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Abstract 

As artificial intelligence (AI) continues to refashion the insurance, finance, and high-tech 
industries, the integration of deep learning modeling tools such as Convolutional Neural 
Networks (CNNs) into traditional modeling enables more accurate and scalable solutions 
in newly creative contexts. This study investigates the application of CNNs for automated 
product-imperfection detection and classification in an applicable and appealing 
industrial standard. 

Leveraging exclusive, proprietary image data from an industry partner, we trained and 
evaluated an optimized CNN model to classify a variety of imperfections of a mass-
production metal foils (made of essential material for high tech manufacturing industries 
including semiconductors). Unlike traditional machine learning methods, CNN can 
extract features directly from raw image data in lack of processed or digitalized data; 
thus, it can enhance model complexity, flexibility, and output prediction accuracy. The 
architectural strengths of CNN—comprising of simple convolutional and pooling 
layers—exemplify robustness against image variability, including shifts, rotations, and 
scaling, which in turn is critical and desirable in real-world manufacturing needs. 

Our research findings with CNN implementation propose that predictive analytics, 
traditionally used in actuarial science, insurance, and finance, can be expanded and 
integrated through deep learning techniques, with a need for utilizing or calling for image 
input. It is notable that Health Insurance, Property & Casualty Insurance, and Life 
Insurance can potentially incorporate image data for risk classification and rate setting. 
Our findings offer not only practical insights for model implementation guidance for 
researchers and professionals in predictive modeling but also reveal an opportunity to 
investigate AI for insightful and effective landscape reshaping of actuarial modeling 
world. 

 

Introduction 

As artificial intelligence (AI) continues to transform the modern life of human society, it 
can contribute to the insurance industry in ways modeled from high-tech sectors who are 
leveraging AI tools—such as deep learning—to enhance product quality. Among these 
deep learning tools, Neural Network (NN) models have emerged as powerful resources. 
This paper explores the integration of NN training processes to optimize the accuracy of 
product imperfection classification. 

With exclusive access to proprietary image data from a predictive analytics company 
serving manufacturing industries, we evaluate the real-world applicability and accuracy 
of NN predictive models in industrial-scale applications. Specifically, we use original 
manufacturing image data to train and test a Convolutional Neural Network (CNN) 
model. CNNs are well-suited for image classification tasks due to their ability to process 
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and learn features directly from large volumes of raw image data. Unlike traditional 
machine learning models, CNN’s can automatically extract relevant features without 
manual intervention, leading to enhanced classification performance. 

The convolutional and pooling layers within CNN’s provide robustness to variations in 
image features—such as shifts, rotations, and scale changes—making them ideal for 
industrial defect detection. Our work aims to augment traditional actuarial predictive 
modeling with modern deep learning technologies by illustrating a practical 
implementation of CNNs for defect classification. We present this research as a viable 
reference for both academics and practitioners seeking to apply deep-learning AI 
techniques within actuarial and industrial contexts. 

Every year, hundreds of thousands of miles of copper foil stream through manufacturing 
lines around the world—forming the backbone of countless electronics, from 
smartphones to electric vehicles [12]. Yet beneath that shiny surface lies a hidden 
challenge: microscopic defects that can compromise performance, shorten lifespans, or 
even cause catastrophic failures. For decades, our company partner JyeJiang Group[7] has 
been at the forefront of designing precision machines to catch these imperfections. Now, 
with artificial intelligence reshaping industries everywhere, they’re eager to see whether a 
neural network can spot flaws even faster and more reliably than traditional image 
processing methods. 

Copper foil inspection is more than a routine quality check—it’s the last line of defense 
against costly recalls and warranty claims. Even a tiny scratch or pinhole can lead to an 
electrical short or degraded conductivity down the line. Traditionally, inspectors have 
relied on specialized cameras and rule-based software that flag particular patterns or 
brightness anomalies. While effective to a point, these systems often require painstaking 
calibration for each new production batch and remain susceptible to lighting variations or 
subtle texture changes. 

In this project, we investigate whether a Convolutional Neural Network (CNN) — a type 
of deep learning model known for its prowess in image classification—can outperform 
conventional inspection equipment. By training the CNN on thousands of real-world 
images provided by our company partner, our goal is twofold: first, to determine how 
accurately the CNN model can detect a variety of imperfection types (scratches, pits, 
foreign particles, etc.), and second, to evaluate its robustness when faced with changes in 
lighting or foil texture. If successful, an AI-powered approach could dramatically reduce 
false positives, adapt more quickly to new substrates, and free up human operators to 
focus on higher‑level quality‑control tasks. 

To guide the reader through this journey, we begin by outlining the current state of 
copper foil inspection—covering both traditional machine‑vision techniques and recent 
advances in deep learning. Next, we describe how we preprocessed the image data and 
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constructed the CNN architecture, explaining each design decision in the context of 
inspection requirements. After that, we present the results of training and testing: 
accuracy metrics, confusion matrices, and example images that illustrate both the 
network’s strengths and its limitations. Finally, we discuss what these findings mean for 
real‑world manufacturing, including suggestions for deployment and future work if 
JyeJiang Group decides to integrate an AI‑driven inspection module into their product 
lineup. By the end of this paper, the reader should have a clear picture of how deep 
learning can—and cannot—enhance the decades‑old practice of copper foil quality 
inspection.  

 

Methodology 
 

As a recap, Convolutional Neural Network (CNN) models are widely used in image 
classification, because it is specifically designed to understand and classify visual data 
such as unique but similar-look biological species on earth. Unlike traditional machine 
learning models, CNN can learn features required for classification directly from the raw 
images. This allows for high flexibility in the limits of the features, therefore giving a 
better prediction in classification. Additionally, the convolutional layers and pooling 
layers mathematically used in CNN models regulate the sensitivity of important features, 
allowing shifts, rotation and scale changes of these key features.  

Our study employs a convolutional neural network (CNN) to classify copper foil 
imperfection images based on image features themselves and the pre-defined 42 types of 
imperfections purposed to track the sources of imperfections for the manufacturer clients. 
The copper foil image dataset consists of labeled image files that were processed, trained, 
and evaluated using various image learning techniques by engineers in the past decades. 
Our project goal is to match or even outperform the past classification accuracy 
sustainable for decades, using automated CNN technique. This methodology section 
outlines the steps taken in four phases as follows:  

Phase 1. data preprocessing,  

Phase 2. model development,  

Phase 3. model training, and 

Phase 4. performance evaluation. 
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1. Preparing Data 

Class-representing named folders were utilized to load image files. The magick package 
was used for image processing with the following steps: 

• Resizing: Each image was resized to 100x100 pixels to standardize the input size 
for the CNN. This step is crucial to ensure that the model receives consistent input 
dimensions, allowing it to efficiently process the data [8]. 

• Normalization: The pixel values were normalized to the range [0, 1] by dividing 
by 255. This step is standard in deep learning as it helps improve the convergence 
rate of the model by ensuring that the input values are on a similar scale [10]. 

