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Climate change

(a) GHG concen-
trations

(b) Increasing tem-
perature

(c) Sea level rising

(d) Melting glacier (e) Extreme events

Sources: MIT News; Google earth; BBC.
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Natural disasters and protection gap
• Since 1980, natural disasters have cost US$ 6.7 tn.
• Only around a third of these losses were insured

Sources: Munich Re, NatCatSERVICE, as of March 2025.
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Two types of insurance

Based on how payout is determined,
• Conventional indemnity-based insurance (conventional

insurance): insurance payments are directly calculated from
actual losses incurred by insurance policyholders.

• Index-based insurance (index insurance or parametric
insurance): payments are based on some pre-determined
indices and parametric formulas.

Conventional insurance, as implied by its name, is more prevalent
in the market.
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Index insurance: benefits

However, conventional insurance sometimes fails to work
satisfactorily, and index insurance inherently overcomes some major
drawbacks of conventional insurance:

• Speed of liquidity: Payouts can arrive in days rather than after
lengthy loss adjustment-crucial for working capital, claims
handling, and disaster response.

• Capital/ratings optics: Faster cash reduces liquidity strain
after a large event and can support solvency and ratings
metrics

• Lower frictional costs: Lower loss adjustment expense and
fewer coverage disputes.

• Non-damage business interruption: such as the supply chain
disruption by Covid-19.
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Index insurance: more benefits

Other benefits of index insurance make them potentially beneficial:

• Lower moral hazard: Because payout isn’t tied to the buyer’s
individual loss handling or exposures, incentives to over report
or delay repairs are reduced.

• Transparency: Objective triggers reduce information
asymmetry and claims uncertainty

• Diversification & investor access: Standardized index triggers
broaden the investor base and facilitate secondary trading,
adding capacity to the market.

• Disaster risk financing & resilience: Rapid, rules based
payouts help governments and communities fund relief and
recovery when it matters most.
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Literature: index insurance
Index insurance and index-based risk solutions in general, have
been widely used to

• manage catastrophic risk (Biagini et al., 2008, Cummins
et al., 2004, Gatzert et al., 2019),

• enhance climate change resilience (Broberg, 2020, Horton,
2018),

• securitize longevity/mortality risk (Cairns and El Boukfaoui,
2021, Denuit et al., 2007, Lin and Cox, 2005),

• pandemic risk (Huang et al., 2023),
• facilitate micro lending (Barnett et al., 2008, Skees et al.,

2007),
• protect agricultural producers from weather risk (Brockett

et al., 2005, Conradt et al., 2015, Mahul and Skees, 2007,
Tan and Zhang, 2023, Zhu et al., 2018).
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Literature: basis risk
Basis risk: the gap between the actual loss and the insurance
payment (Clarke, 2016).

• It leads to communication and trust issues between insurance
companies and policyholders (Jensen and Barrett, 2017,
Norton et al., 2011).

• There is a rich literature investigating the design and pricing
of index insurance to enhance mitigation effectiveness and
encourage participation, including
• improved modeling and pricing (Zhu et al., 2019a,b),
• selection and construction of underlying indices (Porth

et al., 2020),
• design of payout mechanism under various risk objectives

(Fan et al., 2023, Zhang et al., 2019).
• But there is yet any literature investigating the dynamic cases.
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The classical Cramér-Lundberg (CL) model

• Probability space (Ω,F ,P) with filtration {Ft}t≥0
• Insurer’s surplus Rt = x + pt −

∑Nt
i=1 Zi

• x is the initial reserve
• Nt is a Poisson process with intensity λ > 0
• Z1,Z2, · · · are i.i.d losses
• p = (1 + η0)λE[Z] is the premium rate, where η0 > 0 is

the insurer’s safety loading.

• Insurer seeks a per-claim reinsurance policy with payment
I(Zi).
• I(·) satisfies the usual Lipchitz condition.
• The premium is p1(I) = (1 + η1)λE[I(Z)], where η1 > η0.
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The ruin time

• The insurer’s surplus process in the presence of reinsurance,
RI

t, becomes

RI
t = x + (p − p1(I))t −

Nt∑
i=1

(Zi − I(Zi))

• Define the ruin time τI = inf{t > 0|RI
t ≤ 0}

• The insurer aims to optimize:

V1(x) = inf
I
P(τI < ∞|RI

0 = x) (1)
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Optimal solution for conventional insurance
The solution to (1) is well-studied in the literature (e.g., Hipp and
Taksar, 2010, Meng and Zhang, 2010, Tan et al., 2020).
Proposition 1
The optimal reinsurance policy is static and is given by

I∗(z) = (z − η1
a∗ ) ∨ 0,

and the minimal ruin probability is V1(x) = e−a∗x, where a∗
satisfies h1(a∗) = 0 and

h1(a) =
a
2E

[
(Z ∧ η1

a )2
]
+ η1E

[
(Z − η1

a ) ∨ 0
]
− η0E[Z].

