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Abstract

We study the evaluation of financial derivatives through a discrete-time hedging approach.

We propose a global multistage hedging framework based on Conditional Value-at-Risk that

also ensures time consistency. Our strategy builds on the temporal decomposition of coherent

risk measures introduced by Pflug and Pichler [2016]. To efficiently solve the resulting hedging

problem, we employ backward dynamic programming algorithms enhanced with parametric

techniques to reduce computational complexity and mitigate the curse of dimensionality. The

versatility of the proposed time-consistent strategy is illustrated through numerical experiments

involving European call option.
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1 Introduction

Risk minimization using coherent risk measures has become a cornerstone of modern portfolio

management and efficient hedging strategies. The seminal work by Artzner et al. [1999] introduced

the concept of coherent risk measures, highlighting the properties of subadditivity, translation

invariance, positive homogeneity, and monotonicity as essential for consistent risk assessments.

Among these measures, Conditional Value-at-Risk (CVaR) has emerged as a particularly influential

choice to capture tail risk more effectively than traditional Value-at-Risk (VaR).

The application of these measures is especially critical for derivative pricing and hedging in

incomplete markets, where perfect replication is not possible. In discrete-time settings, the ground-

work for risk-minimization was laid by Föllmer and Sondermann [1985], who introduced hedging

strategies that minimize the squared hedging error. This quadratic approach was further devel-

oped through recursive computation methods Föllmer and Schweizer [1988] and a comprehensive

solution to the global mean-variance hedging problem Schweizer [1995]. Building on these ideas,

subsequent research has shifted focus from variance to tail risk, employing coherent risk measures

to better capture extreme losses. Xu [2006], for instance, uses convex risk measures to introduce

the notion of risk efficiency. More recent work by Gaillardetz and Hachem [2022] utilizes coherent

risk measures and stochastic programming to derive optimal hedging strategies under broader risk

preferences.

The literature on dynamic risk measures is extensive, with many authors contributing impor-

tant insights. For instance, Riedel [2004] analyzed dynamic coherent risk measures, underscoring

the importance of reconciling immediate risk assessments with future information. In a related

vein, Detlefsen and Scandolo [2005] investigated the conditional approach to convex risk measures,

clarifying how nested relationships can be maintained. These theoretical works reinforce the foun-

dational principles of time consistency that are central to multi-period risk management.

In multi-period settings, analysts have increasingly recognized that measuring risk solely at

a single future date may lead to re-optimization pitfalls as information unfolds. This awareness

has spurred a rich literature on dynamic or time-consistent risk measures, where the objective is

to ensure that risk preferences at one stage do not contradict those formed at subsequent stages.

The work of Shapiro [2012] provides a clear treatment of time consistency by examining how

multi-stage stochastic optimization can be carried out when the risk measure respects a recursive
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property. Shapiro [2012] framework focuses on discrete-time, multi-step decision processes, showing

that if a dynamic risk measure is properly nested or exhibits certain monotonicity relationships,

then backward-induction algorithms will produce stable, non-contradictory solutions over time.

A parallel development has come from researcher Pflug and Pichler [2016], who have studied

how a global coherent risk measure, for example, a final-horizon CVaR can be decomposed into

stage-wise conditional components in a way that inherently preserves time consistency. Their

“temporal decomposition” theorem ensures that one can break down a terminal risk functional

into its intermediate conditional versions, yet recombine them without losing any information or

altering the original preference ordering. This construction is especially relevant for multi-stage

hedging problems where decision-makers want both a terminal loss criterion (such as CVaR at the

end of an investment horizon) and stage-wise guidance for overbalancing or adjusting hedges. By

guaranteeing a match between local (conditional) and global (unconditional) perspectives, Pflug

and Pichler [2016]’s framework removes the risk of dynamic inconsistency, which can otherwise

arise if naive conditioning leads to re-rankings of outcomes at intermediate stages.

In a more applied context, Godin [2016] has examined how to minimize CVaR in a global

dynamic hedging problem, leveraging the foundational optimization framework of Rockafellar et al.

[2000]. This ”global” approach treats path of trading decisions up to maturity as a single problem,

with the final CVaR capturing the tail risk of terminal losses. While this method effectively solves

for a final-horizon objective at a specific level of risk preference, its dynamic strategy is governed

only by basic self-financing and admissibility constraints, as a result, a strategy that is optimal

from an initial viewpoint can lead the hedger into intermediate positions that become unacceptable

as information unfolds. Hence, this exposes a key weakness of a purely global objective: it is

susceptible to time-inconsistency, where initial risk preferences conflict with rational decisions at

later stages.

This paper directly addresses this vulnerability by introducing a hedging framework that is

time-consistent by design. We leverage the temporal decomposition theorem of Pflug and Pich-

ler [2016] to construct a global CVaR objective from a recursive composition of conditional risk

measures such that governed by self-financing and time-consistency constraints. This methodology

imposes a coherent risk-management structure at every stage of the hedging horizon, ensuring that

investors’ preferences remain consistent as information evolves. The result is a dynamic hedging

strategy where each intermediate decision is inherently aligned with the ultimate risk-minimization
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goal. Our approach eliminates the risk of adopting unacceptable intermediate positions and pro-

vides a theoretically sound and practically robust foundation for multi-period hedging under CVaR.