• Tensor Representation: The data arrays were stored as 4D tensors, with 
dimensions representing samples, width, height, and channels. This format is 
commonly used in CNNs as it matches the model's expected input shape [3]. 

After encoding the labels as integers, the keras package's to categorical() function was 
applied to convert each label into a one-hot encoded vector [14]. This is a standard 
approach in classification problems, ensuring that the model can output probabilities for 
each class. 

To divide the data into training and testing sets, repeatable shuffling was applied, and 
80% of the data was allocated for training while 20% was reserved for testing. The 
set.seed(42) function was used to ensure that the data splitting was reproducible [14]. 
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2. CNN Model Development 

A CNN model was constructed using the Keras package, following standard practices for 
image classification tasks. The model was developed with the following architecture, 
applied to each dataset (M, S, and their combination): 

• Convolutional Layers: The model includes three convolutional layers with 32, 
64, and 128 filters, respectively, using a kernel size of 3x3. Convolutional layers 
are the core of CNNs, enabling the model to automatically learn spatial 
hierarchies of features such as edges, textures, and patterns from the images [9]. 

• Max-Pooling and ReLU Activation: After each convolutional layer, ReLU 
activation and 2x2 max-pooling are applied. Max-pooling helps reduce the spatial 
dimensions of the image while preserving important features, and ReLU 
activation introduces non-linearity to the network, allowing it to learn more 
complex patterns [12]. 

• Flattening Layer: After the convolutional and pooling layers, a flattening layer is 
applied to convert the 2D feature maps into a 1D vector, which is then used as 
input for the fully connected layers. 

• Dense Layer: A fully connected dense layer with 256 units and ReLU activation 
is added to enable the model to learn complex relationships between features. 

• Dropout Layer: A dropout layer with a rate of 0.5 was included to prevent 
overfitting by randomly dropping 50% of the units during training. This helps the 
model generalize better by reducing reliance on specific neurons [15]. 

• Softmax Output Layer: The final layer uses the softmax activation function, 
which is suitable for multi-class classification problems, providing probability 
distributions for each class [6]. 

The model was compiled using the Adam optimizer, known for its efficiency in training 
deep learning models, with categorical_crossentropy as the loss function, which is 
appropriate for multi-class classification tasks [8]. Accuracy was chosen as the evaluation 
metric to assess the model’s performance. 
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3. Training Models 

Each CNN model was trained using a batch size of 32 over 20 epochs. A validation split 
of 20% of the training data was used to monitor the model’s performance during training. 
This split ensures that the model is evaluated on data it has not seen before, providing a 
better estimate of its generalization ability [4]. 

The models were trained independently on the M and S datasets, followed by training on 
the combined dataset to assess the model's performance on a larger and potentially more 
informative dataset. The training progress was tracked by recording accuracy and loss 
histories, which were used to evaluate whether the model was improving or overfitting. 

 

4. Evaluation of Performance 

The performance of the trained models was evaluated using the reserved test data, 
ensuring that the results reflect how well the model generalizes to unseen data. The 
following steps were undertaken for the evaluation: 

• Loss and Accuracy Calculation: The evaluate() function was used to compute 
the final loss and accuracy of the model on the test set. 

• Predictions: The predict() function was used to generate predictions for the test 
data. The which.max() function was applied to extract the predicted class labels 
by selecting the class with the highest predicted probability. 

• Confusion Matrix: The confusion matrix was computed using a table comparing 
true and predicted labels. This matrix provides a detailed breakdown of the 
model’s performance, showing the number of correct and incorrect predictions for 
each class [5]. 

• Visualization: Using ggplot2, the confusion matrices were visualized as colored 
heatmaps. This visualization helps identify patterns of misclassification and areas 
where the model may need improvement [16]. 

The evaluation process was repeated for each of the three dataset configurations (M, S, 
and their combination) to enable a thorough analysis of the model’s performance across 
different input sets. This multi-configuration approach helps assess whether combining 
datasets enhances the model's ability to generalize. 
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Results and Analysis 
 

We trained three separate convolutional neural network (CNN) models using the Keras 
package in R on the following datasets: 

1. The M dataset (alone) 

2. The S dataset (alone) 

3. The combined M + S dataset 

For each experiment, input images were resized to 100×100 pixels, pixel values were 
normalized to the [0, 1] range, and class labels were one-hot encoded. Datasets were 
partitioned into 80% training and 20% testing, with 20% of the training set reserved 
for validation. All models shared an identical architecture consisting of three 
convolutional blocks (each comprising a Conv2D layer with ReLU activation followed 
by max pooling), a 256-unit dense layer, dropout, and a softmax output layer. Training 
was performed over 20 epochs with a batch size of 32, using the Adam optimizer to 
minimize categorical cross-entropy loss. 

A summary of performance metrics, learning curves, and confusion matrix analyses for 
each dataset is provided below. 
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Performance on the M Dataset 

• Final Test Accuracy: ~91% 

• Final Test Loss: ~0.30 

Learning Curves 

Training loss decreased rapidly from approximately 1.5 at epoch 1 to 0.25 by epoch 10, 
with minimal further improvement thereafter. Validation loss plateaued around 0.30 by 
epoch 10–12, suggesting effective generalization and minimal overfitting. Training 
accuracy increased from ~0.50 to ~0.92, while validation accuracy improved from ~0.60 
to ~0.90. The convergence of training and validation curves indicates stable learning 
behavior. 

 

Figure 1. M Dataset Learning Curve 
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Confusion Matrix 

Most classes exhibited strong diagonal dominance, with high classification accuracy for 
frequently occurring classes (e.g., class 19: 1,365 correct; class 18: 470; class 17: 209). 
Misclassifications were sparse and primarily occurred between visually similar or 
adjacent classes (e.g., class 24 misclassified as class 23 or 22). These results suggest that 
the model performs reliably on the M dataset. 

 

Figure 2. M Dataset Confusion Matrix 
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Performance on the S Dataset 

• Final Test Accuracy: ~80% 

• Final Test Loss: ~0.50 

Learning Curves 

Training loss declined from ~2.2 at epoch 1 to ~0.50 by epoch 10 and converged near 
0.40 by epoch 20. Validation loss plateaued between 0.55 and 0.60 after epoch 12, 
indicating a moderate generalization gap. Training accuracy rose from ~0.20 to ~0.85, 
while validation accuracy improved from ~0.30 to ~0.80. 

 

Figure 3. S Dataset Learning Curve 
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Confusion Matrix 

Several classes were classified with high accuracy (e.g., class 11: 537; class 14: 512; 
class 8: 373; class 4: 333; class 1: 126). However, significant confusion was observed in 
smaller or visually similar classes (e.g., class 11 misclassified as class 12 or 13; class 1 
misclassified as class 4 or 6), highlighting challenges related to class imbalance and 
visual similarity among categories. 

