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5
Extreme Value Theory

5.1 Summary

In this chapter, we present some key results from extreme value theory
(EVT) and illustrate how EVT can be used to supplement traditional statistical
analysis. We use EVT when we are concerned about the impact of very rare,
very large losses. Because they are rare, we are unlikely to have much data, but
using EVT we can infer the extreme tail behaviour of most distributions.

There are two different, but related, types of models for extreme value
analysis. The first considers the distribution of the maximum value in a
random sample of losses. These are called the block maxima models. The
second comes from analysing the rare, very large losses, defined as the losses
exceeding some high threshold. These are the points over threshold models.
We present the key results for both of these, and show how they are connected.
We derive formulas for the Value at Risk (VaR) and Expected Shortfall risk
measures using EVT that are useful when the loss distribution is fat-tailed, and
the risk measure parameter α is close to 1.0. We use examples throughout to
highlight the potential uses in practical applications.

We present several key theorems in this chapter without proofs, as the
mathematics required is beyond the scope of this text.

5.2 Introduction

In Chapter 4, we looked at distributions for loss frequency and severity,
appropriate for a wide range of quantifiable risks. We saw that, given sufficient
data, we can model the loss frequency and severity separately, and, assuming
independence of frequency and severity, we can construct a distribution
function for aggregate losses. Generally, the estimation part of the frequency
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5.3 Distributions of Block Maxima 133

and severity analysis would use conventional statistical methods, such as
maximum likelihood. These methods give a good overall fit to a distribution
from a reasonably sized sample of data. However, the main weight in the fitting
process will, implicitly, focus on the centre of the distribution. This may create
a fit that is less satisfactory in the extreme right tail of the loss distribution,
where we are concerned with the very rare, but potentially disastrous extreme
losses. Even if a distribution appears to fit the data satisfactorily overall, it may
not adequately model the part of the distribution in the extreme tails, beyond
the range of the available data. In these cases, we can use EVT to supplement
the traditional analysis.

Some examples of risk management cases which are suited to EVT include
the following:

• An insurer might model the claims exceeding some extreme threshold to
assess the mitigation benefits of a reinsurance strategy.

• An investment bank might model the potential for extreme stock price
movements as part of its risk management operations.

• A company with exposure to currency risk might use an extreme value
approach to guide its purchase of currency derivatives.

• Ocean engineers model extreme weather conditions to design ocean
structures that can withstand, for example, a 1-in-500-year storm event.

5.3 Distributions of Block Maxima

5.3.1 Block Maxima and the Maximum Domain of Attraction

Suppose we have an i.i.d. sample of n values, X1,X2, . . . ,Xn, with common
distribution function F(x). Let Mn denote the maximum of the sample, that is,
Mn = max{X1,X2, . . .}. The distribution function for Mn is

Fn(m) = Pr[Mn ≤ m]

= Pr[X1 ≤ m] Pr[X2 ≤ m] Pr[X3 ≤ m] · · ·Pr[Xn ≤ m]

= (F (m))n.

If we consider the limit of this distribution as the block size increases, there
are only two possibilities:

lim
n→∞Fn(m) = 0 if and only if F(m) < 1,

lim
n→∞Fn(m) = 1 if and only if F(m) = 1.
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134 Extreme Value Theory

This is not particularly helpful. However, the first important result of EVT
tells us that if we normalize the block maximum – that is, if we consider the
random variable

M∗
n =

Mn − dn

cn

,

where cn > 0 and dn are deterministic functions of n (involving the parameters
of underlying distribution) – then in many cases we can find a limiting
distribution for M∗∞. That is, for some Mn we can find a distribution function
H(x), where H(x) is not degenerate – meaning that the random variable M∗∞
is not a constant – and where

lim
n→∞Pr[M∗

n ≤ x] = lim
n→∞Fn(cn x + dn) = H(x).

In this case, we say that the distribution F(x) is in the maximum domain
of attraction (MDA) of H .

5.3.2 The Generalized Extreme Value Distribution

There are three important distributions for limits of normalized block maxima:
the Gumbel, Fréchet, and Weibull distributions.