This paper is divided as follows. Section 2 describes the market in which the current work

takes place and defines the hedging problem. In Section 3 details Coherent risk measure and its

properties. In Section 4, we discuss the time-consistency and temporal decomposition theorem. In

Section 5, we give a brief description of the global CVaR presented in Godin [2016], and then we

apply the temporal decomposition theorem to obtain a type of global time-consistent. Section 6

illustrates a numerical example involving hedging of European call options. We conclude in the

last section.

2 Financial Framework

This section outlines the mathematical framework for the discrete-time financial market and presents

the theoretical setup for hedging. We analyze an arbitrage-free financial market without transac-

tion costs. Let the time horizon in years be segmented into T successive dates t = {0, 1, 2, . . . , T}.

Let (Ω,F = (Ft)0≤t≤T ,P), be the probability space where Ω is the set of all finite state space, Ft

is a discrete filtration describing the information available at time t, and P is the physical measure.

Let St = (S
(0)
t , S

(1)
t , . . . , S

(d)
t ) denote the asset prices process at time t = 0, 1, . . . , T , where S

(y)
t

denotes the price of the asset y at time t for y = 0, 1, . . . , d.

2.1 Trading Strategy

Hedging involves using an investment portfolio to offset the risk associated with a financial position.

Hedging’s main goal is to reduce or completely eliminate risk exposures by creating cash flows that

are equal in magnitude but opposite in direction to those of the existing exposure. So, what follows

are some definitions in the theory of hedging from the mathematical finance literature.

A trading strategy θ = (θt)0≤t≤T = (θ
(0)
t , θ

(1)
t , . . . , θ

(d)
t )0≤t≤T , is an adapted stochastic process,

where θ
(0)
t , θ

(1:d)
t = (θ

(1)
t , . . . , θ

(d)
t ) respectively denotes the portion invested in the risk-free asset

and invested in the risky assets during the time interval [t, t + 1). The value of the portfolio is

Vt =
∑d

y=0 θ
(y)
t S

(y)
t . Let the risk-free asset be S

(0)
t = ert, where r is the annualized risk-free rate.

Strategy θ is self-financing if at time t, once the new price process St = (S
(0)
t , . . . , S

(d)
t ) is quoted, the

investor adjusts their portfolio positions from θt to θt+1 without cash infusions into or withdrawals
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from the portfolio; i.e, for t = 0, 1, . . . , T − 2:

θtS
⊤
t+1 = θt+1S

⊤
t+1, (2.1)

where ⊤ denotes the transpose operator. One of the characterization of self-financing is to write

Vt for all t = 1, 2, . . . , T as:

Vt = ertV0 +
t−1∑
k=0

θk(Sk+1 − Ske
r)⊤er(t−k−1). (2.2)

3 Coherent Risk Measure

In incomplete market, eliminating the risk with a perfect hedging is not guaranteed, and partial

hedging will be adopted and some residual risk at expiration will be tolerated. In this situation,

an approach in the optimal hedging portfolio is to minimize the convex risk measure. The theory

of risk measures in mathematical finance has become mainstream. Coherent risk measures were

first introduced and discussed by Artzner et al. [1999]. Let X be a set of random variables and

X(1), X(2) ∈ X . A risk measure ρ : X → R is coherent if it satisfies the following properties:

(i) Monotonicity: if X(1) ≤ X(2) then ρ(X(1)) ≤ ρ(X(2)),

(i) Translation Invariance: ρ(X(1) + c) = ρ(X(1))− c, ∀c ∈ R,

(iii) Convexity: ρ(λX(1) + (1− λ)X(2)) ≤ λρ(X(1)) + (1− λ)ρ(X(2)), ∀λ ∈ [0, 1].

Furthermore, due to the translation invariance property of ρ, optimal hedging strategies remain

unchanged regardless of the initial portfolio value. Therefore, for optimal hedging strategies θ∗(1:d)

we have

θ∗ = argmin
θ

[ρ(Φ(S
(1)
T )− (erTV0 +

T−1∑
k=0

θk(Sk+1 − Ske
r)⊤er(T−k−1)))],

= argmin
θ

[ρ(Φ(S
(1)
T )−

T−1∑
k=0

θk(Sk+1 − Ske
r)⊤er(T−k−1)].

(3.3)

In this study, we focus on the Conditional Value-at-Risk (CVaR) which is formally defined for

α ∈ (0, 1). Rockafellar et al. [2000] propose the definition of CVaR as as the solution of an

optimization problem

CVaRα(X) = min
π

(π +
1

1− α
E[(X − π)+]), (3.4)
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where (x)+ = max{0, x}, and π is associated with the value-at-risk at level α

VaRα(X) = min
x

P (X ≤ x) ≥ α. (3.5)

(3.4) shows a key structural property of CVaR which is belonging to the class of polyhedral risk

measures, making it a polyhedral function (piecewise linear). As a result, this structure is com-

putationally advantageous because it allows the convex optimization problem to be precisely re-

formulated as a tractable linear program. Moreover, Artzner et al. [1999] and Föllmer and Schied

[2011] show that the duality representation of any convex coherent risk measure can be described

as the maximum expected random variables X over a set of dual variables. Therefore, the dual

representation proposed by Pflug and Pichler [2016]. At confidence level α is

CVaRα(X) = sup
Z∈Z

E[ZX], (3.6)

where Z is the set of adapted processes in dual space in which CVaR admits its Fenchel–Moreau

(conjugate) representation; see Pflug and Pichler [2016]. Furthermore, E(Z) = 1, satisfying the

additional constraint 0 ≤ (1− α)Z ≤ 1.