 

Figure 4. S Dataset Confusion Matrix 
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Performance on the Combined (M + S) Dataset 

• Final Test Accuracy: ~90% 

• Final Test Loss: ~0.30–0.35 

Learning Curves 

Training loss decreased from ~2.3 at epoch 1 to ~0.30 by epoch 10, closely mirroring the 
M-only case. Validation loss stabilized around 0.35 by epoch 12, indicating strong 
generalization performance. Training accuracy improved from ~0.18 to ~0.92, while 
validation accuracy rose from ~0.30 to ~0.90. The similarity to the M-only learning 
curves reflects the dominance of M samples in the combined dataset. 

 

Figure 5. Combined Dataset Learning Curve 
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Confusion Matrix 

Although strong diagonal values were observed for M classes, many S classes had low 
correct counts—sometimes in the single digits—suggesting that the model prioritized M 
class learning. Misclassification patterns for S classes were consistent with the issues 
observed when trained on S alone, further exacerbated by the dominance of M data 
during joint training. 

 

Figure 6. Combined Dataset Confusion Matrix 
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Recommendations for Improvement 

1. Class Rebalancing and Weighted Loss 

• Implement class-weighted loss functions or oversample underrepresented S 
classes during training. 

• Optionally under-sample highly abundant M classes to prevent model bias. 

2. Data Augmentation (Focused on S) 

• Apply random rotations, flips, zooms, and brightness variations to S samples to 
increase intra-class diversity. 

3. Model Architecture Tuning 

• Introduce additional convolutional layers (e.g., 256-filter blocks) and apply batch 
normalization. 

• Increase dropout (e.g., to 0.6) to mitigate overfitting, especially for sparse S 
classes. 

4. Learning Rate Scheduling and Transfer Learning 

• Use learning rate scheduling strategies (e.g., ReduceLROnPlateau) to fine-tune 
gradient updates. 

• Consider initializing from a pre-trained backbone (e.g., ResNet50) to leverage 
general-purpose feature extraction. 

5. Separate vs. Joint Training Strategy 

• Employ curriculum learning: pre-train on M, freeze early layers, fine-tune on S, 
then unfreeze all layers for final joint training with a reduced learning rate. This 
approach may yield more balanced performance across both datasets. 
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Conclusion 
 

This project was set out to train convolutional neural networks (CNNs) on two separate 
image datasets—designated as "M" and "S"—and to analyze model behavior when the 
datasets were combined. The primary goals were to evaluate (a) how effectively a 
straightforward CNN architecture could classify the 24 "M" classes, (b) its performance 
on the 14 (or 18) "S" classes, and (c) the overall outcome when merging the two into a 
multi-class classification task with 42 possible labels. 

Our experiments revealed several important insights: 

1. Strong Performance on the “M” Dataset 
The CNN achieved approximately 91% test accuracy with low loss. The resulting 
confusion matrix showed that most "M" classes were learned with high precision. 
Minimal off-diagonal errors indicated that the "M" classes were visually distinct 
enough for a relatively shallow, three-layer CNN to classify them reliably. 

2. Challenges with the “S” Dataset 
The model attained around 80% test accuracy on the "S" dataset. However, this 
subset posed more challenges, primarily due to fewer training examples in some 
classes and the presence of visually similar categories. A moderate gap between 
training and validation performance suggests that additional data or stronger 
regularization techniques could enhance results for this dataset. 

3. Class Imbalance in Combined Training 
When datasets were merged into a single 42-class problem, the model achieved 
approximately 90% accuracy overall. However, this masked a significant issue: 
the model's performance skewed heavily toward the "M" classes. The confusion 
matrix revealed that many "S" classes were underrepresented and often 
misclassified, reflecting that gradient updates predominantly favored the more 
abundant "M" data. Thus, the model functioned effectively as an "M" classifier, 
with weak generalization to "S" categories. 

Based on these findings, the following recommendations are proposed: 

• Address Class Imbalance 
When class distributions are unequal, consider using weighted loss functions, 
oversampling underrepresented classes, or under-sampling dominant ones to 
prevent the model from ignoring minority classes. 

• Apply Data Augmentation 
For the underrepresented "S" dataset, augmenting images through rotations, flips, 
or color jitter can synthetically increase diversity. This technique helps reduce 
overfitting and improves generalization. 
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• Modify the Network Architecture 
Increasing network depth or width—such as adding another convolutional block 
and incorporating batch normalization—can help the model capture finer 
distinctions. Additionally, applying dropout or L2 regularization may reduce 
overfitting in smaller class subsets. 

• Use Curriculum or Transfer Learning 
A two-phase training strategy may improve performance: first, train on the larger 
"M" dataset to learn general image features, then fine-tune on "S" with frozen 
layers. Alternatively, start from a pre-trained architecture (e.g., ResNet-50) to 
accelerate convergence and enhance feature extraction. 

In summary, while a simple CNN effectively classifies the well-populated "M" dataset, it 
struggles with the smaller and more complex "S" dataset. Merging the datasets without 
addressing these disparities results in poor minority-class performance. Through balanced 
training, strategic augmentation, architectural enhancements, and transfer learning, it is 
possible to build a unified model that performs robustly across all 42 classes. These 
strategies can inform future multi-class image classification efforts, particularly when 
facing significant class imbalance. 

 

 

Future Research  

Our research findings with CNN implementation propose that predictive analytics, 
traditionally used in actuarial science, insurance, and finance, can be expanded, 
automated, and integrated through deep learning techniques, with a modeling need for 
utilizing or calling for image input. It is notable that Health Insurance, Property & 
Casualty Insurance, and Life Insurance can potentially incorporate image data for risk 
classification, rate setting, and reserving. Classifying disease types through medical 
images (X-rays, MRIs, pathology slides) can help actuaries refine the estimates of 
morbidity and treatment costs. Image classification technology (e.g. CNN) can convert 
unstructured raw image data into classified and structured features for enhanced 
modeling research and building into risk models. For auto and home insurance, image 
recognition and classification can help analyze accident photos to determine causes and 
damages for more accurate claim estimates and accountability analysis. For life 
insurance, bioimage data can connect to the longevity model and estimation. Our findings 
offer not only practical insights for model implementation guidance for researchers and 
professionals in predictive modeling but also reveal an opportunity to investigate AI for 
insightful and effective landscape reshaping of actuarial modeling world. 
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Appendix (Copper Foil Image Sample) 
 

 

Appendix (R Code) 
 

Load packages Needed 

library(magick) 

## Linking to ImageMagick 7.1.1.21 
## Enabled features: cairo, fontconfig, freetype, fftw, heic, lcms, raw
, rsvg, webp, x11 
## Disabled features: ghostscript, pango 

library(keras) 
library(ggplot2) 
library(reshape2) 
library(caret) 

