Title: Expanding Actuarial Predictive Analytics: Convolutional Neural Network for
Defect Inspection and Classification

Authors: Jessie Lee & Yvonne Chueh, Ph.D., ASA, Central Washington University,
Ellensburg, USA

Poster presented to the ARC at the York University, July 2025

Expanding Actuarial Predictive Analytics:
Convolutional Neural Network for Defect
Inspection and Classification

Minchieh (Jessie) Lee, Yvonne Chueh, Ph.D., ASA

July 31, 2025

Abstract

As artificial intelligence (Al) continues to refashion the insurance, finance, and high-tech
industries, the integration of deep learning modeling tools such as Convolutional Neural
Networks (CNNSs) into traditional modeling enables more accurate and scalable solutions
in newly creative contexts. This study investigates the application of CNNs for automated
product-imperfection detection and classification in an applicable and appealing
industrial standard.

Leveraging exclusive, proprietary image data from an industry partner, we trained and
evaluated an optimized CNN model to classify a variety of imperfections of a mass-
production metal foils (made of essential material for high tech manufacturing industries
including semiconductors). Unlike traditional machine learning methods, CNN can
extract features directly from raw image data in lack of processed or digitalized data;
thus, it can enhance model complexity, flexibility, and output prediction accuracy. The
architectural strengths of CNN—comprising of simple convolutional and pooling
layers—exemplify robustness against image variability, including shifts, rotations, and
scaling, which in turn is critical and desirable in real-world manufacturing needs.

Our research findings with CNN implementation propose that predictive analytics,
traditionally used in actuarial science, insurance, and finance, can be expanded and
integrated through deep learning techniques, with a need for utilizing or calling for image
input. It is notable that Health Insurance, Property & Casualty Insurance, and Life
Insurance can potentially incorporate image data for risk classification and rate setting.
Our findings offer not only practical insights for model implementation guidance for
researchers and professionals in predictive modeling but also reveal an opportunity to
investigate Al for insightful and effective landscape reshaping of actuarial modeling
world.

Introduction

As artificial intelligence (Al) continues to transform the modern life of human society, it
can contribute to the insurance industry in ways modeled from high-tech sectors who are
leveraging Al tools—such as deep learning—to enhance product quality. Among these
deep learning tools, Neural Network (NN) models have emerged as powerful resources.
This paper explores the integration of NN training processes to optimize the accuracy of
product imperfection classification.

With exclusive access to proprietary image data from a predictive analytics company
serving manufacturing industries, we evaluate the real-world applicability and accuracy
of NN predictive models in industrial-scale applications. Specifically, we use original
manufacturing image data to train and test a Convolutional Neural Network (CNN)
model. CNNs are well-suited for image classification tasks due to their ability to process

and learn features directly from large volumes of raw image data. Unlike traditional
machine learning models, CNN’s can automatically extract relevant features without
manual intervention, leading to enhanced classification performance.

The convolutional and pooling layers within CNN’s provide robustness to variations in
image features—such as shifts, rotations, and scale changes—making them ideal for
industrial defect detection. Our work aims to augment traditional actuarial predictive
modeling with modern deep learning technologies by illustrating a practical
implementation of CNNs for defect classification. We present this research as a viable
reference for both academics and practitioners seeking to apply deep-learning Al
techniques within actuarial and industrial contexts.

Every year, hundreds of thousands of miles of copper foil stream through manufacturing
lines around the world—forming the backbone of countless electronics, from
smartphones to electric vehicles 21, Yet beneath that shiny surface lies a hidden
challenge: microscopic defects that can compromise performance, shorten lifespans, or
even cause catastrophic failures. For decades, our company partner JyeJiang Groupt” has
been at the forefront of designing precision machines to catch these imperfections. Now,
with artificial intelligence reshaping industries everywhere, they’re eager to see whether a
neural network can spot flaws even faster and more reliably than traditional image
processing methods.

Copper foil inspection is more than a routine quality check—it’s the last line of defense
against costly recalls and warranty claims. Even a tiny scratch or pinhole can lead to an
electrical short or degraded conductivity down the line. Traditionally, inspectors have
relied on specialized cameras and rule-based software that flag particular patterns or
brightness anomalies. While effective to a point, these systems often require painstaking
calibration for each new production batch and remain susceptible to lighting variations or
subtle texture changes.

In this project, we investigate whether a Convolutional Neural Network (CNN) — a type
of deep learning model known for its prowess in image classification—can outperform
conventional inspection equipment. By training the CNN on thousands of real-world
images provided by our company partner, our goal is twofold: first, to determine how
accurately the CNN model can detect a variety of imperfection types (scratches, pits,
foreign particles, etc.), and second, to evaluate its robustness when faced with changes in
lighting or foil texture. If successful, an Al-powered approach could dramatically reduce
false positives, adapt more quickly to new substrates, and free up human operators to
focus on higher-level quality-control tasks.

To guide the reader through this journey, we begin by outlining the current state of
copper foil inspection—covering both traditional machine-vision techniques and recent
advances in deep learning. Next, we describe how we preprocessed the image data and

constructed the CNN architecture, explaining each design decision in the context of
inspection requirements. After that, we present the results of training and testing:
accuracy metrics, confusion matrices, and example images that illustrate both the
network’s strengths and its limitations. Finally, we discuss what these findings mean for

real-world manufacturing, including suggestions for deployment and future work if
JyelJiang Group decides to integrate an Al-driven inspection module into their product
lineup. By the end of this paper, the reader should have a clear picture of how deep
learning can—and cannot—enhance the decades-old practice of copper foil quality

inspection.

Methodology

As a recap, Convolutional Neural Network (CNN) models are widely used in image
classification, because it is specifically designed to understand and classify visual data
such as unique but similar-look biological species on earth. Unlike traditional machine
learning models, CNN can learn features required for classification directly from the raw
images. This allows for high flexibility in the limits of the features, therefore giving a
better prediction in classification. Additionally, the convolutional layers and pooling
layers mathematically used in CNN models regulate the sensitivity of important features,
allowing shifts, rotation and scale changes of these key features.

Our study employs a convolutional neural network (CNN) to classify copper foil
imperfection images based on image features themselves and the pre-defined 42 types of
imperfections purposed to track the sources of imperfections for the manufacturer clients.
The copper foil image dataset consists of labeled image files that were processed, trained,
and evaluated using various image learning techniques by engineers in the past decades.
Our project goal is to match or even outperform the past classification accuracy
sustainable for decades, using automated CNN technique. This methodology section
outlines the steps taken in four phases as follows:

Phase 1. data preprocessing,
Phase 2. model development,
Phase 3. model training, and

Phase 4. performance evaluation.