The Gumbel Distribution

F(x) = exp

{
− exp

(
−x − μ

θ

)}
, θ > 0. (5.1)

The Fréchet Distribution

F(x) = exp

{
−
(

x − μ

θ

)−α
}

, x > μ; α > 0; θ > 0. (5.2)

The Weibull EV Distribution

F(x) = exp

{
−
(

μ− x

θ

)τ}
, x < μ; τ > 0; θ > 0. (5.3)

Note that this version of the Weibull is different from the specification in
Chapter 4, but it is related by a sign change.

We can express these three distributions as variants of a single distribution,
which is called the generalized extreme value (GEV) distribution with
cumulative distribution function Hξ(x), where ξ is the shape parameter:

Hξ(x) =
⎧⎨⎩exp

(
−(1+ ξx)

− 1
ξ

)
ξ �= 0, ξx > −1,

exp
(−e−x

)
ξ = 0.

(5.4)
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5.3 Distributions of Block Maxima 135

• If ξ = 0 this gives the Gumbel distribution, with μ = 0, θ = 1.
• If ξ > 0 this gives the Fréchet distribution, with μ = −1/ξ , θ = 1/ξ ,

α = 1/ξ .
• If ξ < 0, this gives the Weibull EV distribution, with μ = −1/ξ ,

θ = −1/ξ , τ = −1/ξ .

Note that as ξ → 0+, or ξ → 0−, we find that the Gumbel distribution is
the limiting case of both the Fréchet and Weibull EV distributions.

The GEV can be adjusted for scale and location, to give Hξ,μ,θ where

Hξ,μ,θ (x) =
⎧⎨⎩exp

(
−(1+ ξ(x − μ)/θ)

− 1
ξ

)
ξ �= 0, (1+ ξ (x − μ)/θ) > 0,

exp
(−e−(x−μ)/θ

)
ξ = 0,

(5.5)

where μ is a location parameter, and θ is a scale parameter.
The importance of the GEV distribution is apparent from the following

theorem, which says that if a distribution has a non-degenerate limiting
distribution for M∗

n (and most of the distributions that we use fall into
this category), then the limiting distribution must be the GEV distribution
(Figure 5.1).
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Figure 5.1 Generalized extreme value probability density functions; θ = 1.
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136 Extreme Value Theory

Theorem 5.1 The Fisher–Tippett–Gnedenko Theorem
If a distribution F lies in the MDA of a non-degenerate distribution H , then H

must be the GEV distribution, Hξ .

This classic result of EVT has some analogy to the central limit theorem.
Consider Sn =

∑n
j=1 Xj for i.i.d. Xj , with common mean μ > 0 and common

variance σ 2 > 0. There is, technically, no limiting distribution for Sn as n

tends to infinity, as both the mean and variance of Sn will also tend to infinity.
However, if we normalize the random variables, and consider

Zn = Sn − nμ

σ
√

n
,

then the central limit theorem tells us that lim
n→∞Zn ∼ N(0,1). That means

that a single distribution – the standard normal distribution – is the limiting
distribution of the normalized sum of any random sample of i.i.d. variables,
regardless of the distribution of the individual variables, provided that they
have a finite variance. In EVT, instead of considering the mean, we start
by considering the maximum value in a sample, and it turns out that, like
the mean, there is a limiting distribution, the GEV, that applies to the
normalized sample maximum (in many cases) regardless of the distribution
of the individual variables.

Example 5.1 For the exponential distribution with mean 1, you are given that
cn = 1 and dn = log n. Show that this distribution lies in the Gumbel MDA.

Solution 5.1 We have F(x) = 1− e−x . Then

Pr

[
Mn − dn

cn

≤ x

]
= Pr[Mn ≤ cn x + dn]

= (F (cn x + dn))
n = (1− exp(−(cnx + dn)))

n .

Now let cn = 1 and dn = log n, so that

Pr

[
Mn − dn

cn

≤ x

]
=
(

1− e−x−log n
)n

=
(

1− e−x

n

)n

.

On the right-hand side we have a term of the form (1 + k/n)n (where, in this
case, k = −e−x), and the limit of this expression as n →∞, is ek . Hence

lim
n→∞

(
1− e−x

n

)n

= e−e−x

,
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5.3 Distributions of Block Maxima 137

which shows that the exponential distribution is in the MDA of the H0, or
Gumbel distribution.