4 Time-consistency and Temporal Decomposition of Risk Mea-

sures

Time-consistency has become a critical concept in modern risk management, particularly in dy-

namic settings where decisions and evaluations evolve over time. In continuous time, Delbaen [2006]

first investigated time-consistent coherent risk measures. Later, Cheridito et al. [2006] extended

this analysis to the convex setting within a discrete-time framework. Jobert and Rogers [2008]

demonstrated that time-consistent valuations can be constructed through backward induction of

one-period static risk measures. In their work, they highlighted how static risk measures can be

glued together to provide dynamic and time-consistent assessments.

The core idea behind time consistency is that once a partial decision or preference ordering is

fixed at an earlier time, it should remain valid at all subsequent times in the absence of contradictory

new information. In Bielecki et al. [2017], a dynamic convex risk measure (ρ(X|Ft))0≤t≤T is defined

as a time-consistent risk measure if the following conditions hold.

(i) ρ(X(1)|Ft+1) ≥ ρ(X(2)|Ft+1) =⇒ ρ(X(1)|Ft) ≥ ρ(X(2)|Ft), t = 0, 1, 2, . . . , T − 1, (4.7)

6



(ii) ρ(X(1)|Ft) = ρ((−ρ(X(1)|Ft+s))|Ft), ∀ t, s ≥ 0, (4.8)

where (4.8) considered a recursive property of the time-consistent risk measure. These properties

provide a stable and logical way to measure risk over time. As a result, decisions based on that

risk measurement such as portfolio optimization, capital allocation, or insurance reserve manage-

ment are also consistent and reliable. When combined with backward algorithms (e.g., dynamic

programming), they enable consistent policies over an entire decision horizon.

A time-consistent strategy, as discussed in Boda and Filar [2006] adheres to the principle of

optimality from dynamic programming (see Bellman and Dreyfus [1962]).

Definition 4.1. A hedging strategy (θ∗t )0≤t≤T−1 considered time-consistent if it exhibits the follow-

ing properties:

(i) if the strategy θ∗t at each time step t, t = 0, . . . , T − 1 is chosen by

θ∗t ∈ argmin
θt,θ∗t+1:T−1

ρ
(
X|Ft) , (4.9)

then the strategy θ∗t will be the optimal strategy in the problem

min
θ

ρ(X), (4.10)

(ii) if the strategy

θ∗ ∈ argmin
θ

ρ
(
X), (4.11)

it also satisfies

θ∗t:T−1 ∈ argmin
θt:T−1

ρ
(
X|Ft) , ∀ t = 1, . . . , T − 1. (4.12)

In the class of multistage risk measures, to obtain time consistency, nested conditional risk

measures were proposed by Ruszczyński and Shapiro [2006], Shapiro [2009] and Ruszczyński [2010].

Another approach is based on a risk measure that is dynamically adapted according to available

information, as proposed by Pflug and Pichler [2014]. The temporal decomposition theorem (see

Theorem 21 of Pflug and Pichler [2014]) shows how the risk measure, conditional on Ft, can be

reassembled to represent the risk measure at the initial time, and needs to be adjusted based on the

information revealed, and the decision has to be changed over time to meet the optimal decision.

The temporal decomposition theorem for the risk measure ρ states that

ρ(X) = sup
Zt∈Z

E
[
Ztρ

(
X | Ft

)]
, (4.13)
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where random variables Zt are adapted to the information, satisfying E(Zt|Ft) = 1. Moreover,

letting Ft ⊂ Fs ⊂ F , the risk conditional functional obeys the nested decomposition and has the

following recursive representation

ρ(X | Ft) = sup
Zs∈Z

E[ZsρZs(X | Fs) | Ft], (4.14)

where Zs is Fs -measurable and ρZt is the conditional risk function obtained from a basic risk

function ρ through its conditional version given Ft, so

ρZt(X|Ft) = sup
Z′∈Z

{
E
(
XZ ′ | Ft

)}
, (4.15)

where E
(
Z ′ | Ft

)
= 1, and ρ∗(ZtZ

′) = 0 which ρ∗ is the conjugate of ρ which is defined as ρ∗(Z) =

supX∈X E(XZ) − ρ(X). (4.13) and (4.14) capture the temporal or backward decomposition of a

dynamic risk measure. Hence, in a time-consistent framework, we can build up the unconditional

risk via an iterated supremum over conditional risks. Therefore according to (4.13), we can break

down the terminal risk measure into conditional or stage-wise components at each stage in a multi-

period model. Pflug and Pichler [2016] states the decomposition theorem for risk measure CVaR.

So, for all α ∈ [0, 1]

CVaRα(X) = sup
Zt∈Z

E
[
Zt · CVaR1−(1−α)Zt

(X|Ft)
]
, (4.16)

where the supremum is over all random variables Zt which are Ft-measurable, and satisfy E(Zt) = 1

and 0 ≤ (1 − α)Zt ≤ 1. Moreover, CVaR1−(1−α)Zt
(X|Ft) is the conditional CVaR at the random

risk level 1 − (1 − α)Zt. The constraints in the representation (4.16) are the same as for the

unconditional dual representation (3.6), except that it depends not only on X and F , but also on

the dual random variable Z, which is additionally adapted to the new available information. Hence,

according to (4.14) the nested decomposition of CVaR leading to a time consistent formulation:

CVaR(X|Ft) = sup
Zs∈Z

E[ZsCVaR1−(1−α)Zs
(X | Fs) | Ft], (4.17)

for t < s.