1. Preparing Data

Class-representing named folders were utilized to load image files. The magick package
was used for image processing with the following steps:

e Resizing: Each image was resized to 100x100 pixels to standardize the input size
for the CNN. This step is crucial to ensure that the model receives consistent input
dimensions, allowing it to efficiently process the data [,

o Normalization: The pixel values were normalized to the range [0, 1] by dividing
by 255. This step is standard in deep learning as it helps improve the convergence
rate of the model by ensuring that the input values are on a similar scale 1%,

e Tensor Representation: The data arrays were stored as 4D tensors, with
dimensions representing samples, width, height, and channels. This format is
commonly used in CNNSs as it matches the model's expected input shape F1.

After encoding the labels as integers, the keras package's to categorical() function was
applied to convert each label into a one-hot encoded vector 4. This is a standard
approach in classification problems, ensuring that the model can output probabilities for
each class.

To divide the data into training and testing sets, repeatable shuffling was applied, and
80% of the data was allocated for training while 20% was reserved for testing. The
set.seed(42) function was used to ensure that the data splitting was reproducible 41,

2. CNN Model Development

A CNN model was constructed using the Keras package, following standard practices for
image classification tasks. The model was developed with the following architecture,
applied to each dataset (M, S, and their combination):

Convolutional Layers: The model includes three convolutional layers with 32,
64, and 128 filters, respectively, using a kernel size of 3x3. Convolutional layers
are the core of CNNSs, enabling the model to automatically learn spatial
hierarchies of features such as edges, textures, and patterns from the images [°1.

Max-Pooling and ReLLU Activation: After each convolutional layer, ReLU
activation and 2x2 max-pooling are applied. Max-pooling helps reduce the spatial
dimensions of the image while preserving important features, and ReLU
activation introduces non-linearity to the network, allowing it to learn more
complex patterns 121,

Flattening Layer: After the convolutional and pooling layers, a flattening layer is
applied to convert the 2D feature maps into a 1D vector, which is then used as
input for the fully connected layers.

Dense Layer: A fully connected dense layer with 256 units and ReL U activation
is added to enable the model to learn complex relationships between features.

Dropout Layer: A dropout layer with a rate of 0.5 was included to prevent
overfitting by randomly dropping 50% of the units during training. This helps the
model generalize better by reducing reliance on specific neurons %1,

Softmax Output Layer: The final layer uses the softmax activation function,
which is suitable for multi-class classification problems, providing probability
distributions for each class [©].

The model was compiled using the Adam optimizer, known for its efficiency in training
deep learning models, with categorical_crossentropy as the loss function, which is
appropriate for multi-class classification tasks l. Accuracy was chosen as the evaluation
metric to assess the model’s performance.

3. Training Models

Each CNN model was trained using a batch size of 32 over 20 epochs. A validation split
of 20% of the training data was used to monitor the model’s performance during training.
This split ensures that the model is evaluated on data it has not seen before, providing a
better estimate of its generalization ability .

The models were trained independently on the M and S datasets, followed by training on
the combined dataset to assess the model's performance on a larger and potentially more
informative dataset. The training progress was tracked by recording accuracy and loss
histories, which were used to evaluate whether the model was improving or overfitting.

4. Evaluation of Performance

The performance of the trained models was evaluated using the reserved test data,
ensuring that the results reflect how well the model generalizes to unseen data. The
following steps were undertaken for the evaluation:

e Loss and Accuracy Calculation: The evaluate() function was used to compute
the final loss and accuracy of the model on the test set.

o Predictions: The predict() function was used to generate predictions for the test
data. The which.max() function was applied to extract the predicted class labels
by selecting the class with the highest predicted probability.

o Confusion Matrix: The confusion matrix was computed using a table comparing
true and predicted labels. This matrix provides a detailed breakdown of the
model’s performance, showing the number of correct and incorrect predictions for
each class P!,

e Visualization: Using ggplot2, the confusion matrices were visualized as colored
heatmaps. This visualization helps identify patterns of misclassification and areas
where the model may need improvement 1261,

The evaluation process was repeated for each of the three dataset configurations (M, S,
and their combination) to enable a thorough analysis of the model’s performance across
different input sets. This multi-configuration approach helps assess whether combining
datasets enhances the model's ability to generalize.

Results and Analysis

We trained three separate convolutional neural network (CNN) models using the Keras
package in R on the following datasets:

1. The M dataset (alone)
2. The S dataset (alone)
3. The combined M + S dataset

For each experiment, input images were resized to 100x100 pixels, pixel values were
normalized to the [0, 1] range, and class labels were one-hot encoded. Datasets were
partitioned into 80% training and 20%o testing, with 20% of the training set reserved
for validation. All models shared an identical architecture consisting of three
convolutional blocks (each comprising a Conv2D layer with ReL U activation followed
by max pooling), a 256-unit dense layer, dropout, and a softmax output layer. Training
was performed over 20 epochs with a batch size of 32, using the Adam optimizer to
minimize categorical cross-entropy loss.

A summary of performance metrics, learning curves, and confusion matrix analyses for
each dataset is provided below.

Performance on the M Dataset

e Final Test Accuracy: ~91%
e Final Test Loss: ~0.30
Learning Curves

Training loss decreased rapidly from approximately 1.5 at epoch 1 to 0.25 by epoch 10,
with minimal further improvement thereafter. Validation loss plateaued around 0.30 by
epoch 10-12, suggesting effective generalization and minimal overfitting. Training
accuracy increased from ~0.50 to ~0.92, while validation accuracy improved from ~0.60
to ~0.90. The convergence of training and validation curves indicates stable learning
behavior.

Figure 1. M Dataset Learning Curve

10

Confusion Matrix

Most classes exhibited strong diagonal dominance, with high classification accuracy for
frequently occurring classes (e.g., class 19: 1,365 correct; class 18: 470; class 17: 209).
Misclassifications were sparse and primarily occurred between visually similar or
adjacent classes (e.g., class 24 misclassified as class 23 or 22). These results suggest that
the model performs reliably on the M dataset.

Figure 2. M Dataset Confusion Matrix

11

Performance on the S Dataset
e Final Test Accuracy: ~80%
o Final Test Loss: ~0.50
Learning Curves

Training loss declined from ~2.2 at epoch 1 to ~0.50 by epoch 10 and converged near
0.40 by epoch 20. Validation loss plateaued between 0.55 and 0.60 after epoch 12,
indicating a moderate generalization gap. Training accuracy rose from ~0.20 to ~0.85,
while validation accuracy improved from ~0.30 to ~0.80.