Example 5.2 For the exponential distribution with mean 1, calculate the
probability that Mn ≤ 5 for n = 10 and for n = 100, using the exponential
distribution function directly, and using the limiting extreme value distribution.

Solution 5.2 We have F(5) = 0.993262, so

Pr[M10 ≤ 5] = (F (5))10 = 0.93463,

Pr[M100 ≤ 5] = (F (5))100 = 0.50861.

Using the Gumbel distribution, we have cn = 1, dn = log n, so

Pr[Mn ≤ 5] = Pr

[
Mn − dn

cn

≤ 5− dn

cn

]
= Pr[Mn − log n ≤ 5− log n],

and since the limiting distribution is Gumbel, for large n this probability is
approximately

H0(5− log n) = e−e−(5−log n) = e−ne−5
,

which gives

Pr[M10 ≤ 5] ≈ 0.93484, Pr[M100 ≤ 5] ≈ 0.50977. �

This does not appear to be all that useful at this stage, as we need to
know the underlying distribution to know the normalizing functions, and if we
know the underlying distribution, we can calculate the required probabilities
directly. However, we shall see in Section 5.4 that we can derive some very
useful information about tail risk without knowing the full distribution of the
underlying random variable. The key parameter for risk management purposes
will be the ξ parameter in Hξ(x).

An obvious question arising from the Fisher–Tippett–Gnedenko theorem is
how we find the normalizing functions. One approach is to use the following
result, which we state without proof (see Embrechts et al. (2013) for more
details).

Theorem 5.2 Consider a loss X with distribution function F(x) and survival
function S(x) = 1− F(x). Then F(x) is in the MDA of Hξ if and only if

lim
n→∞ nS(cnx + dn) = − log Hξ(x) =

{
(1+ ξx)

− 1
ξ for ξ �= 0,

e−x for ξ = 0.
(5.6)

�
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138 Extreme Value Theory

In some cases, we can use this result to determine cn and dn. One example
is the Pareto distribution, as we demonstrate next.

Example 5.3 Determine the limiting distribution for a maximum of
Pareto(α, λ) random values, and find the normalizing sequences cn and dn.

Solution 5.3 The Pareto(α,λ) distribution function is

F(x) = 1−
(

λ

λ+ x

)α

,

so

nS(cnx + dn) = n

(
λ

λ+ dn + cnx

)α

= n

(
1+ dn

λ
+ cn

λ
x

)−α

(5.7)

=
(

n−1/α + n−1/αdn

λ
+ n−1/αcn

λ
x

)−α

. (5.8)

The form of nS(cnx + dn) in equation (5.8) is similar to the Fréchet form
of − log H(x) in equation (5.6), where α > 0, indicating that ξ = 1

α
> 0.

To match the Fréchet form of− log Hξ(x), we need (at least asymptotically)

n−1/α + n−1/αdn

λ
= 1, and

n−1/αcn

λ
= ξ = 1

α
,

⇒ dn = (n1/α − 1)λ, and cn = λn1/α

α
.

In summary, the Pareto distribution is in the MDA of the Fréchet distribu-

tion with shape parameter ξ = 1/α and normalizing functions cn = λn1/α

α
and

dn = (n1/α − 1)λ.
�

5.3.3 Notes on the Generalized Extreme Value
(GEV) Distributions

The Fréchet Distribution

• The Fréchet distribution is the GEV distribution, with ξ > 0.
• The Fréchet distribution is bounded below, with x > μ− θ

ξ
, for μ and θ as

in equation (5.5).
• The Fréchet distribution is fat-tailed and is relatively popular for use in

managing extreme risks in finance and insurance.
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Figure 5.2 Fréchet probability density functions; θ = 1.

• The distribution function is often expressed in terms of α = 1
ξ

. This is
called the tail index of the distribution.

• Larger values of ξ (and hence smaller values of α) indicate a fatter-tailed
distribution.

• The Fréchet distribution is in the Fréchet MDA.
• For any distribution in the MDA of the Fréchet distribution, there are only a

finite number of moments, up to α = 1/ξ . That is, for a positive integer k, if
k < 1

ξ
we have E[Xk] < ∞, but for k ≥ 1

ξ
, we have E[Xk] = ∞. This

means that a distribution with an infinite number of moments (even if it is
fat-tailed) cannot be in the MDA of the Fréchet distribution.