## Loading required package: lattice 

Start With M side 

Set directory and load data 

base_dir_m <- "/UsersLcl/leemin/m side" 
class_dirs_m <- list.dirs(base_dir_m, full.names = TRUE, recursive = FA
LSE) 
 
img_list_m <- list() 
label_list_m <- c() 
 
img_to_array <- function(img) { 
  img <- image_resize(img, "100x100!") 
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255 
  array(as.numeric(img_data), dim = dim(img_data)) 
} 
 
for (i in seq_along(class_dirs_m)) { 
  class_path <- class_dirs_m[i] 
  class_label <- paste0("m_", basename(class_path))  
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  image_files <- list.files(class_path, pattern = "\\.png$", full.names
 = TRUE) 
 
  for (f in image_files) { 
    try({ 
      img <- image_read(f) 
      arr <- img_to_array(img) 
      img_list_m[[length(img_list_m) + 1]] <- arr 
      label_list_m <- c(label_list_m, class_label) 
    }, silent = TRUE) 
  } 
} 

Prepare Data 

num_m <- length(img_list_m) 
 
if (num_m == 0) { 
  stop("No images loaded from M dataset. Check the directory and image 
file validity.") 
} 
 
img_array_m <- array(0, dim = c(num_m, 100, 100, 3)) 
for (i in 1:num_m) { 
  img_array_m[i,,,] <- img_list_m[[i]] 
} 
 
labels_m <- as.factor(label_list_m) 
y_m <- to_categorical(as.integer(labels_m) - 1) 
n_class_m <- length(levels(labels_m)) 

Split Train and Test 

set.seed(42) 
idx_m <- sample(1:num_m) 
train_idx_m <- idx_m[1:floor(0.8 * num_m)] 
test_idx_m <- idx_m[(floor(0.8 * num_m) + 1):num_m] 
 
x_train_m <- img_array_m[train_idx_m,,,] 
y_train_m <- y_m[train_idx_m,] 
 
x_test_m <- img_array_m[test_idx_m,,,] 
y_test_m <- y_m[test_idx_m,] 

Define CNN model 

model_m <- keras_model_sequential() %>% 
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu'
, input_shape = c(100, 100, 3)) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu'
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) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu
') %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_flatten() %>% 
  layer_dense(units = 256, activation = 'relu') %>% 
  layer_dropout(0.5) %>% 
  layer_dense(units = n_class_m, activation = 'softmax') 
 
model_m %>% compile( 
  loss = 'categorical_crossentropy', 
  optimizer = optimizer_adam(), 
  metrics = 'accuracy' 
) 

Train Model 

history_m <- model_m %>% fit( 
  x_train_m, y_train_m, 
  epochs = 20, 
  batch_size = 32, 
  validation_split = 0.2 
) 

Evaluate 

score_m <- model_m %>% evaluate(x_test_m, y_test_m) 

cat("Test loss:", score_m[[1]], "\n") 

cat("Test accuracy:", score_m[[2]], "\n") 

y_pred_m <- apply(y_prob_m, 1, which.max) 
y_true_m <- apply(y_test_m, 1, which.max) 
plot(history_m) 

Visual Confusion Matrix 

cm_m <- table(True = y_true_m, Predicted = y_pred_m) 
cm_df_m <- as.data.frame(cm_m) 
colnames(cm_df_m) <- c("True", "Predicted", "Freq") 
 
ggplot(data = cm_df_m, aes(x = Predicted, y = True, fill = Freq)) + 
  geom_tile(color = "white") + 
  scale_fill_gradient(low = "white", high = "steelblue") + 
  geom_text(aes(label = Freq), size = 3.5) + 
  labs(title = "Confusion Matrix (M Dataset)", x = "Predicted", y = "Ac
tual") + 
  theme_minimal() 



24 
 

S side 

Set directory and load data 

base_dir_s <- "/UsersLcl/leemin/s side" 
class_dirs_s <- list.dirs(base_dir_s, full.names = TRUE, recursive = FA
LSE) 
 
img_list_s <- list() 
label_list_s <- c() 
 
img_to_array_s <- function(img) { 
  img <- image_resize(img, "100x100!") 
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255 
  array(as.numeric(img_data), dim = dim(img_data)) 
} 
 
for (i in seq_along(class_dirs_s)) { 
  class_path <- class_dirs_s[i] 
  class_label <- basename(class_path) 
  image_files <- list.files(class_path, pattern = "\\.png$", full.names
 = TRUE) 
   
  for (f in image_files) { 
    try({ 
      img <- image_read(f) 
      arr <- img_to_array_s(img) 
      img_list_s[[length(img_list_s) + 1]] <- arr 
      label_list_s <- c(label_list_s, class_label) 
    }, silent = TRUE) 
  } 
} 

Prepare data 

num_s <- length(img_list_s) 
img_array_s <- array(0, dim = c(num_s, 100, 100, 3)) 
 
for (i in 1:num_s) { 
  img_array_s[i,,,] <- img_list_s[[i]] 
} 
 
labels_s <- as.factor(label_list_s) 
y_s <- to_categorical(as.integer(labels_s) - 1) 
n_class_s <- length(levels(labels_s)) 

Split Test and Train 

set.seed(42) 
idx_s <- sample(1:num_s) 
train_idx_s <- idx_s[1:floor(0.8 * num_s)] 
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test_idx_s  <- idx_s[(floor(0.8 * num_s) + 1):num_s] 
x_train_s <- img_array_s[train_idx_s,,,] 
y_train_s <- y_s[train_idx_s,] 
x_test_s <- img_array_s[test_idx_s,,,] 
y_test_s <- y_s[test_idx_s,] 

Define CNN model 

model_s <- keras_model_sequential() %>% 
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu'
, input_shape = c(100, 100, 3)) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu'
) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu
') %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_flatten() %>% 
  layer_dense(units = 256, activation = 'relu') %>% 
  layer_dropout(0.5) %>% 
  layer_dense(units = n_class_s, activation = 'softmax') 
 
model_s %>% compile( 
  loss = 'categorical_crossentropy', 
  optimizer = optimizer_adam(), 
  metrics = 'accuracy' 
) 

Train Model 

history_s <- model_s %>% fit( 
  x_train_s, y_train_s, 
  epochs = 20, 
  batch_size = 32, 
  validation_split = 0.2 
) 

plot(history_s) 

score_s <- model_s %>% evaluate(x_test_s, y_test_s) 

cat("Test loss:", score_s[[1]], "\n") 

cat("Test accuracy:", score_s[[2]], "\n") 

y_prob_s <- model_s %>% predict(x_test_s) 

y_pred_s <- apply(y_prob_s, 1, which.max) 
y_true_s <- apply(y_test_s, 1, which.max) 

Visual Confusion Matrix 
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cm_s <- table(True = y_true_s, Predicted = y_pred_s) 
cm_df_s <- as.data.frame(cm_s) 
colnames(cm_df_s) <- c("True", "Predicted", "Freq") 
 
ggplot(data = cm_df_s, aes(x = Predicted, y = True, fill = Freq)) + 
  geom_tile(color = "white") + 
  scale_fill_gradient(low = "white", high = "steelblue") + 
  geom_text(aes(label = Freq), size = 3.5) + 
  labs(title = "Confusion Matrix (S Dataset)", x = "Predicted", y = "Ac
tual") + 
  theme_minimal() 

