . ,m,

E[N ] =
mq

1− (1− q)m
,

Var[N ] =
mq[(1− q)− (1− q +mq)(1− q)m]

[1− (1− q)m]2
,

q̃ =
µ̂

m
,

P (z) =
[1 + q(z − 1)]m − (1− q)m

1− (1− q)m
, .

B.3.1.5 Zero-Truncated Negative Binomial—β, r (r > −1, r 6= 0)

pT1 =
rβ

(1 + β)r+1 − (1 + β)
, a =

β

1 + β
, b =

(r − 1)β

1 + β
,

pTk =
r(r + 1) · · · (r + k − 1)

k![(1 + β)r − 1]

(
β

1 + β

)k
,

E[N ] =
rβ

1− (1 + β)−r
,

Var[N ] =
rβ[(1 + β)− (1 + β + rβ)(1 + β)−r]

[1− (1 + β)−r]2
,

β̃ =
σ̂2

µ̂
− 1, r̃ =

µ̂2

σ̂2 − µ̂
,

P (z) =
[1− β(z − 1)]−r − (1 + β)−r

1− (1 + β)−r
, −(1 + 1/β) < z < 1 + 1/β.

This distribution is sometimes called the extended truncated negative binomial distri-
bution because the parameter r can extend below zero.
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B.3.2 The Zero-Modified Subclass

A zero-modified distribution is created by starting with a truncated distribution and then
placing an arbitrary amount of probability at zero. This probability, pM0 , is a parameter.
The remaining probabilities are adjusted accordingly. Values of pMk can be determined
from the corresponding zero-truncated distribution as pMk = (1− pM0 )pTk or from the corre-
sponding (a, b, 0) distribution as pMk = (1 − pM0 )pk/(1 − p0). The same recursion used for
the zero-truncated subclass applies.

The mean is 1− pM0 times the mean for the corresponding zero-truncated distribution.
The variance is 1−pM0 times the zero-truncated variance plus pM0 (1−pM0 ) times the square
of the zero-truncated mean. The probability generating function is PM (z) = pM0 + (1 −
pM0 )P (z), where P (z) is the probability generating function for the corresponding zero-
truncated distribution.

The maximum likelihood estimator of pM0 is always the sample relative frequency at
zero.
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