• Distributions in the Frechet MDA include the Pareto, Student’s t, and Burr
distributions.

• In Figure 5.2, we show density functions for ξ = 0.5, 1, and 3. The scale
parameter is θ = 1 and the location parameter is set at 1/ξ to give a
distribution bounded below at 0 in each case.

• Another characterization of the Frechet MDA uses the following definition:

Definition 5.3 A positive function L is slowly varying at ∞ if for any
t > 0,

lim
x→∞

L(tx)

L(x)
= 1.

Reprinted from Quantitative Enterprise Risk Management, copyright 2022 Mary R. Hardy and David Saunders, with 
permission of Cambridge University Press.  Not for further distribution.



140 Extreme Value Theory

Examples of slowly varying functions include log(x) and (k + x−1)−α .
A distribution function F is in the MDA of the Fréchet distribution with

parameter ξ if and only if

S(x) = x−1/ξL(x), (5.9)

where L(x) is a function which is slowly varying at ∞.

The Gumbel Distribution

• The Gumbel distribution is the GEV distribution with ξ = 0.
• The distribution is unbounded.
• Many distributions are in the MDA of the Gumbel distribution, ranging

from quite thin-tailed distributions, such as the normal and exponential, to
quite fat-tailed, such as the gamma, lognormal, and inverse Gaussian. Note
that even though the Gumbel distribution is not bounded, the distributions
in its MDA may be bounded (e.g., the lognormal random variable is strictly
positive).

• Distributions in the Gumbel MDA have infinite number of moments – that
is, E[Xk] < ∞ for any k = 1,2,3, . . .

• The Gumbel distribution is in the MDA of the Gumbel distribution.
• All Gumbel distributions have the same shape, as the shape parameter, ξ , is

fixed. The location and scale may vary.
• The Gumbel density function is illustrated in Figure 5.3.
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Figure 5.3 Gumbel probability density functions
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5.3 Distributions of Block Maxima 141

The Weibull EV Distribution

• The Weibull EV distribution is the GEV distribution with ξ < 0.
• The Weibull EV distribution is bounded above at μ− 1/ξ . It is, therefore,

less useful for most large loss modelling, but can be useful for maxima of
bounded losses.

• The Weibull EV distribution is related to the Weibull distribution by a sign
change – that is, if Y is a Weibull EV-distributed random variable, with
μ = 0, θ = 1, then 1+ ξY is a Weibull distributed random variable.

• The Weibull EV distribution, beta distribution, and uniform distribution are
in the MDA of the Weibull EV distribution.

• In Figure 5.4, we show density functions for ξ = −1, − 0.5, and −0.25.
The scale parameter is θ = 1, and the location parameter is set at 1/ξ to
give a distribution bounded above at 0 in each case.

5.3.4 Estimating the GEV Parameters

For a distribution lying in the MDA of the GEV distribution, the Fisher–
Tippett–Gnedenko theorem tells us that (Mn − dn)/cn approximately follows
the GEV distribution, with some parameters μ′,θ ′, and ξ , say. In this case,
the non-normalized random variable Mn also approximately follows the GEV
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Figure 5.4 Weibull EV probability density functions; θ = 1.
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142 Extreme Value Theory

distribution, with adjusted location and scale parameters, μ and θ , but with
the same shape parameter ξ . We can, therefore, estimate ξ , which is the key
parameter for classifying the extreme value distribution, by fitting the GEV to
block maxima of our data, using maximum likelihood estimation.

Assume we have a set of data, which we divide into k blocks, each with n

values. This gives us k sample points of the n-block maxima. Let mj denote the
maximum of the j th block, for j = 1,2, . . . , k. The division of the data into
blocks is natural for data arising as a time series, such as stock market data
or flood levels. If the data has no natural ordering, then it may be randomly
partitioned into blocks.