Try with M side and S side combined 

Set directory and load data 

base_dir_combined <- "/UsersLcl/leemin/sample" 
class_dirs_combined <- list.dirs(base_dir_combined, full.names = TRUE, 
recursive = FALSE) 
 
img_list_combined <- list() 
label_list_combined <- c() 
 
img_to_array <- function(img) { 
  img <- image_resize(img, "100x100!") 
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255 
  array(as.numeric(img_data), dim = dim(img_data)) 
} 
 
for (i in seq_along(class_dirs_combined)) { 
  class_path <- class_dirs_combined[i] 
  class_label <- paste0("combined_", basename(class_path))   
  image_files <- list.files(class_path, pattern = "\\.png$", full.names
 = TRUE) 
 
  for (f in image_files) { 
    try({ 
      img <- image_read(f) 
      arr <- img_to_array(img) 
      img_list_combined[[length(img_list_combined) + 1]] <- arr 
      label_list_combined <- c(label_list_combined, class_label) 
    }, silent = TRUE) 
  } 
} 

Prepare data 

num_combined <- length(img_list_combined) 
img_array_combined <- array(0, dim = c(num_combined, 100, 100, 3)) 
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for (i in 1:num_combined) { 
  img_array_combined[i,,,] <- img_list_combined[[i]] 
} 
 
labels_combined <- as.factor(label_list_combined) 
y_combined <- to_categorical(as.integer(labels_combined) - 1) 
n_class_combined <- length(levels(labels_combined)) 

split train and test 

set.seed(42) 
idx_combined <- sample(1:num_combined) 
train_idx_combined <- idx_combined[1:floor(0.8 * num_combined)] 
test_idx_combined <- idx_combined[(floor(0.8 * num_combined) + 1):num_c
ombined] 
 
x_train_combined <- img_array_combined[train_idx_combined,,,] 
y_train_combined <- y_combined[train_idx_combined,] 
 
x_test_combined <- img_array_combined[test_idx_combined,,,] 
y_test_combined <- y_combined[test_idx_combined,] 

Define CNN model 

model_combined <- keras_model_sequential() %>% 
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu'
, input_shape = c(100, 100, 3)) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu'
) %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu
') %>% 
  layer_max_pooling_2d(pool_size = c(2,2)) %>% 
  layer_flatten() %>% 
  layer_dense(units = 256, activation = 'relu') %>% 
  layer_dropout(0.5) %>% 
  layer_dense(units = n_class_combined, activation = 'softmax') 
 
model_combined %>% compile( 
  loss = 'categorical_crossentropy', 
  optimizer = optimizer_adam(), 
  metrics = 'accuracy' 
) 

train model 

history_combined <- model_combined %>% fit( 
  x_train_combined, y_train_combined, 
  epochs = 20, 
  batch_size = 32, 
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  validation_split = 0.2 
) 

evaluate 

score_combined <- model_combined %>% evaluate(x_test_combined, y_test_c
ombined) 

cat("Test loss:", score_combined[[1]], "\n") 

cat("Test accuracy:", score_combined[[2]], "\n") 

y_prob_combined <- model_combined %>% predict(x_test_combined) 

y_pred_combined <- apply(y_prob_combined, 1, which.max) 
y_true_combined <- apply(y_test_combined, 1, which.max) 
plot(history_combined) 

Visual confusion matrix 

cm_combined <- table(True = y_true_combined, Predicted = y_pred_combine
d) 
cm_df_combined <- as.data.frame(cm_combined) 
colnames(cm_df_combined) <- c("True", "Predicted", "Freq") 
 
ggplot(data = cm_df_combined, aes(x = Predicted, y = True, fill = Freq)
) + 
  geom_tile(color = "white") + 
  scale_fill_gradient(low = "white", high = "steelblue") + 
  geom_text(aes(label = Freq), size = 2.5) + 
  labs(title = "Confusion Matrix (Combined M + S Dataset)", x = "Predic
ted", y = "Actual") + 
  theme_minimal() 

 

 

 

 

 

 

 

Appendix (Knitted RMD) 
 



2025-05-11
Load packages Needed

library(magick)

## Linking to ImageMagick 7.1.1.21
## Enabled features: cairo, fontconfig, freetype, fftw, heic, lcms, raw, rsvg, webp, x11
## Disabled features: ghostscript, pango

library(keras)
library(ggplot2)
library(reshape2)
library(caret)

## Loading required package: lattice

Start With M side
Set directory and load data



base_dir_m <- "/UsersLcl/leemin/m side"
class_dirs_m <- list.dirs(base_dir_m, full.names = TRUE, recursive = FALSE)

img_list_m <- list()
label_list_m <- c()

img_to_array <- function(img) {
  img <- image_resize(img, "100x100!")
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255
  array(as.numeric(img_data), dim = dim(img_data))
}

for (i in seq_along(class_dirs_m)) {
  class_path <- class_dirs_m[i]
  class_label <- paste0("m_", basename(class_path)) 
  image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)

  for (f in image_files) {
    try({
      img <- image_read(f)
      arr <- img_to_array(img)
      img_list_m[[length(img_list_m) + 1]] <- arr
      label_list_m <- c(label_list_m, class_label)
    }, silent = TRUE)
  }
}

Prepare Data

num_m <- length(img_list_m)

if (num_m == 0) {
  stop("No images loaded from M dataset. Check the directory and image file validity.")
}

img_array_m <- array(0, dim = c(num_m, 100, 100, 3))
for (i in 1:num_m) {
  img_array_m[i,,,] <- img_list_m[[i]]
}

labels_m <- as.factor(label_list_m)
y_m <- to_categorical(as.integer(labels_m) - 1)
n_class_m <- length(levels(labels_m))

Split Train and Test



set.seed(42)
idx_m <- sample(1:num_m)
train_idx_m <- idx_m[1:floor(0.8 * num_m)]
test_idx_m <- idx_m[(floor(0.8 * num_m) + 1):num_m]

x_train_m <- img_array_m[train_idx_m,,,]
y_train_m <- y_m[train_idx_m,]

x_test_m <- img_array_m[test_idx_m,,,]
y_test_m <- y_m[test_idx_m,]

Define CNN model

model_m <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu', input_shape = c(100, 10
0, 3)) %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_flatten() %>%
  layer_dense(units = 256, activation = 'relu') %>%
  layer_dropout(0.5) %>%
  layer_dense(units = n_class_m, activation = 'softmax')

model_m %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = optimizer_adam(),
  metrics = 'accuracy'
)

Train Model

history_m <- model_m %>% fit(
  x_train_m, y_train_m,
  epochs = 20,
  batch_size = 32,
  validation_split = 0.2
)