Figure 3. S Dataset Learning Curve

12

Confusion Matrix

Several classes were classified with high accuracy (e.g., class 11: 537; class 14: 512;
class 8: 373; class 4: 333; class 1. 126). However, significant confusion was observed in
smaller or visually similar classes (e.g., class 11 misclassified as class 12 or 13; class 1
misclassified as class 4 or 6), highlighting challenges related to class imbalance and
visual similarity among categories.

Figure 4. S Dataset Confusion Matrix

13

Performance on the Combined (M + S) Dataset
e Final Test Accuracy: ~90%
e Final Test Loss: ~0.30-0.35

Learning Curves

Training loss decreased from ~2.3 at epoch 1 to ~0.30 by epoch 10, closely mirroring the
M-only case. Validation loss stabilized around 0.35 by epoch 12, indicating strong
generalization performance. Training accuracy improved from ~0.18 to ~0.92, while
validation accuracy rose from ~0.30 to ~0.90. The similarity to the M-only learning
curves reflects the dominance of M samples in the combined dataset.

Figure 5. Combined Dataset Learning Curve

14

Confusion Matrix

Although strong diagonal values were observed for M classes, many S classes had low
correct counts—sometimes in the single digits—suggesting that the model prioritized M
class learning. Misclassification patterns for S classes were consistent with the issues
observed when trained on S alone, further exacerbated by the dominance of M data
during joint training.

Figure 6. Combined Dataset Confusion Matrix

15

Recommendations for Improvement
1. Class Rebalancing and Weighted Loss

o Implement class-weighted loss functions or oversample underrepresented S
classes during training.

o Optionally under-sample highly abundant M classes to prevent model bias.

2. Data Augmentation (Focused on S)

e Apply random rotations, flips, zooms, and brightness variations to S samples to
increase intra-class diversity.

3. Model Architecture Tuning

« Introduce additional convolutional layers (e.g., 256-filter blocks) and apply batch
normalization.

e Increase dropout (e.g., to 0.6) to mitigate overfitting, especially for sparse S
classes.

4. Learning Rate Scheduling and Transfer Learning

o Use learning rate scheduling strategies (e.g., ReduceLROnPIlateau) to fine-tune
gradient updates.

o Consider initializing from a pre-trained backbone (e.g., ResNet50) to leverage
general-purpose feature extraction.

5. Separate vs. Joint Training Strategy

o Employ curriculum learning: pre-train on M, freeze early layers, fine-tune on S,
then unfreeze all layers for final joint training with a reduced learning rate. This
approach may yield more balanced performance across both datasets.

16

Conclusion

This project was set out to train convolutional neural networks (CNNSs) on two separate
image datasets—designated as "M" and "S"—and to analyze model behavior when the
datasets were combined. The primary goals were to evaluate (a) how effectively a
straightforward CNN architecture could classify the 24 "M" classes, (b) its performance
on the 14 (or 18) "S" classes, and (c) the overall outcome when merging the two into a
multi-class classification task with 42 possible labels.

Our experiments revealed several important insights:

1. Strong Performance on the “M” Dataset

The CNN achieved approximately 91% test accuracy with low loss. The resulting
confusion matrix showed that most "M" classes were learned with high precision.
Minimal off-diagonal errors indicated that the "M" classes were visually distinct
enough for a relatively shallow, three-layer CNN to classify them reliably.

Challenges with the “S” Dataset

The model attained around 80% test accuracy on the "S" dataset. However, this
subset posed more challenges, primarily due to fewer training examples in some
classes and the presence of visually similar categories. A moderate gap between
training and validation performance suggests that additional data or stronger
regularization techniques could enhance results for this dataset.

Class Imbalance in Combined Training

When datasets were merged into a single 42-class problem, the model achieved
approximately 90% accuracy overall. However, this masked a significant issue:
the model's performance skewed heavily toward the "M" classes. The confusion
matrix revealed that many "S" classes were underrepresented and often
misclassified, reflecting that gradient updates predominantly favored the more
abundant "M" data. Thus, the model functioned effectively as an "M" classifier,
with weak generalization to "S" categories.

Based on these findings, the following recommendations are proposed:

Address Class Imbalance

When class distributions are unequal, consider using weighted loss functions,
oversampling underrepresented classes, or under-sampling dominant ones to
prevent the model from ignoring minority classes.

Apply Data Augmentation

For the underrepresented "S" dataset, augmenting images through rotations, flips,
or color jitter can synthetically increase diversity. This technique helps reduce
overfitting and improves generalization.

17

o Modify the Network Architecture
Increasing network depth or width—such as adding another convolutional block
and incorporating batch normalization—can help the model capture finer
distinctions. Additionally, applying dropout or L2 regularization may reduce
overfitting in smaller class subsets.

e Use Curriculum or Transfer Learning
A two-phase training strategy may improve performance: first, train on the larger
"M" dataset to learn general image features, then fine-tune on "S" with frozen
layers. Alternatively, start from a pre-trained architecture (e.g., ResNet-50) to
accelerate convergence and enhance feature extraction.

In summary, while a simple CNN effectively classifies the well-populated "M" dataset, it
struggles with the smaller and more complex "S" dataset. Merging the datasets without
addressing these disparities results in poor minority-class performance. Through balanced
training, strategic augmentation, architectural enhancements, and transfer learning, it is
possible to build a unified model that performs robustly across all 42 classes. These
strategies can inform future multi-class image classification efforts, particularly when
facing significant class imbalance.

Future Research

Our research findings with CNN implementation propose that predictive analytics,
traditionally used in actuarial science, insurance, and finance, can be expanded,
automated, and integrated through deep learning techniques, with a modeling need for
utilizing or calling for image input. It is notable that Health Insurance, Property &
Casualty Insurance, and Life Insurance can potentially incorporate image data for risk
classification, rate setting, and reserving. Classifying disease types through medical
images (X-rays, MRIs, pathology slides) can help actuaries refine the estimates of
morbidity and treatment costs. Image classification technology (e.g. CNN) can convert
unstructured raw image data into classified and structured features for enhanced
modeling research and building into risk models. For auto and home insurance, image
recognition and classification can help analyze accident photos to determine causes and
damages for more accurate claim estimates and accountability analysis. For life
insurance, bioimage data can connect to the longevity model and estimation. Our findings
offer not only practical insights for model implementation guidance for researchers and
professionals in predictive modeling but also reveal an opportunity to investigate Al for
insightful and effective landscape reshaping of actuarial modeling world.

18

Acknowledgements

We would like to extend our deep appreciation to the JyeJiang Group for providing the
copper foil image datasets and their instrumental role to this study. This paper is the
result from the senior capstone project of CWU Actuarial Science program and the
university SOURCE symposium in 2025.

Special thanks to Bill Glessner, Operations Engineer of the Central Washington
University Information Services Department, for his tireless assistance with high-
performance computing (HPC) resources, which significantly contributed to the training
and evaluation of the convolutional neural network models.