By differentiating the GEV distribution function Hξ(x), we find the GEV
density function hξ (x),

hξ (x) = (1+ ξx)
−(1+ 1

ξ
)
e−(1+ξx)

− 1
ξ
, (5.10)

or, for the more general distribution, including scale and location parameters,

hξ, μ, θ (y) = 1

θ

(
1+ ξ

(
y − μ

θ

))−(1+ 1
ξ
)

e
−(1+ξ

(
y−μ

θ

)
)
− 1

ξ

. (5.11)

Assuming independence of the block maxima, then for the maximum
likelihood estimators, we find the parameters which maximize the sum of the
log densities of the sample. That is, we maximize l(ξ, μ, θ) where

l(ξ, μ, θ) =
k∑

j=1

log(hξ, μ, θ (mj )) (5.12)

= −k log(θ)−
(

1+ 1

ξ

) k∑
j=1

log

(
1+ ξ

(
mj − μ

θ

))

−
k∑

j=1

(
1+ ξ

(
mj − μ

θ

))− 1
ξ

. (5.13)

In practice, we must balance conflicting data requirements. With a fixed
sample size, we must decide how large the blocks will be. If they are very large,
we can be more confident that the maxima lie in the tail of the distribution,
suitable for applying the GEV distribution function, but the number of data
points may be small. On the other hand, if we use smaller blocks to get a larger
sample of block maxima, we may not be sufficiently near to the tail of the
distribution to find accurate parameter estimates.

The result may be that even with relatively large data sets, the standard error
of the parameter estimates is large. This is particularly true for the ξ parameter,
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5.3 Distributions of Block Maxima 143

Table 5.1. Annual maxima of monthly losses on the S&P/TSX
composite index, 1956–2012, per $100 invested, in chronological
order (by rows)

5.88 10.25 0.85 5.06 4.68 2.37 8.52 3.35
0.66 6.68 7.47 5.72 4.25 11.03 10.09 6.47
3.57 11.55 10.52 5.74 7.05 5.81 5.31 10.18

19.41 14.04 10.14 5.53 3.80 6.53 4.83 25.52
2.70 6.75 8.40 3.37 4.44 3.31 6.89 1.97
3.63 4.89 22.45 6.29 8.77 14.23 7.76 3.02
3.97 5.82 3.63 6.42 18.23 6.52 3.78 9.06

which is problematic, since it is the parameter that indicates which form of the
GEV distribution is appropriate.

Solving for the maximum likelihood estimates can be done very conve-
niently with suitable software packages.

Example 5.4 Table 5.1 shows the block maxima for monthly losses (in %)
on the S&P/TSX composite index, over a period of 56 years, from 1956–
2012. The block size is 12 months. Assume the values are independent and
identically distributed:

(a) Find the maximum likelihood estimates of the GEV distribution
parameters for this data.

(b) Find the MLE for the GEV distribution parameters using a block size of
24 months.

Solution 5.4 We used the fit.GEV function from the R package QRM (Pfaff
and McNeil, 2020). This generates parameter estimates and standard errors.

(a) We find, using the annual data, that the MLE parameter estimates are as
follows (standard errors in parentheses):

μ = 5.009(0.450), θ = 3.012(0.346), and ξ = 0.1575(0.098).

This indicates that the Fréchet distribution is the most appropriate,
although the Gumbel distribution is also possible.

(b) Using 24-month blocks, we find the following estimates and standard
errors:

μ = 7.144(0.60), θ = 2.655(0.53), and ξ = 0.389(0.213),
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144 Extreme Value Theory

which, again, points to the Fréchet distribution, possibly with a heavier
tail, but does not rule out the Gumbel distribution. Note that we expect the
μ and θ parameters to change, as they are functions of the block size. For
large n though, the value of ξ should be stable for different block sizes.

As we expect, the smaller sample size of block maxima (using
24-month blocks) leads to larger standard errors. �

An interest in the tail behaviour of a random variable does not always mean
an interest in block maxima; the block maximum may not be very extreme
in some cases, and in others, a block may have several values that would be
considered extreme. In the example above, using 24-month blocks, we lose the
fifth-largest value from the 12-month blocks (14.04), because it is adjacent
to an even larger maximum. In the next section, we select extreme values
differently, by considering all the values falling beyond some threshold.