5 Optimal Global CVaR

5.1 The Global CVaR

Godin [2016] addresses the problem of constructing a dynamic hedging strategy that minimizes

the CVaR of the terminal hedging error in an incomplete market with both transaction costs and
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non-Gaussian asset returns. The global CVaRα optimization is equivalent to

min
θ∈Θ(1)

e−rTCVaRα((Φ(S
(1)
T )− VT )), (5.18)

where Φ is the option payoff, and Θ(1) is the set of all self-financing strategies where VT is given by

(2.2). The problem stated as minimizing (5.18) is tackled by leveraging a key characterization of

CVaR. Using the equivalent expression (3.4), the CVaR of a random variable X can be written as:

CVaRα(X) = min
π

E[f (CV aR)
π,α (X)] = min

π
E[π +

1

1− α
(X − π)I{X>π}]. (5.19)

This reformulation, developed by Rockafellar et al. [2000] and also applied studies such as Boda

and Filar [2006], transforms the complex task of minimizing CVaR into a more tractable joint

minimization problem as follows:

min
θ∈Θ(1)

CVaRα(X) = min
θ∈Θ(1)

min
π

E
[
f (CVaR)
π,α (X)

]
= min

π
min

θ∈Θ(1)
E
[
f (CVaR)
π,α (X)

]
. (5.20)

François et al. [2012] show that the minimization of the expected auxiliary function for a

fixed π can be solved using dynamic programming. The Bellman equation provides a backward-

recursive scheme to compute the value function at each time step t, and simultaneously identifies

the optimal trade that achieves this minimum. At t = 0, this process yields the strategy that

minimizes E[f (CV aR)
π,α (Φ(S

(1)
T )−VT )] for the chosen π. The minimum CVaR is attained at minimal

value π∗. The persistence of optimality over time depends on the model specification such as asset

dynamics, payoff structure, admissible trades, and thus is not guaranteed in general. Therefore,

the time-consistency concept focuses on keeping the optimal strategy optimal over time which is

different from the definition used in Shapiro [2012] and Kupper and Schachermayer [2009], which

focus instead on a structural property of the risk measure itself.

5.2 A Global Time-Consistent CVaR

In Godin [2016], the global CVaR problem (5.18) is solved without any control beyond enforcing

the self-financing constraint and the requirements that hedging positions be predictable and adhere

to pre-defined admissibility criteria, rather than being governed by additional, explicit controls on

the dynamic trading path. Consequently, the hedger can end up in positions that might be unac-

ceptable later, despite being globally optimal from the initial viewpoint. However, time consistency
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guarantees that investors’ preferences implied by a dynamic risk measure remain consistent over

time, so that the evolution of information does not affect the original risk assessment or the optimal

strategy. Herein, the aim is to solve the global CVaR at confidence level α when the hedging strat-

egy is also time-consistent, that is satisfied in (4.7) and (4.8). Therefore, the optimization problem

becomes

min
θ∈Θ(2)

e−rTCVaRα((Φ(S
(1)
T )− VT )), (5.21)

where Θ(2) is the set of all self-financing strategies that satisfy the time-consistent condition. This

time-consistent constraint requires that the optimal policy obeys the dynamic programming prin-

ciple evaluating decisions backward for global optimality and forward to ensure that each subprob-

lem remains consistent as new information unfolds. Consequently, decisions must be made in a

nested, stage-by-stage structure rather than all at once. Hence, a multistage model with nested

risk measures can guarantee that each decision uses exactly the information available at that point.

Therefore, we apply the backward dynamic recursion to obtain optimal decisions. It begins at the

maturity date and works backward to ensure that the decisions made at each step are optimal given

the future outcomes and are consistent with the overall objective. The solution to such a multi-

stage optimization problem, where decisions are made sequentially over time, is typically found

using dynamic programming, which is based on relationships between optimal value functions (or

cost-to-go function). Let Jt(α, ξt) be the backward cost-to-go function where the hedging portfolio

value ξt and CVaRα are the state variables. The backward process is initialized by the solution for

the final time interval, from T − 1 to T . The time-consistency condition requires that the strategy

θT−1 minimizes the CVaR of the final hedging error. Therefore, for all risk-aversion level α ∈ [0, 1],

the cost-to-go function is (5.21) is

JT−1(α, ξT−1) = min
θT−1

e−rCVaRα(Φ(S
(1)
T )− ξT |FT−1), (5.22)

where θT−1 satisfies the self-financing condition ξT−1 = θT−1S
⊤
T−1 and state equation ξT = ξT−1 +

θT−1(ST − ST−1)
⊤. By the definition of the time-consistent condition in (4.11), the strategy θT−1

belongs to the set of admissible strategies Θ(2) since it minimizes the conditional risk in the final

period.

For the time interval t to t + 1 (t = 0, . . . , T − 2), enforcing the time-consistent conditions for θ

leads to

Jt(α, ξt) = min
θt,θt+1:T−1∈Θ(2)

e−r(T−t)CVaRα(Φ(S
(1)
T )− VT |Ft), (5.23)
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under the self-financing constraint ξt = θtS
⊤
t and state equation ξt+1 = ξt+θt(St+1−St)

⊤. Applying

the temporal decomposition (4.17), we have

Jt(α, ξt) = min
θt

e−r(T−t) sup
Zt+1∈Z,θt+1:T−1∈Θ(2)

E[Zt+1CVaR1−(1−α)Zt+1
(Φ(S

(1)
T )− VT |Ft+1)|Ft]

= min
θt

e−r sup
Zt+1∈Z

E[Zt+1Jt+1((1− (1− α)Zt+1), ξt+1)|Ft], (5.24)

where E[Zt+1|Ft] = 1 and 0 ≤ (1− α)Zt+1 ≤ 1.

