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Climate change

(a) GHG concen- (b) Increasing tem- (c) Sea level rising
trations perature
(d) Melting glacier (e) Extreme events

Sources: MIT News; Google earth; BBC.
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Natural disasters and protection gap

® Since 1980, natural disasters have cost US$ 6.7 tn.

® Only around a third of these losses were insured

Sources: Munich Re, NatCatSERVICE, as of March 2025.
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Two types of insurance

Based on how payout is determined,

e Conventional indemnity-based insurance (conventional
insurance): insurance payments are directly calculated from
actual losses incurred by insurance policyholders.

® Index-based insurance (index insurance or parametric
insurance): payments are based on some pre-determined
indices and parametric formulas.

Conventional insurance, as implied by its name, is more prevalent
in the market.
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Index insurance: benefits

However, conventional insurance sometimes fails to work
satisfactorily, and index insurance inherently overcomes some major
drawbacks of conventional insurance:

® Speed of liquidity: Payouts can arrive in days rather than after
lengthy loss adjustment-crucial for working capital, claims
handling, and disaster response.

e Capital/ratings optics: Faster cash reduces liquidity strain
after a large event and can support solvency and ratings
metrics

® | ower frictional costs: Lower loss adjustment expense and
fewer coverage disputes.

® Non-damage business interruption: such as the supply chain
disruption by Covid-19.
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Index insurance: more benefits
Other benefits of index insurance make them potentially beneficial:

® | ower moral hazard: Because payout isn't tied to the buyer's
individual loss handling or exposures, incentives to over report
or delay repairs are reduced.

® Transparency: Objective triggers reduce information
asymmetry and claims uncertainty

® Diversification & investor access: Standardized index triggers
broaden the investor base and facilitate secondary trading,
adding capacity to the market.

® Disaster risk financing & resilience: Rapid, rules based
payouts help governments and communities fund relief and
recovery when it matters most.



Motivation
00000000

Literature: index insurance

Index insurance and index-based risk solutions in general, have
been widely used to

manage catastrophic risk (Biagini et al., 2008, Cummins
et al., 2004, Gatzert et al., 2019),

enhance climate change resilience (Broberg, 2020, Horton,
2018),

securitize longevity/mortality risk (Cairns and El Boukfaoui,
2021, Denuit et al., 2007, Lin and Cox, 2005),

pandemic risk (Huang et al., 2023),

facilitate micro lending (Barnett et al., 2008, Skees et al.,
2007),

protect agricultural producers from weather risk (Brockett
et al., 2005, Conradt et al., 2015, Mahul and Skees, 2007,
Tan and Zhang, 2023, Zhu et al., 2018).
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Literature: basis risk

Basis risk: the gap between the actual loss and the insurance
payment (Clarke, 2016).
® |t leads to communication and trust issues between insurance
companies and policyholders (Jensen and Barrett, 2017,
Norton et al., 2011).
® There is a rich literature investigating the design and pricing
of index insurance to enhance mitigation effectiveness and
encourage participation, including
® improved modeling and pricing (Zhu et al., 2019a,b),
® selection and construction of underlying indices (Porth

et al., 2020),
® design of payout mechanism under various risk objectives
(Fan et al., 2023, Zhang et al., 2019).

® But there is yet any literature investigating the dynamic cases.
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The classical Cramér-Lundberg (CL) model

¢ Probability space (2, F,P) with filtration {F¢}e>0

® Insurer’s surplus Ry = x+ pt — Z:Ntl Z;

® x is the initial reserve
N, is a Poisson process with intensity A > 0

°
® /1,75, arei.i.d losses
[ ]

p = (1+ no)AE[Z] is the premium rate, where 79 > 0 is

the insurer's safety loading.
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The classical Cramér-Lundberg (CL) model

¢ Probability space (2, F,P) with filtration {F¢}e>0
e Insurer's surplus Ry = x+ pt — SN, Z;
® x is the initial reserve
N; is a Poisson process with intensity A > 0

°
® /1,75, arei.i.d losses
[ ]

p = (1+ no)AE[Z] is the premium rate, where 79 > 0 is

the insurer's safety loading.

® |nsurer seeks a per-claim reinsurance policy with payment
I(Z).

® /(-) satisfies the usual Lipchitz condition.

References

® The premium is p1(/) = (1 4+ n1)AE[/(2)], where 11 > n0.
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The ruin time

® The insurer's surplus process in the presence of reinsurance,
R! becomes

N
Ri=x+(p— pr(N)t— Z(Zi - 1(Z))
i—1
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The ruin time

® The insurer's surplus process in the presence of reinsurance,
R., becomes

N
Ri=x+(p— pr(N)t— Z(Zi - 1(Z))
i—1

® Define the ruin time 77 = inf{t > 0|R? < 0}

® The insurer aims to optimize:

Vi(x) = i%f]P’(TI < 0o|RE = x) (1)
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Optimal solution for conventional insurance

The solution to (1) is well-studied in the literature (e.g., Hipp and
Taksar, 2010, Meng and Zhang, 2010, Tan et al., 2020).