## Epoch 1/20
## 513/513 - 33s - loss: 1.6595 - accuracy: 0.4601 - val_loss: 1.0036 - val_accuracy: 0.6643 - 3
3s/epoch - 64ms/step
## Epoch 2/20
## 513/513 - 31s - loss: 0.9892 - accuracy: 0.6635 - val_loss: 0.7488 - val_accuracy: 0.7458 - 3
1s/epoch - 61ms/step
## Epoch 3/20
## 513/513 - 32s - loss: 0.7860 - accuracy: 0.7318 - val_loss: 0.6515 - val_accuracy: 0.7677 - 3
2s/epoch - 62ms/step
## Epoch 4/20
## 513/513 - 32s - loss: 0.7077 - accuracy: 0.7618 - val_loss: 0.5826 - val_accuracy: 0.8012 - 3
2s/epoch - 62ms/step
## Epoch 5/20
## 513/513 - 32s - loss: 0.5688 - accuracy: 0.8081 - val_loss: 0.5042 - val_accuracy: 0.8383 - 3
2s/epoch - 62ms/step
## Epoch 6/20
## 513/513 - 32s - loss: 0.4837 - accuracy: 0.8396 - val_loss: 0.3960 - val_accuracy: 0.8775 - 3
2s/epoch - 62ms/step
## Epoch 7/20
## 513/513 - 32s - loss: 0.4206 - accuracy: 0.8612 - val_loss: 0.3417 - val_accuracy: 0.8907 - 3
2s/epoch - 63ms/step
## Epoch 8/20
## 513/513 - 32s - loss: 0.3735 - accuracy: 0.8795 - val_loss: 0.3104 - val_accuracy: 0.9012 - 3
2s/epoch - 62ms/step
## Epoch 9/20
## 513/513 - 32s - loss: 0.3380 - accuracy: 0.8902 - val_loss: 0.3171 - val_accuracy: 0.9019 - 3
2s/epoch - 63ms/step
## Epoch 10/20
## 513/513 - 34s - loss: 0.2866 - accuracy: 0.9057 - val_loss: 0.2913 - val_accuracy: 0.9083 - 3
4s/epoch - 66ms/step
## Epoch 11/20
## 513/513 - 34s - loss: 0.2693 - accuracy: 0.9114 - val_loss: 0.3051 - val_accuracy: 0.9063 - 3
4s/epoch - 66ms/step
## Epoch 12/20
## 513/513 - 34s - loss: 0.2371 - accuracy: 0.9203 - val_loss: 0.3049 - val_accuracy: 0.9066 - 3
4s/epoch - 66ms/step
## Epoch 13/20
## 513/513 - 34s - loss: 0.2211 - accuracy: 0.9254 - val_loss: 0.2628 - val_accuracy: 0.9178 - 3
4s/epoch - 66ms/step
## Epoch 14/20
## 513/513 - 34s - loss: 0.2028 - accuracy: 0.9302 - val_loss: 0.3031 - val_accuracy: 0.9034 - 3
4s/epoch - 66ms/step
## Epoch 15/20
## 513/513 - 34s - loss: 0.1959 - accuracy: 0.9327 - val_loss: 0.2602 - val_accuracy: 0.9234 - 3
4s/epoch - 66ms/step
## Epoch 16/20
## 513/513 - 34s - loss: 0.1713 - accuracy: 0.9423 - val_loss: 0.2964 - val_accuracy: 0.9180 - 3
4s/epoch - 66ms/step
## Epoch 17/20
## 513/513 - 34s - loss: 0.1681 - accuracy: 0.9442 - val_loss: 0.3089 - val_accuracy: 0.9139 - 3
4s/epoch - 66ms/step
## Epoch 18/20



## 513/513 - 34s - loss: 0.1554 - accuracy: 0.9475 - val_loss: 0.2831 - val_accuracy: 0.9214 - 3
4s/epoch - 66ms/step
## Epoch 19/20
## 513/513 - 34s - loss: 0.1369 - accuracy: 0.9524 - val_loss: 0.2980 - val_accuracy: 0.9236 - 3
4s/epoch - 66ms/step
## Epoch 20/20
## 513/513 - 34s - loss: 0.1412 - accuracy: 0.9516 - val_loss: 0.3117 - val_accuracy: 0.9178 - 3
4s/epoch - 66ms/step

Evaluate

score_m <- model_m %>% evaluate(x_test_m, y_test_m)

## 161/161 - 2s - loss: 0.3210 - accuracy: 0.9202 - 2s/epoch - 14ms/step

cat("Test loss:", score_m[[1]], "\n")

## Test loss: 0.3209823

cat("Test accuracy:", score_m[[2]], "\n")

## Test accuracy: 0.920164

y_prob_m <- model_m %>% predict(x_test_m)

## 161/161 - 2s - 2s/epoch - 14ms/step

y_pred_m <- apply(y_prob_m, 1, which.max)
y_true_m <- apply(y_test_m, 1, which.max)
plot(history_m)



Visual Confusion Matrix

cm_m <- table(True = y_true_m, Predicted = y_pred_m)
cm_df_m <- as.data.frame(cm_m)
colnames(cm_df_m) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_m, aes(x = Predicted, y = True, fill = Freq)) +
  geom_tile(color = "white") +
  scale_fill_gradient(low = "white", high = "steelblue") +
  geom_text(aes(label = Freq), size = 3.5) +
  labs(title = "Confusion Matrix (M Dataset)", x = "Predicted", y = "Actual") +
  theme_minimal()



S side
Set directory and load data



base_dir_s <- "/UsersLcl/leemin/s side"
class_dirs_s <- list.dirs(base_dir_s, full.names = TRUE, recursive = FALSE)

img_list_s <- list()
label_list_s <- c()

img_to_array_s <- function(img) {
  img <- image_resize(img, "100x100!")
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255
  array(as.numeric(img_data), dim = dim(img_data))
}

for (i in seq_along(class_dirs_s)) {
  class_path <- class_dirs_s[i]
  class_label <- basename(class_path)
  image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)
  
  for (f in image_files) {
    try({
      img <- image_read(f)
      arr <- img_to_array_s(img)
      img_list_s[[length(img_list_s) + 1]] <- arr
      label_list_s <- c(label_list_s, class_label)
    }, silent = TRUE)
  }
}

Prepare data

num_s <- length(img_list_s)
img_array_s <- array(0, dim = c(num_s, 100, 100, 3))

for (i in 1:num_s) {
  img_array_s[i,,,] <- img_list_s[[i]]
}

labels_s <- as.factor(label_list_s)
y_s <- to_categorical(as.integer(labels_s) - 1)
n_class_s <- length(levels(labels_s))

Split Test and Train

set.seed(42)
idx_s <- sample(1:num_s)
train_idx_s <- idx_s[1:floor(0.8 * num_s)]
test_idx_s  <- idx_s[(floor(0.8 * num_s) + 1):num_s]
x_train_s <- img_array_s[train_idx_s,,,]
y_train_s <- y_s[train_idx_s,]
x_test_s <- img_array_s[test_idx_s,,,]
y_test_s <- y_s[test_idx_s,]