Notably, we work with a restricted admissible set of strategies, denoted by Θ(1), which are

Ft-adapted and self-financing. This is a more constrained set than the classical “for all policies” in

Definition 4.1. Under these constraints, solving the problem backward in time yields a policy that

is time-consistent and belongs to Θ(2).

Proposition 1. The cost-to-go function for the interval t and t + 1 is Jt(α, ξt) can be written as

an affine linear equation

Jt(α, ξt) = −ξt + βt,α, (5.25)

for t = 0, ..., T − 1 where βt,α is the optimal intercept term.

Proof. The optimal hedging strategy is determined by minimizing CVaR for a given ξt. Hence we

have

Jt(α, ξt) = min
θt:T−1

e−r(T−t)CVaRα(Φ(S
(1)
T )− VT |Ft)

= min
θt:T−1

e−r(T−t)CVaRα(Φ(S
(1)
T )−

T−1∑
k=t

θk(Sk+1 − Ske
r)⊤er(T−t−k) − er(T−t)ξt|Ft)

= min
θt:T−1

e−r(T−t)CVaRα(Φ(S
(1)
T )−

T−1∑
k=t

θk(Sk+1 − Ske
r)⊤er(T−t−k)|Ft)− ξt, (5.26)

which is induced by transition invariance property. Setting

βT−1,α = min
θt:T−1

e−r(T−t)CVaRα(Φ(S
(1)
T )−

T−1∑
k=t

θi(Sk+1 − Ske
r)⊤er(T−t−k)|Ft), (5.27)

leads to (5.25).

Hence, the time-consistent problem is solved using linear programming the last period from

T − 1 to T , to determine the intercept βT−1,α of the cost-to-go function JT−1(α, ξT−1). Then we
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propagate the result to the initial time to obtain the optimal hedging strategy using with non-

linear programming along with interpolation and extrapolation for cost-to-go function. Therefore,

the optimization reduces to determining only the intercept term β. Therefore, (5.25) significantly

simplifies the dimensionality while still preserving optimality across all initial wealth levels.

Herein, we stress out that, due to the time inconsistency of the global CVaR, the problem

solved by our algorithm is not equivalent to the global one solved by Godin [2016]; however, it can

be considered as an alternative framework that demonstrates the behavior of the hedger followed

in practice, as well as an approximation of the global problem.

6 Numerical Experiment

In this section, the performance of hedging procedures obtained by solving a global hedging problem

(5.21) within a recombining lattice framework, considering two underlying asset price models: a

binomial model and a jump-diffusion model. To investigate the impact on hedging, we will compare

the distribution of the discounted value of hedging errors

V0 + e−rT (Φ(S
(1)
T )− VT ),

incurred by hedging strategies. We consider one-year, at-the-money European call options with

Φ(S
(1)
T ) = max(0, S

(1)
T −K). The option is hedged using the risk-free asset and the underlying risky

asset (d = 1). To assess hedging performance, we conduct 25,000 simulations of the underlying

asset price paths. The time-consistent hedging strategy used in these simulations is derived numeri-

cally by implementing a backward induction to solve the non-linear dynamic programming equation

recursively. The principal challenge at each stage of this recursion is the evaluation of the expec-

tation term in Equation (5.24). The supremum is obtained using a stochastic sampling approach.

Specifically, the hit-and-run MCMC algorithm (see Smith [1984]) generates a large, representative

sample from the linearly-constrained set Z, transforming the supremum into a computationally

feasible maximum over the sample. The algorithm first employs interpolation and extrapolation to

approximate the future cost-to-go function Jt+1. Subsequently, a non-linear optimization is per-

formed to find the optimal hedging strategy that minimizes the present value of hedging errors.

This entire procedure is repeated for all nodes at all time steps to construct the complete strategy.

By computing the mean, standard deviation of errors, and also VaR and CVaR at α = 95%, 99%

to assess the tail performance.
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6.1 Binomial Model

In this section, we assume that the price process has (2m+1) distinct outcomes at each time step,

and S
(1)
t at time t, the time t+h price at node j is governed by dju2m−jS

(1)
t for j = 0, · · · , 2m, and

the increasing and decreasing factors u and d are assumed such that the price process converges to

the lognormal distribution underlying a continuous geometric Brownian motion with annual drift

µ, volatility σ, and with n dates per year with evenly time interval of length h = 1
n . In other words,

u = eσ
√
h and d = u−1. Let pi+j,t+h|i,t be the conditional probability to reach state (i + j, t + h)

from (i, t). Hence, at period t, the price process is distributed according to a binomial distribution

given by:

pi+j,t+h|i,t =

(
2m

j

)(
eµh/2m − d

u− d

)2m−j (
1− eµh/2m − d

u− d

)j

, (6.28)

for j = 0, 1, . . . , 2m, i = 0, 1, . . . , t(2m)
h , and t = 0, h, 2h, . . . , T − h. For this model, the parameter

values are derived through a moment-matching equivalent from the Merton Jump Diffusion model’s

parameters, consistent with those presented in Coleman et al. [2007]. These are shown in Table 1.

r µ σ K

0.03 0.075 0.190 1

Table 1: Parameters of Binomial Model.