Proposition 1

The optimal reinsurance policy is static and is given by

F(z)=(z— 2)vo,

a*

and the minimal ruin probability is V1(x) = e~2"%, where a*
satisfies hi(a*) = 0 and

h(a) = SE [(ZA 27| + mE [(2- B) v - noE(2)

Moreover, the optimal reinsurance policy and the minimal ruin
probability are independent of \.
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Main observation for conventional insurance

From Proposition 1,
® Easy to show that & is increasing with 71 while a* is
decreasing with 7.
® As reinsurance becomes more expensive, the reinsurance

demand decreases and the ruin probability increases.
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CL model with index insurance

® Now consider an index-based insurance payout J(Y), where
Y1, Y2+ -+ denote the sequence of i.i.d underlying index
variables

References

® The dependence between claim size Z and index Y'is given by

joint pdf fy, z).
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CL model with index insurance

® Now consider an index-based insurance payout J(Y), where
Y1, Y2+ -+ denote the sequence of i.i.d underlying index
variables

® The dependence between claim size Z and index Y'is given by
joint pdf fy, z).

® The insurer's surplus process with index reinsurance, R‘tj,
becomes

N

Ri=x+(p—p(I)t =Y (Zi— IV))

i=1

® premiums po(J) = (1 4 n2) AE[J(Y)] with 72 € (10, 71)
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CL model with index insurance

® Now consider an index-based insurance payout J(Y), where
Y1, Y2+ -+ denote the sequence of i.i.d underlying index
variables

® The dependence between claim size Z and index Y'is given by
joint pdf fy, z).

® The insurer's surplus process with index reinsurance, R‘tj,
becomes

Ne

Rl =x+ (p— p2())t— Z(Zi = J(Y1)

i=1

® premiums pa(J) = (1 + n2) AE[J(Y)] with 72 € (10, m1)
® We similarly consider the ruin probability minimization

problem
Vo(x) = igf[P(Tj < oo|Rb7 = X).
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Case 1: Optimal solution for index reinsurance

Proposition 2
The optimal index reinsurance policy is static and is given by

r0) = (ElZY=v-£)vo,

and the minimal ruin probability is Vo(x) = 2%, where b* is the

unique positive solution to

ha(b) = 35 [(Z— (E[ZV] - %) v 0)*] +

mE [(E[Z]Y] — ) v 0] — noE[Z]. Moreover, the optimal
reinsurance policy and the minimal ruin probability are independent
of \.
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Main observation for index reinsurance

Similar to the conventional reinsurance case, from Proposition 2,

Easy to show that 2 is increasing with 7, while b* is

decreasing with 7.
As reinsurance becomes more expensive, the reinsurance
demand decreases and the ruin probability increases.

It is consistent with the optimal solution in the one-period
case (Zhang et al., 2019), if the utility function takes a
quadratic form.

The expectation form allows for convenient extensions to

data-driven approaches, such as using neural networks (Chen
et al., 2023, Zhang, 2024).

The relative competitive between conventional and index is
determined by a* vs b*
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Case 2: Optimal solution for index-based derivative

Proposition 3
The optimal index-based derivative policy is static and is given by

Fy) =E[ZY =y - =

e
and the minimal ruin probability is Vo(x) = e 2%, where
o *(772fno)lE[Z]Jr\/(ngno)E[Z])2+77§U§ nd
02=E [(Z— E[Z \1)2} > 0. Moreover, the optimal reinsurance

policy and the minimal ruin probability are independent of .

Observation: It is also straightforward to verify that b** is
increasing with o2.
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Data and assumptions

assume an insurer that underwrites storm risk in Florida:

The insurer has policyholders in a randomized set of counties,
and therefore the total claim Z is the summation of losses in
those counties.

The underlying index Y'is the industry loss, assumed to be the
aggregate state-level loss.

Joint pdf f{y, z) are modelled by copula.

Storm loss data are from January 1950 to April 2025
(adjusted for inflation), as provided by NOAA's National
Weather Service (NWS).

Assume that 79 < 2 < 1.
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Joint distribution

(f) CDF (g) PDF
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Optimal payouts

(h) derivative (i) reinsurance
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(OZ%noclusion
Minimum ruin probability
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Concluding remarks

® We study the optimal design of index-based risk solutions for
insurers, including index-based reinsurance and financial
derivatives, in a dynamic setting.

¢ Under the classical Cramér-Lundberg (CL) model, we derive
closed-form solutions for the optimal payout structures which
minimize insurers’ ruin probability.

® We apply the framework to a storm loss reinsurance case, and
numerically discuss the relative advantage of index-based over
conventional risk solutions depends on the tradeoff between
basis risk and cost efficiency.
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