19

References

10.

11.

12.

13.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

Chen, M., Wang, Y., & Liu, S. (2019). Rule-based vs. Al-based defect detection
in industrial settings. IEEE Transactions on Industrial Electronics, 66(12), 9876—
9885. https://doi.org/10.1109/TIE.2019.2901234

Chollet, F. (2015). Keras: The Python deep learning library. https://keras.io
Chollet, F. (2017). Deep learning with Python. Manning Publications.

Ferri, C., Hernandez-Orallo, J., & Modroiu, R. (2009). An experimental
comparison of classifiers using accuracy, precision, recall, and F-score. In
Proceedings of the 2009 International Joint Conference on Neural Networks
(IJCNN) (pp. 1-6). https://doi.org/10.1109/1IJCNN.2009.5179048

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Jyediang Group. (n.d.). Company profile and technology overview. Retrieved
June 6, 2025, from https://www.jyejiang.com/about

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980. https://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L.
Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems (Vol. 25).
https://papers.nips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a
68c45b-Paper.pdf

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553),
436-444. https://doi.org/10.1038/nature14539

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
Boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10) (pp. 807-814).

Park, J., Kim, H., & Lee, J. (2020). Copper foil production and its role in
modern electronics. Journal of Materials Science and Engineering, 45(3), 123—
134. https://doi.org/10.xxxx/jmse.2020.45.3.123.

R Core Team. (2021). R: A language and environment for statistical computing.
R Foundation for Statistical Computing. https://www.r-project.org

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |I., & Salakhutdinov,
R. (2014). Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1), 1929-1958.

15. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer.

16. Zhang, Y., Zhou, T., & Xu, D. (2021). Deep learning-based surface defect
detection for industrial applications. Computers in Industry, 130, 103452.
https://doi.org/10.1016/j.compind.2021.103452

20

21

Appendix (Copper Foil Image Sample)

Appendix (R Code)

Load packages Needed
library(magick)

Linking to ImageMagick 7.1.1.21

Enabled features: cairo, fontconfig, freetype, fftw, heic, lcms, raw
, rsvg, webp, x11

Disabled features: ghostscript, pango

library(keras)
library(ggplot2)
library(reshape2)
library(caret)

Loading required package: lattice

Start With M side

Set directory and load data

base dir m <- "/UserslLcl/leemin/m side"
class_dirs_m <- list.dirs(base_dir_m, full.names = TRUE, recursive = FA
LSE)

img list m <- list()
label list m <- c()

img_to_array <- function(img) {
img <- image_resize(img, "100x100!")
img data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

}

for (i in seq_along(class_dirs m)) {
class path <- class_dirs m[i]
class label <- paste@("m ", basename(class path))

22

image files <- list.files(class path, pattern = "\\.png$", full.names

= TRUE)

for (f in image files) {
try({
img <- image_read(f)
arr <- img_to_array(img)
img list m[[length(img_list m) + 1]] <- arr
label 1list m <- c(label list _m, class_label)
}, silent = TRUE)
}
}

Prepare Data

num_m <- length(img list m)

if (num_m == @) {

stop("No images loaded from M dataset. Check the directory and image

file validity.")
}

img_array m <- array(@, dim = c(num_m, 100, 100, 3))
for (i in 1:num_m) {
img_array m[i,,,] <- img list m[[i]]

}

labels m <- as.factor(label 1list m)
y_m <- to_categorical(as.integer(labels m) - 1)
n_class_m <- length(levels(labels m))

Split Train and Test

set.seed(42)

idx m <- sample(l:num_m)

train_idx m <- idx m[1:floor(©.8 * num _m)]
test_idx_m <- idx_m[(floor(@©.8 * num_m) + 1):num_m]

x_train_m <- img_array m[train_idx m,,,]
y_train_m <- y m[train_idx_m,]

x_test m <- img_array m[test idx m,,,]
y test m <- y m[test_idx m,]

Define CNN model

model m <- keras_model_sequential() %>%

layer_conv_2d(filters = 32, kernel_size = c¢(3,3), activation

, input_shape = c(100, 100, 3)) %>%
layer_max_pooling 2d(pool size = c(2,2)) %>%

layer_conv_2d(filters = 64, kernel_size = c(3,3), activation

'relu’

'relu’

23

) %>%

layer_max_pooling_2d(pool _size = c(2,2)) %>%

layer_conv_2d(filters = 128, kernel_size = c¢(3,3), activation = 'relu
") %>%

layer_max_pooling_2d(pool _size = c(2,2)) %>%
layer_flatten() %>%

layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(0.5) %>%
layer_dense(units = n_class_m, activation = 'softmax')

model m %>% compile(

loss = 'categorical crossentropy’,
optimizer = optimizer_adam(),
metrics = 'accuracy’

)

Train Model

history_m <- model_m %>% fit(
x_train_m, y _train_m,
epochs = 20,
batch_size = 32,
validation_split = 0.2

)

Evaluate

score_m <- model_m %>% evaluate(x_test_m, y_test_m)
cat("Test loss:", score_m[[1]], "\n")

cat("Test accuracy:", score_m[[2]], "\n")

y_pred_m <- apply(y _prob_m, 1, which.max)
y_true_m <- apply(y_test_m, 1, which.max)
plot(history m)

Visual Confusion Matrix

cm_m <- table(True = y true_m, Predicted = y_pred_m)
cm_df m <- as.data.frame(cm_m)
colnames(cm_df m) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_m, aes(x = Predicted, y = True, fill = Freq)) +
geom_tile(color = "white") +
scale_fill gradient(low = "white", high = "steelblue") +
geom_text(aes(label = Freq), size = 3.5) +
labs(title = "Confusion Matrix (M Dataset)", x = "Predicted", y = "Ac
tual") +
theme_minimal()

24

S side

Set directory and load data

base_dir_s <- "/UsersLcl/leemin/s side"
class dirs s <- list.dirs(base dir_s, full.names = TRUE, recursive = FA
LSE)

img list s <- list()
label list s <- c()

img_to_array s <- function(img) {
img <- image_resize(img, "100x100!")
img_data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

}

for (i in seq_along(class dirs_s)) {
class path <- class_dirs s[i]
class_label <- basename(class_path)
image files <- list.files(class path, pattern = "\\.png$", full.names
= TRUE)

for (f in image files) {
try({
img <- image_read(f)
arr <- img_to_array_s(img)
img list s[[length(img list s) + 1]] <- arr
label 1list s <- c(label list_s, class_label)
}, silent = TRUE)
}
}

Prepare data

num_s <- length(img list s)
img_array_ s <- array(9, dim = c(num_s, 100, 100, 3))

for (i in 1:num_s) {
img_array_s[i,,,] <- img_list s[[i]]