Moreover, the optimal reinsurance policy and the minimal ruin
probability are independent of λ.
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Main observation for conventional insurance

From Proposition 1,
• Easy to show that η1

a∗ is increasing with η1 while a∗ is
decreasing with η1.

• As reinsurance becomes more expensive, the reinsurance
demand decreases and the ruin probability increases.
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CL model with index insurance
• Now consider an index-based insurance payout J(Y), where

Y1,Y2 · · · denote the sequence of i.i.d underlying index
variables

• The dependence between claim size Z and index Y is given by
joint pdf f(y, z).

• The insurer’s surplus process with index reinsurance, RJ
t ,

becomes

RJ
t = x + (p − p2(J))t −

Nt∑
i=1

(Zi − J(Yi))

• premiums p2(J) = (1 + η2)λE[J(Y)] with η2 ∈ (η0, η1)
• We similarly consider the ruin probability minimization

problem
V2(x) = inf

J
P(τJ < ∞|RJ

0 = x).
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Case 1: Optimal solution for index reinsurance

Proposition 2
The optimal index reinsurance policy is static and is given by

J∗(y) =
(
E [Z|Y = y]− η2

b∗
)
∨ 0,

and the minimal ruin probability is V2(x) = e−b∗x, where b∗ is the
unique positive solution to
h2(b) = b

2E
[(

Z −
(
E [Z|Y]− η2

b
)
∨ 0

)2
]
+

η2E
[(
E [Z|Y]− η2

b
)
∨ 0

]
− η0E[Z]. Moreover, the optimal

reinsurance policy and the minimal ruin probability are independent
of λ.
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Main observation for index reinsurance

Similar to the conventional reinsurance case, from Proposition 2,
• Easy to show that η2

b∗ is increasing with η2 while b∗ is
decreasing with η2.

• As reinsurance becomes more expensive, the reinsurance
demand decreases and the ruin probability increases.

• It is consistent with the optimal solution in the one-period
case (Zhang et al., 2019), if the utility function takes a
quadratic form.

• The expectation form allows for convenient extensions to
data-driven approaches, such as using neural networks (Chen
et al., 2023, Zhang, 2024).

• The relative competitive between conventional and index is
determined by a∗ vs b∗



19/34

Motivation The convention insurance model The index insurance model Numerical analysis Conclusion References

Case 2: Optimal solution for index-based derivative

Proposition 3
The optimal index-based derivative policy is static and is given by

J∗∗(y) = E [Z|Y = y]− η2
b∗∗

and the minimal ruin probability is V2(x) = e−b∗∗x, where

b∗∗ = −(η2−η0)E[Z]+
√

((η2−η0)E[Z])2+η2
2σ

2
ε

σ2
ε

and
σ2
ε = E

[
(Z − E [Z|Y])2

]
> 0. Moreover, the optimal reinsurance

policy and the minimal ruin probability are independent of λ.

Observation: It is also straightforward to verify that b∗∗ is
increasing with σ2

ε .
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Data and assumptions

We assume an insurer that underwrites storm risk in Florida:
• The insurer has policyholders in a randomized set of counties,

and therefore the total claim Z is the summation of losses in
those counties.

• The underlying index Y is the industry loss, assumed to be the
aggregate state-level loss.

• Joint pdf f(y, z) are modelled by copula.
• Storm loss data are from January 1950 to April 2025

(adjusted for inflation), as provided by NOAA’s National
Weather Service (NWS).

• Assume that η0 < η2 < η1.
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Joint distribution

(f) CDF (g) PDF
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Optimal payouts

(h) derivative (i) reinsurance
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Minimum ruin probability
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Concluding remarks

• We study the optimal design of index-based risk solutions for
insurers, including index-based reinsurance and financial
derivatives, in a dynamic setting.

• Under the classical Cramér-Lundberg (CL) model, we derive
closed-form solutions for the optimal payout structures which
minimize insurers’ ruin probability.

• We apply the framework to a storm loss reinsurance case, and
numerically discuss the relative advantage of index-based over
conventional risk solutions depends on the tradeoff between
basis risk and cost efficiency.
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Thank you
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