2019 Predictive Analytics Symposium

Session 18: AP - Using Predictive Models for Life Insurance Assumptions

SOA Antitrust Compliance Guidelines SOA Presentation Disclaimer

Using Predictive Models for Life Insurance Assumptions

Dihui Lai, PhD, ASA

Sept. 2019

Overview

- Assumptions of life insurance
- Modeling structure: A/E model v.s. incident rate model
- Case study: B.E. model
- Case study: principle based reserve model
- Case study: pricing assumption settings

Assumptions of Life Insurance

- Pricing
- Statutory reserve
- Best estimate (B.E.)
- Lapse

A/E Model v.s. Incident Rate Model

• A/E model:

- Use this type of models to understand the deviation of actual experience from the current assumption settings.
- Example model structure:

 $\circ \overline{A} = \overline{E} * e^{X\beta}$

• $e^{X\beta}$ is interpreted as the overall model suggested adjustment (msadj)

o msadj = $\exp(X_{age}\beta_{age})\exp(X_{gender}\beta_{gender})\dots\exp(X_{cmpy_{grp}}\beta_{cmpy_{grp}})$

- Incident rate model
 - Use this type of models to understand mortality when no prior knowledges of assumption exist.
 - Example model structure

 $\circ \overline{A} = \overline{EXPOSURE} * e^{X\beta}$

 $\circ e^{X\beta}$ is interpreted as the adjustment needed for each factor that is included in the model

Basic Modeling Techniques

Regression model v.s. advanced machine leaning algorithms

- Generalized linear model
- Random forest; neural network (are they really needed?)
- Variable selection criterion: AIC; p-value
 - Use AIC to balance the measure between model complexities and goodness-of-fit.
 - Use p-value to access the statistic significance of each individual variable.
 - Business implication, ease of implementation and compliance (e.g. degree of freedom of modeling v.s. implementation).
- Feature engineering
 - Spline; polynomial transformation;
 - Piecewise;
 - Regrouping

Case Study: B.E. Mortality Study

- Background
 - The actuarial team has an existing B.E. mortality assumption setting and would like to verify it using predictive modeling.
- Challenges
 - The current assumption setting is table-based and each table may contain adjustments on multiple variables. How can we design a modeling 'process' to assess the current adjustments?
 - Interpretability is critical.
 - Large data set that cannot be efficiently handled with open source R packages.
- Solution
 - A multi-stage model process to evaluate the existing adjustment tables one-by-one.
 - Hadoop based parallel computing.

Multi-Stage Model (Simplified)

Variables	Base-model	Stage-1 Model	Stage-2 Model	
Reference Assumption	Assumption-Base	Base*Table1	Base*Table1*Table2	B.E.
Age	✓	-	-	-
Gender	-	-	-	-
Var1	✓	\checkmark	-	-
Var2	\checkmark	\checkmark	✓	-
•				
VarN	\checkmark	-	-	-

Handling Big Data Using Parallel Computing

- Modeling process requires hundreds of iteration or even more.
- The capability of building models quickly is practically very important
- Allows real-time communication and getting feedbacks from audience.
- Speed comparison on a data of size ~ 40 GB; ~ 57 millions records

System	SQL Query	GLM Model
Terminal Server (Windows Server)	90 seconds	350 seconds
Distributed Cluster System (Hadoop Based)	5+ seconds	12 seconds

Learnings/Conclusions

- Designed a diagnostic modeling 'process' to assess current B.E. assumption settings.
- Discuss and accommodate changes when appropriate.
- Only a fraction of variables show statistic significance, implying the current assumption is mostly efficient.
- Certain underwriting class shows experience deviating from current assumption and the model suggests for adjustments.
- Downward trends against a few time variables, including calendar year and issue year.
 Does this imply mortality improvement or is it due to newer policies?
- Be patient and collect more data.

Case Study: Principle Base Reserve

Background

- Generates PBR mortality assumption for valuation team, using predictive model.
- Would like to use existing industry table as the reference line.

Challenges

- No prior works.
- A purely model-based solution may overlook the business implications and could lead to overfitting.

Solution

- An A/E model that can generate adjustment table.
- Work with the actuarial team to incorporate their insights to avoid 'overfitting'.