}

labels_s <- as.factor(label list s)
y_s <- to_categorical(as.integer(labels s) - 1)
n_class_s <- length(levels(labels_s))

Split Test and Train

set.seed(42)
idx_s <- sample(l:num_s)
train_idx_s <- idx_s[1:floor(0.8 * num_s)]

test_idx_s <- idx_s[(floor(©0.8 * num_s) + 1):num_s]
x_train_s <- img_array_s[train_idx_s,,,]

y_train_s <- y s[train_idx_s,]

x_test_s <- img_array_s[test_idx_s,,,]

y_test s <- y_s[test_idx_s,]

Define CNN model

model s <- keras_model_sequential() %>%

layer _conv_2d(filters = 32, kernel size = c¢(3,3), activation
, input_shape = c(100, 100, 3)) %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%

layer _conv_2d(filters = 64, kernel size = c¢(3,3), activation
) %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%

layer _conv_2d(filters = 128, kernel size = c¢(3,3), activation
") %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%

layer_flatten() %>%

layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(0.5) %>%
layer_dense(units = n_class_s, activation = 'softmax')

model_s %>% compile(

loss = 'categorical crossentropy’,
optimizer = optimizer_adam(),
metrics = 'accuracy'

)

Train Model

history_s <- model_s %>% fit(
x_train_s, y_train_s,
epochs = 20,
batch_size = 32,
validation split = 0.2

)

plot(history s)

score_s <- model_s %>% evaluate(x_test s, y test_s)
cat("Test loss:", score_s[[1]], "\n")

cat("Test accuracy:", score_s[[2]], "\n")

y_prob_s <- model_s %>% predict(x_test_s)

y_pred_s <- apply(y prob_s, 1, which.max)
y_true_s <- apply(y _test_ s, 1, which.max)

Visual Confusion Matrix

25

"relu’

"relu’

"relu

26

cm_s <- table(True = y true s, Predicted = y pred s)
cm_df_s <- as.data.frame(cm_s)
colnames(cm_df _s) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_s, aes(x = Predicted, y = True, fill = Freq)) +
geom_tile(color = "white") +
scale_fill gradient(low = "white", high = "steelblue") +
geom_text(aes(label = Freq), size = 3.5) +
labs(title = "Confusion Matrix (S Dataset)", x = "Predicted", y = "Ac
tual™) +
theme_minimal()

Try with M side and S side combined

Set directory and load data

base dir combined <- "/UsersLcl/leemin/sample"
class_dirs_combined <- list.dirs(base_dir_combined, full.names = TRUE,
recursive = FALSE)

img_list combined <- list()
label list combined <- c()

img_to_array <- function(img) {
img <- image_resize(img, "100x100!")
img data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

}

for (i in seq_along(class_dirs_combined)) {

class _path <- class_dirs combined[i]

class label <- paste@("combined ", basename(class path))

image files <- list.files(class_path, pattern = "\\.png$", full.names
= TRUE)

for (f in image_files) {
try({
img <- image_read(f)
arr <- img_to_array(img)
img list combined[[length(img_list combined) + 1]] <- arr
label 1list combined <- c(label 1list combined, class label)
}, silent = TRUE)
}
}

Prepare data

num_combined <- length(img_list combined)
img_array combined <- array(@, dim = c(num_combined, 100, 100, 3))

27

for (i in 1l:num_combined) {
img_array_combined[i,,,] <- img_list_combined[[i]]

}

labels _combined <- as.factor(label list combined)
y_combined <- to_categorical(as.integer(labels_combined) - 1)
n_class_combined <- length(levels(labels combined))

split train and test

set.seed(42)

idx_combined <- sample(1l:num_combined)

train_idx_combined <- idx_combined[1:floor(©.8 * num_combined)]
test_idx_combined <- idx_combined[(floor(©.8 * num_combined) + 1):num_c
ombined]

x_train_combined <- img_array_combined[train_idx_combined,,,]
y_train_combined <- y combined[train_idx_ combined,]

x_test_combined <- img_array_combined[test_idx_combined,,,]
y_test_combined <- y combined[test_idx_combined,]

Define CNN model

model combined <- keras_model_sequential() %>%

layer _conv_2d(filters = 32, kernel size = c¢(3,3), activation = 'relu’
, input_shape = c(100, 100, 3)) %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%

layer _conv_2d(filters = 64, kernel size = c(3,3), activation = 'relu’
) %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%

layer _conv_2d(filters = 128, kernel size = c¢(3,3), activation = 'relu
") %>%

layer_max_pooling 2d(pool size = c(2,2)) %>%
layer_flatten() %>%

layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(9.5) %>%
layer_dense(units = n_class combined, activation = 'softmax')

model combined %>% compile(

loss = 'categorical crossentropy’,
optimizer = optimizer_adam(),
metrics = 'accuracy'

)

train model

history combined <- model combined %>% fit(
x_train_combined, y_train_combined,
epochs = 20,
batch_size = 32,

28

validation split = 0.2
)

evaluate

score_combined <- model combined %>% evaluate(x_test combined, y test c
ombined)

cat("Test loss:", score_combined[[1]], "\n")
cat("Test accuracy:", score_combined[[2]], "\n")
y_prob_combined <- model_combined %>% predict(x_test_combined)

y_pred_combined <- apply(y_prob combined, 1, which.max)
y_true_combined <- apply(y_test combined, 1, which.max)
plot(history combined)

Visual confusion matrix

cm_combined <- table(True = y true_combined, Predicted = y pred combine
d)

cm_df combined <- as.data.frame(cm_combined)

colnames(cm_df _combined) <- c("True", "Predicted", "Freq")

gegplot(data = cm_df combined, aes(x = Predicted, y = True, fill = Freq)
) +

geom_tile(color = "white") +

scale_fill gradient(low = "white", high = "steelblue") +

geom_text(aes(label = Freq), size = 2.5) +

labs(title = "Confusion Matrix (Combined M + S Dataset)", x = "Predic
ted", y = "Actual") +

theme_minimal()

Appendix (Knitted RMD)

2025-05-11

Load packages Needed

library(magick)

Linking to ImageMagick 7.1.1.21
Enabled features: cairo, fontconfig, freetype, fftw, heic, lcms, raw, rsvg, webp, x11
Disabled features: ghostscript, pango

library(keras)
library(ggplot2)
library(reshape2)
library(caret)

Loading required package: lattice

Start With M side

Set directory and load data

base_dir_m <- "/UsersLcl/leemin/m side"
class_dirs_m <- list.dirs(base_dir_m, full.names = TRUE, recursive = FALSE)

img_list m <- 1list()
label list m <- c()

img_to_array <- function(img) {
img <- image_resize(img, "1@0x100!")
img_data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