Figure 1 provides hedging error histograms for both hedging strategies within the binomial model.

The global and the time-consistent strategies are obtained assuming α = 95%, 12 trading dates (h =

1/12), and 11 branches (m = 5). The legends show the initial portfolio value, the expected value,

the standard deviation, VaR99%, and the CVaR99% of the hedging errors. While both strategies yield

a nearly identical expected hedging error, their risk metrics are fundamentally different. The TC

approach is significantly more effective at limiting the average magnitude of the worst-case losses.

It achieves a CVaR99% of 15.19%, which is notably lower than the global strategy’s 16.44%. The

lower value for the TC strategy means it provides better protection against extreme, costly errors.

This superior tail risk management stems from its period-by-period optimization, which offers

better control and prevents large deviations from accumulating over time. Furthermore, the TC

strategy exhibits a lower standard deviation of hedging errors (2.15% vs. 2.37%), indicating more

predictable and stable outcomes. This is visually confirmed in the Figure 1. The TC distribution
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Figure 1: Distribution of the present value of the hedging errors under Binomial model for European

call option.

is compact, with its errors almost entirely contained within a narrow range of 4% to 20%. In the

contrast, the global distribution has a much wider range, with a long tail extending 40%. This

visual difference leads to a critical insight: the global strategy presents a lower VaR99% of 14.1%,

but a significantly higher CVaR99%. This combination is the classic signature of a distribution with

a fat tail.

6.2 Jump diffusion Model

In this subsection, we explain how to model a price process governed by jump diffusion process. Ran-

dom jumps Jt are assumed to have a log-normal distribution, that is, ln(Jt)
i.i.d∼ N(µJ , γ

2
J), where µJ
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is the mean jump size and γ2J is the variance of the jump size. Hence, the relative jump amplitude

of St is log-normally distributed with the expected jump size κ = EP(Jt − 1) = eµJ+
1
2
(γ2

J ) − 1.

According to Amin [1993], the discretized form of the continuous process of the jump diffusion

model, in state j and time t, t = 0, h, 2h . . . , T , is constructed as follows:

S
(1)
t,j = S

(1)
0 e(αt+jσ

√
h), (6.29)

for j = 0,±1, . . . ,±2(mn), where

α = µ− 1

2
σ2 − λκ, (6.30)

is the drift of the stock price, where λ is the jump intensity, and jσ
√
h represents up or down

movements of the diffusion process. The natural logarithmic scale of (6.29) is :

ln(S
(1)
t,j ) = ln(S

(1)
0 ) + (αt+ jσ

√
h). (6.31)

Restricted to a fixed time t, the state space is a grid such that consecutive points are spaced σ
√
h

apart.

Let l represent the set of all local and non-local states, for a non-local event, then under P

measure the probability mass function assigned to each non-adjacent node is given by:

p(l) = N(αh+ (l +
1

2
)σ
√
h)−N(αh+ (l − 1

2
)σ
√
h), l /∈ {−1, 0, 1}, (6.32)

where N(.) is the standard normal cumulative distribution function. The probabilities p(l) corre-

spond to a discretization of the continuous-time jump distribution. The remaining probability to

be assigned lies in the interval [αh− (1+ 1
2)σ

√
h, αh+(1+ 1

2)σ
√
h] for the points l ∈ {−1, 0, 1}. We

assign this entire probability mass to the point corresponding to l = 0 and assume that p(l) = 0

for l = ±1. Therefore,

p(0) = N(αh+ (
1

2
)σ
√
h)−N(αh+ (−1

2
)σ
√
h). (6.33)

The probability of a jump occurrence (a rare event) in the discrete approximation at any period

is λh, and multiple jumps cannot occur a single time interval. Therefore, the probability that the

process does not jump is 1− λh. Consequently, the transition probability mass can be assigned at

each node due to jumps and local price changes and is given by

15



Pr(ln(S
(1)
t+h,j+1)− ln(S

(1)
t,j ) = αh+ σ

√
h) = q(1− λh),

Pr(ln(S
(1)
t+h,j−1)− ln(S

(1)
t,j ) = αh− σ

√
h) = (1− q)(1− λh),

Pr(ln(S
(1)
t+h,l+j)− ln(S

(1)
t,j ) = αh+ lσ

√
h) = p(l)λh,

(6.34)

where l ∈ {−nm, . . . ,−2, 0, 2, . . . , nm}. To finalize the discrete formulation and construct the lat-

tice, we must now define the value of q. According to the assumption of deliverability presented in

Amin [1993], the jump-size distribution under the martingale probability measure is the same as

under the physical probability measure. In Amin [1993], the mean produced by the jump compo-

nent is adjusted, i.e., Amin [1993] solves the probability with qu+ (1− q)d = erh−λhEP[Jt]
1−λh , then by

setting u = eαh+σ
√
h, and d = eαh−σ

√
h, q follows as:

q =

erh−λh(κ+1)
(1−λh) − eαh−σ

√
h

eαh+σ
√
h − eαh−σ

√
h

. (6.35)

The parameter values for the jump model dynamics are the same as in the ones from Coleman et al.