Learnings/Conclusions

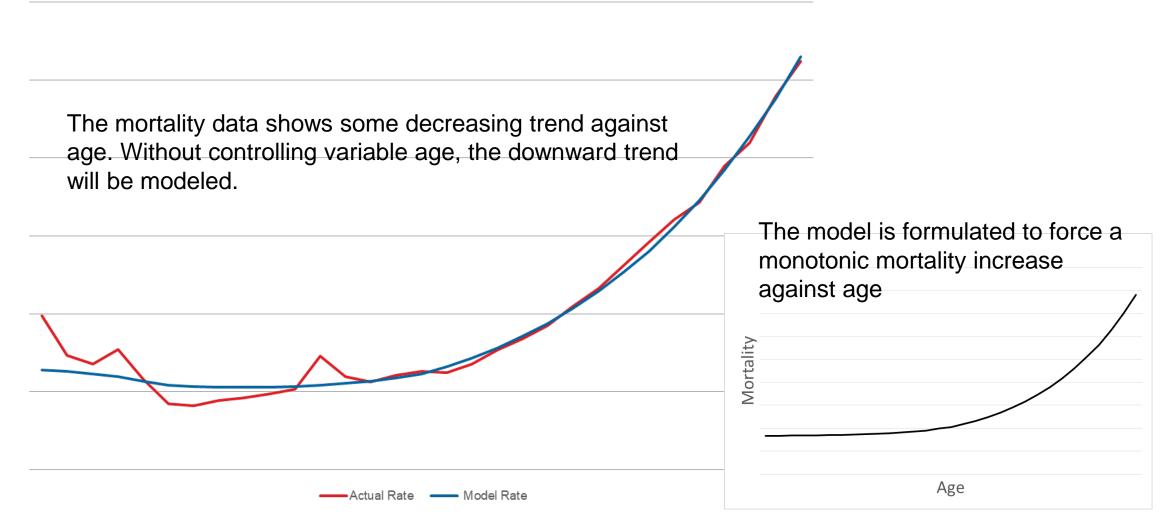
- Standard A/E model provides a good starting point
 But …
- Considering model structure beyond statistics
 - o Linear trend v.s. step-wise adjustment.
 - Handling data with thin exposure: theory v.s. practice.
- Seeming noise v.s. actual noise e.g. impact of anti-selection; contestable period.
- Combine modeling technique with actuarial judgement: e.g. grouping of categorical variables.

Case Study: Use Predictive Model for Pricing Assumption

- Background
 - An actuarial group would like to use predictive model to create a new price assumption for their products.
- Challenges
 - Need to make sure the model is not crazily different from the existing assumptions.
 - Data is not clean and shows puzzling patterns that could lead to biases.
- Solution
 - Build an incident model.
 - Use statistics to smooth out small scale issues and avoid potential biases caused by data.
 - Extensive validation process to address actuarial concerns over multiple items.

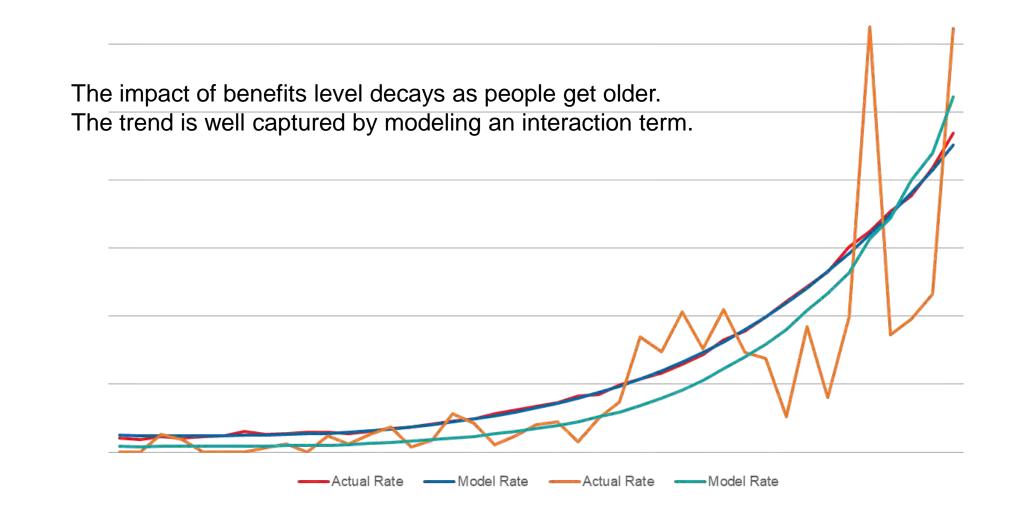
Puzzling Mortality Decreasing over Age

Mortality Data



The Power of Modeling Interaction Terms

Mortality v.s. Age-Benefit



Leanings/Conclusions

- Build two incident models.
- The mortality experience for certain age-bands shows a downward trend. The model needs to be structured to correct this absurd trend.
- There is a data cohort that contains a few thousands of valid claims but its "product" cannot be figured out. Can we simply drop the claims?
- The power of interaction terms: benefit amount : age.
- Compare existing assumption settings and be comfortable with the model: validate beyond statistic metrics.
- Assess the implication on premium/profits.

- Setting assumption is not a button-click modeling practice.
- Multiple iterations are generally needed.
- Convert ideas into mathematical language: formulate your model properly to assess the questions.
- It is critical to communicate with actuaries to build a model that can be implemented.
- Statistical significance v.s. actuarial significance.
- Make changes as needed. Be open-minded.