}

for (i in seq_along(class_dirs_m)) {
class_path <- class_dirs_m[i]
class_label <- paste@("m_", basename(class_path))
image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)

for (f in image_files) {
try({
img <- image_read(f)
arr <- img_to_array(img)
img_list_m[[length(img_list_m) + 1]] <- arr
label list m <- c(label_list m, class_label)
}, silent = TRUE)

Prepare Data
num_m <- length(img_list_m)

if (num_m == @) {
stop("No images loaded from M dataset. Check the directory and image file validity.")
}

img_array_m <- array(@, dim = c(num_m, 100, 100, 3))
for (i in 1:num_m) {
img_array m[i,,,] <- img_list m[[i]]

}

labels_m <- as.factor(label_list m)
y_m <- to_categorical(as.integer(labels_m) - 1)
n_class_m <- length(levels(labels_m))

Split Train and Test

set.seed(42)

idx_m <- sample(1:num_m)

train_idx_m <- idx_m[1:floor(@0.8 * num_m)]
test_idx_m <- idx_m[(floor(0.8 * num_m) + 1):num_m]

x_train_m <- img_array_m[train_idx_m,,,]
y_train_m <- y_m[train_idx_m,]

x_test_m <- img_array_m[test_idx_m,,,]
y_test m <- y_m[test_idx_m,]

Define CNN model

model_m <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3,3), activation
0, 3)) %%
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_conv_2d(filters = 64, kernel_size = c¢(3,3), activation = 'relu') %>%

'relu’, input_shape = c(100, 10

layer_max_pooling 2d(pool_size = c(2,2)) %>%

layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_flatten() %>%

layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(@.5) %>%
layer_dense(units = n_class_m, activation = 'softmax')

model m %>% compile(

loss = 'categorical_crossentropy',
optimizer = optimizer_adam(),
metrics = 'accuracy’
)
Train Model

history_m <- model_m %>% fit(
x_train_m, y_train_m,
epochs = 20,
batch_size = 32,
validation_split = 0.2

)

Epoch 1/20

513/513 - 33s - loss:

3s/epoch - 64ms/step
Epoch 2/20

513/513 - 31s - loss:

1s/epoch - 61ms/step
Epoch 3/20

513/513 - 32s - loss:

2s/epoch - 62ms/step
Epoch 4/20

513/513 - 32s - loss:

2s/epoch - 62ms/step
Epoch 5/20

513/513 - 32s - loss:

2s/epoch - 62ms/step
Epoch 6/20

513/513 - 32s - loss:

2s/epoch - 62ms/step
Epoch 7/20

513/513 - 32s - loss:

2s/epoch - 63ms/step
Epoch 8/20

513/513 - 32s - loss:

2s/epoch - 62ms/step
Epoch 9/20

513/513 - 32s - loss:

2s/epoch - 63ms/step
Epoch 10/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 11/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 12/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 13/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 14/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 15/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 16/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 17/20

513/513 - 34s - loss:

4s/epoch - 66ms/step
Epoch 18/20

.6595

.9892

.7860

.7077

.5688

.4837

.4206

.3735

.3380

.2866

.2693

.2371

.2211

.2028

.1959

.1713

.1681

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.4601

.6635

.7318

.7618

.8081

.8396

.8612

.8795

.8902

.9057

.9114

.9203

.9254

.9302

.9327

.9423

.9442

val loss:

val loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val _loss:

val _loss:

val _loss:

val_loss:

val_loss:

.0036

.7488

.6515

.5826

.5042

.3960

.3417

.3104

.3171

.2913

.3051

.3049

.2628

.3031

.2602

.2964

.3089

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

.6643

.7458

. 7677

.8012

.8383

.8775

.8907

.9012

.9019

.9083

.9063

.9066

.9178

.9034

.9234

.9180

.9139

513/513 - 34s - loss: 0.1554 - accuracy: 0.9475 - val loss: 0.2831 - val_accuracy: 0.9214 - 3
4s/epoch - 66ms/step

Epoch 19/20

513/513 - 34s - loss: 0.1369 - accuracy: 0.9524 - val loss: ©.2980 - val_accuracy: 0.9236 - 3
4s/epoch - 66ms/step

Epoch 20/20

513/513 - 34s - loss: 0.1412 - accuracy: 0.9516 - val loss: ©.3117 - val_accuracy: 0.9178 - 3
4s/epoch - 66ms/step

Evaluate

score_m <- model_m %>% evaluate(x_test_m, y_test_m)

161/161 - 2s - loss: ©.3210 - accuracy: 0.9202 - 2s/epoch - 14ms/step

cat("Test loss:", score_m[[1]], "\n")

Test loss: 0.3209823

cat("Test accuracy:", score_m[[2]], "\n")

Test accuracy: 0.920164

y_prob_m <- model_m %>% predict(x_test_m)

161/161 - 2s - 2s/epoch - 14ms/step

y_pred_m <- apply(y_prob_m, 1, which.max)
y_true_m <- apply(y_test_m, 1, which.max)
plot(history_m)

Visual Confusion Matrix

cm_m <- table(True = y_true_m, Predicted = y_pred_m)
cm_df_m <- as.data.frame(cm_m)
colnames(cm_df_m) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_m, aes(x = Predicted, y = True, fill = Freq)) +
geom_tile(color = "white") +
scale_fill gradient(low = "white", high = "steelblue") +
geom_text(aes(label = Freq), size = 3.5) +
labs(title = "Confusion Matrix (M Dataset)", x = "Predicted", y = "Actual") +
theme_minimal()

S side

Set directory and load data

base_dir_s <- "/UsersLcl/leemin/s side"
class_dirs_s <- list.dirs(base_dir_s, full.names = TRUE, recursive = FALSE)

img_list s <- 1list()
label list_s <- c()

img_to_array_s <- function(img) {
img <- image_resize(img, "1@0x100!")
img_data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

}

for (i in seq_along(class_dirs_s)) {
class_path <- class_dirs_s[i]
class_label <- basename(class_path)
image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)

for (f in image_files) {
try({
img <- image_read(f)
arr <- img_to_array_s(img)
img_list_s[[length(img_list_s) + 1]] <- arr
label list s <- c(label_list s, class_label)
}, silent = TRUE)

Prepare data

num_s <- length(img_list_s)
img_array_s <- array(®@, dim = c(num_s, 100, 100, 3))

for (i in 1:num_s) {
img_array_s[i,,,] <- img_list_s[[i]]

labels_s <- as.factor(label_list_s)
y_s <- to_categorical(as.integer(labels_s) - 1)
n_class_s <- length(levels(labels_s))