[2007], and are presented in Table 2. Figure 2 provides the hedging error distributions when the

process follows the jump model under the same parameters (α = 95%, h = 1/12, m = 5). Like the

binomial model, both strategies yield a nearly identical expected hedging error of approximately

9.8%. It is intuitively, hedging is inherently riskier when jumps are possible, and result in higher

VaR99% and CVaR99% with respect to the binomial model for both approaches. Moreover, the

range of errors is much broader for the global approach, with extreme outcomes (very negative

and very positive errors) that rarely occur in the TC setting that vary between 5% to 30%. The

TC approach, by contrast, produces a tighter, more symmetric, and more stable error distribution,

avoiding extreme scenarios with CVaR99% = 17.82%. For the global approach, the hedging error

distribution is highly leptokurtic which is often described as a spike and fat tails shape. Therefore,

the lower VaR99% = 12.9% can indeed be a product of the tall peak and the concentration of the

outcomes in a very narrow range. The range of errors from below −20% to over 60% represents the

long tails produced by the global approach. These tails, though low in frequency, represent rare but

catastrophic hedging failures. They are caused by the strategy’s inability to handle sudden, large

market jumps. From Figures 1 and 2, we can conclude that the wider spread and longer tails of the

hedging errors demonstrate that the global method produces a heavier-tailed error distribution,

indicating a greater likelihood of extreme deviations. In contrast, the Time-Consistent method
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yields a portfolio with tighter error dispersion, making it more robust and efficient in managing

hedging risk.

r µ σ λ µJ γJ

0.03 0.08 0.2 1 0.02 0.1

Table 2: Parameters of the Merton jump-diffusion model.

6.3 Performance and Sensitivity Analysis

Sensitivity to number of trades n and branches m

The use of the lattice structure makes it necessary to study the sensitivity of different hedging

statistics when the number of rebalancing and outcomes varies. Table 3 gives a sensitivity analysis

of the performance of the time-consistent hedging strategy for different values of h and m based

on the binomial model. It reports key performance metrics including expected value, standard

deviation, VaR, and CVaR evaluated at two distinct confidence levels: the optimization level of 95%

and the more extreme tail level of 99%. The most significant improvement in hedging performance

is achieved by increasing the rebalancing frequency. For example, in the most uncertain market

scenario (m = 8), doubling the number of trading dates h from 1/8 to 1/16 decreases the CVaR99%

by more than 2% (from 16.805% to 14.615%). This demonstrates that more frequent adjustments

are powerfully effective at mitigating risk, especially when market complexity is high. Conversely,

the negative impact of rising market uncertainty at each time step, which is least severe when

hedging is already frequent. When trading often h = 1/16, doubling the number of market outcomes

from m = 4 to m = 8 leads to a far smaller increase in CVaR99% of just 0.25% (from 14.362% to

14.615%). Moreover, the expected value of hedging cost is approximately constant across all levels.

In the subsequent numerical experiments, we fix the parameter values at h = 1/12 and m = 5.

Sensitivity to different risk levels α

Figure 3 demonstrates the initial value of objective functions for different thresholds (α ∈ (0.5, 0.99))

for both hedging strategies under the jump and binomial models. It is evident that the approaches

do not yield convergent results, and the discrepancy widens in the tail under the jump model.

When comparing optimization methods, the global CVaR curves display varying steepness, whereas
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Figure 2: Distribution of the present value of the hedging errors under Jump diffusion model for

European call option.

the TC slope changes smoothly across all confidence levels, indicating a more stable and reliable

response to shifts in α. By construction, the global approach seeks the strategy that minimizes the

hedging error CVaR at a chosen threshold. Consequently, the global strategy will, by definition,

yield a lower hedging error CVaR than the time-consistent approach at the evaluation threshold.

However, the TC approach produces a higher hedging error CVaR because it delivers a more robust

hedge: it accounts for risk along each potential path and incorporates rare high-risk events, even

at lower thresholds. In contrast, the global method may overlook these events due to their initially

negligible probabilities.

Although the global strategy yields a lower hedging error CVaR, it may result in higher ob-
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h m Exp. std. VaR95% CVaR95% VaR99% CVaR99%

1/8 4 9.937 2.571 13.771 14.722 15.279 16.241

5 9.964 2.576 13.868 14.891 15.492 16.546

8 9.953 2.619 13.946 15.033 15.726 16.805

1/12 4 9.955 2.162 13.111 13.859 14.328 15.056

5 9.956 2.151 13.103 13.903 14.416 15.192

8 9.947 2.164 13.204 14.082 14.585 15.516

1/16 4 9.945 1.903 12.702 13.358 13.775 14.362

5 9.996 1.924 12.748 13.465 13.910 14.612

8 9.966 1.946 12.801 13.514 13.926 14.615

Table 3: Hedging errors statistics for the time-consistent hedging strategy for different values of

trading dates (h = 1/8, 1/12, 1/16) and outcomes (m = 4, 5, 8).

jective function values. This occurs when the threshold is set to a higher level, such as 99%, the

calculation admits previously negligible rare scenarios like large market jumps into its risk set.

Because these events are so severe, their potential losses dominate and result in a very high objec-

tive function value. Consequently, achieving this high-threshold optimum requires a prohibitively

expensive hedge, as significant capital is needed to cover these extreme potential deficiencies.

As the figure 3 shows this significant difference in higher threshold and considerable for the

jump model.