Define CNN model

model_s <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu', input_shape = c(100, 10
0, 3)) %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_flatten() %>%
  layer_dense(units = 256, activation = 'relu') %>%
  layer_dropout(0.5) %>%
  layer_dense(units = n_class_s, activation = 'softmax')

model_s %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = optimizer_adam(),
  metrics = 'accuracy'
)

Train Model

history_s <- model_s %>% fit(
  x_train_s, y_train_s,
  epochs = 20,
  batch_size = 32,
  validation_split = 0.2
)



## Epoch 1/20
## 230/230 - 15s - loss: 1.9323 - accuracy: 0.3068 - val_loss: 1.6853 - val_accuracy: 0.3507 - 1
5s/epoch - 67ms/step
## Epoch 2/20
## 230/230 - 14s - loss: 1.4694 - accuracy: 0.4718 - val_loss: 1.1482 - val_accuracy: 0.5416 - 1
4s/epoch - 61ms/step
## Epoch 3/20
## 230/230 - 14s - loss: 1.0751 - accuracy: 0.6217 - val_loss: 0.7891 - val_accuracy: 0.7466 - 1
4s/epoch - 61ms/step
## Epoch 4/20
## 230/230 - 14s - loss: 0.8562 - accuracy: 0.7122 - val_loss: 0.6808 - val_accuracy: 0.7493 - 1
4s/epoch - 61ms/step
## Epoch 5/20
## 230/230 - 14s - loss: 0.6937 - accuracy: 0.7638 - val_loss: 0.5875 - val_accuracy: 0.7999 - 1
4s/epoch - 61ms/step
## Epoch 6/20
## 230/230 - 14s - loss: 0.5737 - accuracy: 0.8050 - val_loss: 0.4862 - val_accuracy: 0.8369 - 1
4s/epoch - 61ms/step
## Epoch 7/20
## 230/230 - 14s - loss: 0.4988 - accuracy: 0.8350 - val_loss: 0.3715 - val_accuracy: 0.8755 - 1
4s/epoch - 61ms/step
## Epoch 8/20
## 230/230 - 14s - loss: 0.4420 - accuracy: 0.8499 - val_loss: 0.3729 - val_accuracy: 0.8722 - 1
4s/epoch - 61ms/step
## Epoch 9/20
## 230/230 - 14s - loss: 0.3770 - accuracy: 0.8700 - val_loss: 0.3169 - val_accuracy: 0.9032 - 1
4s/epoch - 61ms/step
## Epoch 10/20
## 230/230 - 14s - loss: 0.3443 - accuracy: 0.8821 - val_loss: 0.3030 - val_accuracy: 0.9081 - 1
4s/epoch - 61ms/step
## Epoch 11/20
## 230/230 - 14s - loss: 0.3123 - accuracy: 0.8901 - val_loss: 0.3576 - val_accuracy: 0.8836 - 1
4s/epoch - 61ms/step
## Epoch 12/20
## 230/230 - 14s - loss: 0.2842 - accuracy: 0.8998 - val_loss: 0.2576 - val_accuracy: 0.9201 - 1
4s/epoch - 61ms/step
## Epoch 13/20
## 230/230 - 14s - loss: 0.2720 - accuracy: 0.9064 - val_loss: 0.2566 - val_accuracy: 0.9173 - 1
4s/epoch - 61ms/step
## Epoch 14/20
## 230/230 - 14s - loss: 0.2393 - accuracy: 0.9199 - val_loss: 0.2894 - val_accuracy: 0.9114 - 1
4s/epoch - 61ms/step
## Epoch 15/20
## 230/230 - 14s - loss: 0.2372 - accuracy: 0.9192 - val_loss: 0.2562 - val_accuracy: 0.9239 - 1
4s/epoch - 61ms/step
## Epoch 16/20
## 230/230 - 14s - loss: 0.2007 - accuracy: 0.9297 - val_loss: 0.2574 - val_accuracy: 0.9260 - 1
4s/epoch - 61ms/step
## Epoch 17/20
## 230/230 - 14s - loss: 0.1702 - accuracy: 0.9407 - val_loss: 0.2889 - val_accuracy: 0.9206 - 1
4s/epoch - 61ms/step
## Epoch 18/20



## 230/230 - 14s - loss: 0.1754 - accuracy: 0.9383 - val_loss: 0.2246 - val_accuracy: 0.9331 - 1
4s/epoch - 61ms/step
## Epoch 19/20
## 230/230 - 14s - loss: 0.1503 - accuracy: 0.9485 - val_loss: 0.2560 - val_accuracy: 0.9282 - 1
4s/epoch - 61ms/step
## Epoch 20/20
## 230/230 - 14s - loss: 0.1624 - accuracy: 0.9434 - val_loss: 0.2490 - val_accuracy: 0.9364 - 1
4s/epoch - 61ms/step

plot(history_s)

Evaluate

score_s <- model_s %>% evaluate(x_test_s, y_test_s)

## 72/72 - 1s - loss: 0.2667 - accuracy: 0.9365 - 948ms/epoch - 13ms/step

cat("Test loss:", score_s[[1]], "\n")

## Test loss: 0.2666971

cat("Test accuracy:", score_s[[2]], "\n")



## Test accuracy: 0.9364665

y_prob_s <- model_s %>% predict(x_test_s)

## 72/72 - 1s - 976ms/epoch - 14ms/step

y_pred_s <- apply(y_prob_s, 1, which.max)
y_true_s <- apply(y_test_s, 1, which.max)

Visual Confusion Matrix

cm_s <- table(True = y_true_s, Predicted = y_pred_s)
cm_df_s <- as.data.frame(cm_s)
colnames(cm_df_s) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_s, aes(x = Predicted, y = True, fill = Freq)) +
  geom_tile(color = "white") +
  scale_fill_gradient(low = "white", high = "steelblue") +
  geom_text(aes(label = Freq), size = 3.5) +
  labs(title = "Confusion Matrix (S Dataset)", x = "Predicted", y = "Actual") +
  theme_minimal()



Try with M side and S side combined
Set directory and load data

base_dir_combined <- "/UsersLcl/leemin/sample"
class_dirs_combined <- list.dirs(base_dir_combined, full.names = TRUE, recursive = FALSE)

img_list_combined <- list()
label_list_combined <- c()

img_to_array <- function(img) {
  img <- image_resize(img, "100x100!")
  img_data <- as.integer(image_data(img, channels = "rgb")) / 255
  array(as.numeric(img_data), dim = dim(img_data))
}

for (i in seq_along(class_dirs_combined)) {
  class_path <- class_dirs_combined[i]
  class_label <- paste0("combined_", basename(class_path))  
  image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)

  for (f in image_files) {
    try({
      img <- image_read(f)
      arr <- img_to_array(img)
      img_list_combined[[length(img_list_combined) + 1]] <- arr
      label_list_combined <- c(label_list_combined, class_label)
    }, silent = TRUE)
  }
}