Split Test and Train

set.seed(42)

idx_s <- sample(1l:num_s)

train_idx_s <- idx_s[1:floor(@.8 * num_s)]
test_idx_s <- idx_s[(floor(0.8 * num_s) + 1):num_s]
x_train_s <- img_array_s[train_idx_s,,,]

y_train_s <- y_s[train_idx_s,]

x_test_s <- img_array_s[test_idx_s,,,]

y_test s <- y_s[test_idx_s,]

Define CNN model

model_s <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3,3), activation =
0, 3)) %%
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_conv_2d(filters = 64, kernel_size = c(3,3), activation
layer_max_pooling 2d(pool_size = c(2,2)) %>%
128, kernel _size = c(3,3), activation =
c(2,2)) %%

layer_conv_2d(filters =
layer_max_pooling 2d(pool_size =
layer_flatten() %>%
layer_dense(units = 256, activation =
layer_dropout(0.5) %>%
layer_dense(units =

‘relu') %>%
n_class_s, activation = 'softmax')

model_s %>% compile(

loss = 'categorical_crossentropy',
optimizer = optimizer_adam(),
metrics = 'accuracy’
)
Train Model

history_s <- model_s %>% fit(
x_train_s, y_train_s,
epochs = 20,
batch_size = 32,

validation_split =

)

'relu’, input_shape

'relu') %>%

‘relu') %>%

c(100, 10

Epoch 1/20

230/230 - 15s - loss:

5s/epoch - 67ms/step
Epoch 2/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 3/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 4/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 5/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 6/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 7/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 8/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 9/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 10/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 11/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 12/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 13/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 14/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 15/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 16/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 17/20

230/230 - 14s - loss:

4s/epoch - 6lms/step
Epoch 18/20

.9323

.4694

.0751

.8562

.6937

.5737

.4988

.4420

.3770

.3443

.3123

.2842

.2720

.2393

.2372

.2007

.1702

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.3068

.4718

.6217

L7122

.7638

.8050

.8350

.8499

.8700

.8821

.8901

.8998

.9064

.9199

.9192

.9297

.9407

val loss:

val loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val _loss:

val _loss:

val _loss:

val_loss:

val_loss:

.6853

.1482

.7891

.6808

.5875

.4862

.3715

.3729

.3169

.3030

.3576

.2576

.2566

.2894

.2562

.2574

.2889

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

.3507

.5416

. 7466

.7493

.7999

.8369

.8755

.8722

.9032

.9081

.8836

.9201

.9173

.9114

.9239

.9260

.9206

230/230 - 14s - loss: 0.1754 - accuracy: 0.9383 - val loss: 0.2246 - val_accuracy: 0.9331 - 1
4s/epoch - 6lms/step

Epoch 19/20

230/230 - 14s - loss: 0.1503 - accuracy: 0.9485 - val loss: 0.2560 - val_accuracy: 0.9282 - 1
4s/epoch - 6lms/step

Epoch 20/20

230/230 - 14s - loss: 0.1624 - accuracy: 0.9434 - val loss: ©.2490 - val_accuracy: 0.9364 - 1
4s/epoch - 6lms/step

plot(history_s)

Evaluate

score_s <- model_ s %>% evaluate(x_test_ s, y_test_s)

72/72 - 1s - loss: 0.2667 - accuracy: 0.9365 - 948ms/epoch - 13ms/step

cat("Test loss:", score_s[[1]], "\n")

Test loss: 0.2666971

cat("Test accuracy:", score_s[[2]], "\n")

Test accuracy: 0.9364665

y_prob_s <- model_s %>% predict(x_test_s)

72/72 - 1s - 976ms/epoch - 14ms/step

y_pred_s <- apply(y_prob_s, 1, which.max)
y_true_s <- apply(y_test_s, 1, which.max)

Visual Confusion Matrix

cm_s <- table(True = y_true_s, Predicted = y _pred_s)
cm_df_s <- as.data.frame(cm_s)
colnames(cm_df_s) <- c("True", "Predicted", "Freq")

gegplot(data = cm_df_s, aes(x = Predicted, y = True, fill = Freq)) +
geom_tile(color = "white") +
scale_fill gradient(low = "white", high = "steelblue") +
geom_text(aes(label = Freq), size = 3.5) +
labs(title = "Confusion Matrix (S Dataset)", x = "Predicted", y = "Actual") +
theme_minimal()

Try with M side and S side combined

Set directory and load data

base_dir_combined <- "/UsersLcl/leemin/sample"
class_dirs_combined <- list.dirs(base_dir_combined, full.names = TRUE, recursive = FALSE)

img_list_combined <- list()
label list combined <- c()

img_to_array <- function(img) {
img <- image_resize(img, "100x100!")
img_data <- as.integer(image_data(img, channels = "rgb")) / 255
array(as.numeric(img_data), dim = dim(img_data))

for (i in seq_along(class_dirs_combined)) {
class_path <- class_dirs_combined[i]
class_label <- paste@("combined_", basename(class_path))
image_files <- list.files(class_path, pattern = "\\.png$", full.names = TRUE)

for (f in image_files) {
try({
img <- image_read(f)
arr <- img_to_array(img)
img_list_combined[[length(img_list combined) + 1]] <- arr
label list combined <- c(label_list_combined, class_label)
}, silent = TRUE)
}

Prepare data

num_combined <- length(img_list_combined)
img_array_combined <- array(®, dim = c(num_combined, 100, 100, 3))
for (i in 1:num_combined) {

img_array_combined[i,,,] <- img_list_combined[[i]]

labels _combined <- as.factor(label list combined)
y_combined <- to_categorical(as.integer(labels_combined) - 1)
n_class_combined <- length(levels(labels_combined))

split train and test

set.seed(42)

idx_combined <- sample(1:num_combined)

train_idx_combined <- idx_combined[1:floor(@.8 * num_combined)]
test_idx_combined <- idx_combined[(floor(0.8 * num_combined) + 1):num_combined]

x_train_combined <- img_array_combined[train_idx_combined,,,]
y_train_combined <- y_combined[train_idx_combined,]

x_test_combined <- img_array_combined[test_idx_combined,,,]
y_test_combined <- y_combined[test_idx_combined,]

Define CNN model

model_combined <- keras_model_sequential() %>%
layer_conv_2d(filters = 32, kernel_size = c(3,3), activation
0, 3)) %%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