6.4 Sensitivity to Option Moneyness

We perform sensitivity analysis of the models to different strike prices of the European call op-

tion. Tables 4 and 5 demonstrate how the hedging performance vary for both strategies under two

models with different strike prices based on α = 95%. We consider the out-of-the-money (OTM)

(K = 1.05S
(1)
0 ), at-the-money (ATM) (K = S

(1)
0 ), and in-the-money (ITM) (K = 0.95S

(1)
0 ) Eu-

ropean options. In both Tables 4 and 5, the expected hedging errors for the time-consistent and

global strategies are nearly identical across moneyness levels. However, their risk profiles differ

substantially. The TC strategy consistently delivers a lower standard deviation, indicating greater
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Figure 3: Objective functions for different values of risk measure thresholds α.

stability, and more importantly, it outperforms in mitigating extreme tail risk events. As discussed

in Subsection 6.3, the global approach yields a lower CVaR at its 95% optimization threshold across

all moneyness levels. However, the higher threshold 99% reveals that the global CVaR becomes

significantly higher than that of the TC strategy. This demonstrates that the global method’s op-

timality at a specific threshold comes at the cost of neglecting more extreme tail events. In effect,

the global strategy’s cost of risk at this extreme threshold becomes so high that it would make the

derivative prohibitively expensive to hedge. At this point, the global strategy effectively reduces to

a super-hedging strategy, which is well known to be costly.

In contrast, the TC strategy proves to be more robust, offering superior protection against

these deeper risks regardless of the option’s moneyness. For OTM options, the primary danger is
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a single large jump that abruptly makes the option valuable. Conversely, ITM options are most

vulnerable to the significant, immediate loss from an adverse jump. The TC strategy’s path-wise

approach is better suited to handle these sudden, state-changing risks, underscoring its reliability

for practical risk management.

Under the binomial model, the largest tail-risk reduction occurs for ITM options, where

CVaR99% is lower by 1.56% (17.60% vs. 19.16%) compared to the global strategy. In contrast,

under the Jump–Diffusion model, the most pronounced improvement, a substantial 1.79% at the

99% level, occurs for OTM options (15.56 vs. 17.35).

Strike Strategy Exp. Std. VaR95% CVaR95% VaR99% CVaR99%

1 TC 9.96 2.15 13.10 13.90 14.42 15.19

Global 9.98 2.37 12.46 13.57 14.10 16.44

1.05 TC 7.66 2.24 10.94 11.79 12.28 13.14

Global 7.65 2.50 10.40 11.49 11.98 14.33

0.95 TC 12.76 1.93 15.61 16.37 16.86 17.60

Global 12.77 2.07 14.76 16.15 16.78 19.16

Table 4: At-the-money, out-of-the-money, and in-the-money European options using the binomial

model

7 Conclusions

This study develops and evaluates a global, multistage hedging framework based on CVaR that

explicitly enforces time consistency. Our results confirm that a solution to the CVaR hedging

problem exists which preserves optimality over time through a sequence of dynamically updated

risk measures. Numerical experiments on European call options, under both binomial and jump-

diffusion models, show that the proposed time-consistent hedging approach achieves notable risk

reduction. In both market settings, the time-consistent strategy demonstrates superior control over

extreme tail risks, consistently producing a lower CVaR at high confidence levels than the standard

global optimization. This advantage is particularly pronounced in the jump-diffusion environment,
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Strike Strategy Exp. Std. VaR95% CVaR95% VaR99% CVaR99%

1 TC 9.79 1.95 13.21 14.93 15.99 17.74

Global 9.79 2.24 12.46 13.68 12.90 18.50

1.05 TC 7.43 2.20 11.12 12.81 13.93 15.56

Global 7.42 2.95 10.54 11.91 11.25 17.35

0.95 TC 12.55 1.70 15.63 17.27 18.23 20.00

Global 12.58 2.13 14.66 16.07 15.56 21.57

Table 5: At-the-money, out-of-the-money, and in-the-money European options using the jump

model.

where the likelihood of extreme outcomes is higher. The superior performance stems from the

inherent coherence of the time-consistent approach; by ensuring that decisions remain aligned with

the long-term objective at every stage, the framework avoids positions that could become vulnerable

to rare, high-impact market shocks. This enhanced resilience confirms the practical value of our

proposed method as a more robust and reliable hedging strategy for managing downside exposure

under stress conditions.
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Pascal François, Geneviève Gauthier, and Frédéric Godin. Optimal hedging when the underlying

asset follows a regime-switching markov process. In 25th Australasian Finance and Banking

Conference, 2012.

Patrice Gaillardetz and Saeb Hachem. Dynamic hedging in incomplete markets using risk measures.

IMA Journal of Management Mathematics, 33(2):345–367, 2022.

Frédéric Godin. Minimizing cvar in global dynamic hedging with transaction costs. Quantitative

Finance, 16(3):461–475, 2016.

Arnaud Jobert and L Chris G Rogers. Valuations and dynamic convex risk measures. Mathematical

Finance: An International Journal of Mathematics, Statistics and Financial Economics, 18(1):

1–22, 2008.

23



Michael Kupper and Walter Schachermayer. Representation results for law invariant time consistent

functions. Mathematics and Financial Economics, 2(3):189–210, 2009.

Georg Ch Pflug and Alois Pichler. Multistage stochastic optimization, volume 1104. Springer, 2014.

Georg Ch Pflug and Alois Pichler. Time-consistent decisions and temporal decomposition of co-

herent risk functionals. Mathematics of Operations Research, 41(2):682–699, 2016.

Frank Riedel. Dynamic coherent risk measures. Stochastic processes and their applications, 112(2):

185–200, 2004.

R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-at-risk. Journal

of risk, 2:21–42, 2000.
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