Prepare data

num_combined <- length(img_list_combined)
img_array_combined <- array(0, dim = c(num_combined, 100, 100, 3))
for (i in 1:num_combined) {
  img_array_combined[i,,,] <- img_list_combined[[i]]
}

labels_combined <- as.factor(label_list_combined)
y_combined <- to_categorical(as.integer(labels_combined) - 1)
n_class_combined <- length(levels(labels_combined))

split train and test



set.seed(42)
idx_combined <- sample(1:num_combined)
train_idx_combined <- idx_combined[1:floor(0.8 * num_combined)]
test_idx_combined <- idx_combined[(floor(0.8 * num_combined) + 1):num_combined]

x_train_combined <- img_array_combined[train_idx_combined,,,]
y_train_combined <- y_combined[train_idx_combined,]

x_test_combined <- img_array_combined[test_idx_combined,,,]
y_test_combined <- y_combined[test_idx_combined,]

Define CNN model

model_combined <- keras_model_sequential() %>%
  layer_conv_2d(filters = 32, kernel_size = c(3,3), activation = 'relu', input_shape = c(100, 10
0, 3)) %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 64, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>%
  layer_max_pooling_2d(pool_size = c(2,2)) %>%
  layer_flatten() %>%
  layer_dense(units = 256, activation = 'relu') %>%
  layer_dropout(0.5) %>%
  layer_dense(units = n_class_combined, activation = 'softmax')

model_combined %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = optimizer_adam(),
  metrics = 'accuracy'
)

train model

history_combined <- model_combined %>% fit(
  x_train_combined, y_train_combined,
  epochs = 20,
  batch_size = 32,
  validation_split = 0.2
)



## Epoch 1/20
## 761/761 - 48s - loss: 1.9696 - accuracy: 0.3593 - val_loss: 1.2875 - val_accuracy: 0.5701 - 4
8s/epoch - 63ms/step
## Epoch 2/20
## 761/761 - 47s - loss: 1.2002 - accuracy: 0.6057 - val_loss: 0.8837 - val_accuracy: 0.6953 - 4
7s/epoch - 61ms/step
## Epoch 3/20
## 761/761 - 46s - loss: 0.9006 - accuracy: 0.7012 - val_loss: 0.7218 - val_accuracy: 0.7599 - 4
6s/epoch - 61ms/step
## Epoch 4/20
## 761/761 - 46s - loss: 0.6720 - accuracy: 0.7780 - val_loss: 0.5228 - val_accuracy: 0.8309 - 4
6s/epoch - 61ms/step
## Epoch 5/20
## 761/761 - 47s - loss: 0.5301 - accuracy: 0.8280 - val_loss: 0.4806 - val_accuracy: 0.8518 - 4
7s/epoch - 61ms/step
## Epoch 6/20
## 761/761 - 46s - loss: 0.4444 - accuracy: 0.8543 - val_loss: 0.4123 - val_accuracy: 0.8654 - 4
6s/epoch - 61ms/step
## Epoch 7/20
## 761/761 - 46s - loss: 0.3892 - accuracy: 0.8728 - val_loss: 0.3605 - val_accuracy: 0.8846 - 4
6s/epoch - 61ms/step
## Epoch 8/20
## 761/761 - 47s - loss: 0.3440 - accuracy: 0.8868 - val_loss: 0.3371 - val_accuracy: 0.8970 - 4
7s/epoch - 62ms/step
## Epoch 9/20
## 761/761 - 46s - loss: 0.3070 - accuracy: 0.8979 - val_loss: 0.2953 - val_accuracy: 0.9134 - 4
6s/epoch - 61ms/step
## Epoch 10/20
## 761/761 - 46s - loss: 0.2743 - accuracy: 0.9078 - val_loss: 0.3211 - val_accuracy: 0.8993 - 4
6s/epoch - 61ms/step
## Epoch 11/20
## 761/761 - 46s - loss: 0.2385 - accuracy: 0.9238 - val_loss: 0.2966 - val_accuracy: 0.9132 - 4
6s/epoch - 61ms/step
## Epoch 12/20
## 761/761 - 46s - loss: 0.2187 - accuracy: 0.9260 - val_loss: 0.2878 - val_accuracy: 0.9165 - 4
6s/epoch - 61ms/step
## Epoch 13/20
## 761/761 - 46s - loss: 0.2127 - accuracy: 0.9283 - val_loss: 0.3115 - val_accuracy: 0.9162 - 4
6s/epoch - 61ms/step
## Epoch 14/20
## 761/761 - 46s - loss: 0.1947 - accuracy: 0.9339 - val_loss: 0.2748 - val_accuracy: 0.9236 - 4
6s/epoch - 61ms/step
## Epoch 15/20
## 761/761 - 46s - loss: 0.1676 - accuracy: 0.9435 - val_loss: 0.3062 - val_accuracy: 0.9201 - 4
6s/epoch - 61ms/step
## Epoch 16/20
## 761/761 - 46s - loss: 0.1663 - accuracy: 0.9428 - val_loss: 0.3417 - val_accuracy: 0.9164 - 4
6s/epoch - 61ms/step
## Epoch 17/20
## 761/761 - 46s - loss: 0.1485 - accuracy: 0.9493 - val_loss: 0.3086 - val_accuracy: 0.9259 - 4
6s/epoch - 61ms/step
## Epoch 18/20



## 761/761 - 46s - loss: 0.1401 - accuracy: 0.9505 - val_loss: 0.3185 - val_accuracy: 0.9251 - 4
6s/epoch - 61ms/step
## Epoch 19/20
## 761/761 - 46s - loss: 0.1348 - accuracy: 0.9543 - val_loss: 0.3002 - val_accuracy: 0.9329 - 4
6s/epoch - 61ms/step
## Epoch 20/20
## 761/761 - 46s - loss: 0.1234 - accuracy: 0.9575 - val_loss: 0.3273 - val_accuracy: 0.9208 - 4
6s/epoch - 61ms/step

evaluate

score_combined <- model_combined %>% evaluate(x_test_combined, y_test_combined)

## 238/238 - 3s - loss: 0.3476 - accuracy: 0.9206 - 3s/epoch - 14ms/step

cat("Test loss:", score_combined[[1]], "\n")

## Test loss: 0.3475748

cat("Test accuracy:", score_combined[[2]], "\n")

## Test accuracy: 0.920589

y_prob_combined <- model_combined %>% predict(x_test_combined)

## 238/238 - 3s - 3s/epoch - 13ms/step

y_pred_combined <- apply(y_prob_combined, 1, which.max)
y_true_combined <- apply(y_test_combined, 1, which.max)
plot(history_combined)



Visual confusion matrix

cm_combined <- table(True = y_true_combined, Predicted = y_pred_combined)
cm_df_combined <- as.data.frame(cm_combined)
colnames(cm_df_combined) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_combined, aes(x = Predicted, y = True, fill = Freq)) +
  geom_tile(color = "white") +
  scale_fill_gradient(low = "white", high = "steelblue") +
  geom_text(aes(label = Freq), size = 2.5) +
  labs(title = "Confusion Matrix (Combined M + S Dataset)", x = "Predicted", y = "Actual") +
  theme_minimal()