'relu’, input_shape = c(100, 10

layer_conv_2d(filters = 64, kernel_size = c¢(3,3), activation = 'relu') %>%
layer_max_pooling 2d(pool_size = c(2,2)) %>%
layer_conv_2d(filters = 128, kernel_size = c(3,3), activation = 'relu') %>%

layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_flatten() %>%

layer_dense(units = 256, activation = 'relu') %>%
layer_dropout(@.5) %>%
layer_dense(units = n_class_combined, activation = 'softmax')

model_combined %>% compile(

loss = 'categorical_crossentropy',
optimizer = optimizer_adam(),
metrics = 'accuracy’
)
train model

history_combined <- model_combined %>% fit(
x_train_combined, y_train_combined,
epochs = 20,
batch_size = 32,
validation_split = 0.2

)

Epoch 1/20

761/761 - 48s - loss:

8s/epoch - 63ms/step
Epoch 2/20

761/761 - 47s - loss:

7s/epoch - 61ms/step
Epoch 3/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 4/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 5/20

761/761 - 47s - loss:

7s/epoch - 61ms/step
Epoch 6/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 7/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 8/20

761/761 - 47s - loss:

7s/epoch - 62ms/step
Epoch 9/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 10/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 11/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 12/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 13/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 14/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 15/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 16/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 17/20

761/761 - 46s - loss:

6s/epoch - 61ms/step
Epoch 18/20

.9696

.2002

.9006

.6720

.5301

.4444

.3892

.3440

.3070

.2743

.2385

.2187

.2127

.1947

.1676

.1663

.1485

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

.3593

.6057

.7012

.7780

.8280

.8543

.8728

.8868

.8979

.9078

.9238

.9260

.9283

.9339

.9435

.9428

.9493

val loss:

val loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val_loss:

val _loss:

val _loss:

val _loss:

val_loss:

val_loss:

.2875

.8837

.7218

.5228

.4806

.4123

.3605

.3371

.2953

.3211

.2966

.2878

.3115

.2748

.3062

.3417

.3086

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

val_accuracy:

.5701

.6953

.7599

.8309

.8518

.8654

. 8846

.8970

.9134

.8993

.9132

.9165

.9162

.9236

.9201

.9164

.9259

761/761 - 46s - loss: 0.1401 - accuracy: 0.9505 - val loss: ©.3185 - val_accuracy: ©.9251 - 4
6s/epoch - 61ms/step

Epoch 19/20

761/761 - 46s - loss: 0.1348 - accuracy: 0.9543 - val loss: ©.3002 - val_accuracy: ©.9329 - 4
6s/epoch - 61ms/step

Epoch 20/20

761/761 - 46s - loss: 0.1234 - accuracy: 0.9575 - val loss: ©.3273 - val_accuracy: 0.9208 - 4
6s/epoch - 61ms/step

evaluate

score_combined <- model _combined %>% evaluate(x_test_combined, y_test_combined)

238/238 - 3s - loss: ©.3476 - accuracy: 0.9206 - 3s/epoch - 14ms/step

cat("Test loss:", score_combined[[1]], "\n")

Test loss: 0.3475748

cat("Test accuracy:", score_combined[[2]], "\n")

Test accuracy: 0.920589

y_prob_combined <- model_combined %>% predict(x_test_combined)

238/238 - 3s - 3s/epoch - 13ms/step

y_pred_combined <- apply(y_prob_combined, 1, which.max)
y_true_combined <- apply(y_test_combined, 1, which.max)
plot(history_combined)

Visual confusion matrix

cm_combined <- table(True = y_true_combined, Predicted = y_pred_combined)
cm_df_combined <- as.data.frame(cm_combined)
colnames(cm_df_combined) <- c("True", "Predicted", "Freq")

ggplot(data = cm_df_combined, aes(x = Predicted, y = True, fill = Freq)) +
geom_tile(color = "white") +
scale_fill gradient(low = "white", high = "steelblue") +
geom_text(aes(label = Freq), size = 2.5) +
labs(title = "Confusion Matrix (Combined M + S Dataset)", x = "Predicted", y = "Actual") +

theme_minimal()

Confusion Matrix (Combined M + S Dataset)

1000
500

Freq

0000000000000 0C00000000000000~00000000000
Or-r~O0O00C00C000000C0O00000000000CO000ODCOO0OOOO

0.Imo...DODDD00000000000000000110000000000030
000%2007..000000000010000003010000000000000
000001moo50400000000000000000000000000000

<
CO0O000O0OC0COMMNOODOOOCO0OO0O0O0000000O000ODOCOOOOOOO

0000000000000 00 0000000000000 0000000000
Sono o o
cocoococoocor~o-cPllomol¥ocoonl~-nooocoococooococoocooo

wn
nUnununUnUnu100nUnU%nUnununUUnU00001000000000000000000

(=1
0000037.00190emo03102020580000000000000000
0000000000000 O0OWOO0OO00O0O0O000000O000000DO00000OO0O0O

[{s]
000000+ 00O0OT+ 0000000000000 TrO0O00O0O0O00DO0O0O0O0OOO

=

o
0000000001000040@001000000000000000000000

00000000030001000“00002000000000000000000
nunununu2nunuonunUnUnunUnununuonumoonuonuonunud.nunvnunundnuznuonunuoo
O0O0OO0O0O0OCOCNODOOOOCO~0OO0OTO0O0O0O0OOC0O0O0000O0O0C0O0O0O0O0O0O0
0000000000000 O0O0O0O0O00O0O~000000000O0OO0O0O0O00O0O0O

«©
nuDnuGnunu10nununuanUnunl001DDODMGDDODGODQODOOGDDDG
COoO000O0COCOOOCOT~T0CO0OOOO0O0DO~T0OO0CLO0OOOOCOD0OOOOOO00O

un
O0O0OO0OO0OO0O0CCOCO~0OONOCOONOOODOO—~OCO0DO0OO0OODOCOO0O0O0OO0O0O0

1
OOODWODOOODOODOOUOOOOOODO%OOOODOODOOUOOOO
co-ocoooc-ocoocococooccocoocooocococoocYnwnoo-~ocoococoocoooo
001010000000000000500000000m0100214003000
COMOYOO0OTr0O000000000000000000000 000000 0ONO0O
cocoocooccooocococooococooooooococooncooNooooooooo
0000000000000 0C000ONO0000000ONOOOOPNOOCO~00
010930000000000000000000005%0000%%1103%04
e e e T e e R L e e L L
O 0000-C00000000000000000C00C00C00O~0000 —
cooconoocooOoODOoOOCOCDOOOO0OOO0OCOCcOYooo-rrooo®Rooo
000000050000000000100000006406074M1102mﬂﬁ
ODDGDGGDDODGDGGDDODDODDGDDO1GOD1OGOODDBDM

AN—OOONOTON—OMONOWTON—ORONOTON—ORONOWTMAN—
TTTOOMMMOOMOMOOMOAAMNNANNANNANNN T T 7T 7T 71

[enjoy

13467 8 9101114161718192021222324252627282930313233343536373839404142

Predicted