5.4 Distribution of Excess Losses Over a Threshold

In Example 5.4, we saw that much of the data is discarded and some
non-extreme data points are incorporated into the estimation. This seems,
intuitively, to be an inefficient way to model tail behaviour. We now expand
the analysis, to consider the distribution of losses which are in the tail of
the underlying distribution, where we define the tail by setting a threshold
level corresponding to a very large loss. We then consider the distribution
of exceedances, or excess losses, which are the differences between the loss
values and the threshold. That is, for an underlying loss random variable X,
and threshold d > 0, the excess loss is Yd = X − d|X > d. This method is
often called the peaks or points over threshold (POT) approach.

From this definition, given that X is continuous, and that Pr[X > d] > 0,
the excess loss random variable Yd is also continuous, and Yd ≥ 0. We can
derive the distribution and density function for Yd in terms of the functions for
X, as follows.

5.4.1 The Excess Loss Random Variable

The distribution function of the excess loss Yd = X − d|X > d , is denoted
Fd(y), and the survival function is Sd(y) = 1−Fd(y). These are related to the
underlying distribution function and survival functions, FX and SX, as
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5.4 Distribution of Excess Losses Over a Threshold 145

Fd(y) = Pr[Yd ≤ y] = Pr
[
X − d ≤ y|X > d

]
= FX(y + d)− FX(d)

1− FX(d)

= SX(d)− SX(y + d)

SX(d)

= 1− SX(y + d)

SX(d)

⇒ Sd(y) = SX(y + d)

SX(d)
.

Similarly, the probability density function for Yd is

fd(y) = fX(y + d)

SX(d)
.

The expected value of Y , as a function of the excess threshold d, is called
the mean excess loss (MEL) of X and is denoted e(d); that is,

e(d) = E [X − d|X > d] . (5.14)

For a continuous random variable, X, we have

e(d) = E [X − d|X > d] = 1

SX(d)

(∫ ∞

d

(y − d)fX(y) dy

)
(5.15)

= 1

SX(d)

(∫ ∞

d

y fX(y) dy − d

∫ ∞

d

fX(y)dy

)
= 1

SX(d)

(∫ ∞

d

y fX(y) dy − d SX(x)

)
= E[X]− E[X ∧ d]

SX(d)
. (5.16)

Similarly to the GEV distribution, which provided the asymptotic distribu-
tion for block maxima, the general asymptotic distribution for excess losses is
the generalized Pareto distribution (GPD). This distribution is closely related
to the GEV distribution.

5.4.2 The Generalized Pareto Distribution (GPD)

The distribution function of the generalized Pareto distribution (GPD) is, for
β > 0,

Gξ,β(x) =
{

1− (1+ ξ x/β)−1/ξ ξ �= 0,
1− e−x/β ξ = 0,

(5.17)
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where x ≥ 0 for ξ ≥ 0, and 0 ≤ x ≤ −β/ξ for ξ < 0. In the GPD
distribution, β is a scale parameter and ξ is the shape parameter. There is no
location parameter as the distribution is fixed, with a lower bound at zero.

Notes

1. When ξ > 0 the GPD is a regular Pareto distribution, as in Section 4.4.4,
with parameters a = 1/ξ , θ = β/ξ .

2. For 0 < ξ < 1, the mean of X ∼ GPDξ,β is

E[X] = β

1− ξ
.

For ξ ≥ 1 the mean does not exist.
3. When ξ > 0, and for integer k, the kth moment of the GPD exists only for

k < 1/ξ .
4. When ξ = 0 the GPD is the exponential distribution with mean β.
5. When ξ < 0, the distribution is a generalized beta distribution, which is

left and right bounded. The left bound is zero, the right bound is −β/ξ .
6. Gξ,β(y) = 1+ log Hξ(y/β) where Hξ is the GEV distribution function,

from equation (5.4).

Example 5.5 Show that, if Y ∼ GPDξ,β , for ξ ≥ 0, β > 0, and
Z = Y − k|Y > k then

Z ∼ GPDξ,β∗ where β∗ = β + ξ k,

and hence derive the MEL function for the GPDξ,β distribution.

Solution 5.5 Consider the survival function of Z. We assume first that ξ > 0,
and show that the survival function for Z is GPD with ξ unchanged, and a
new β∗.

Pr[Z > t] = Pr[Y − k > t |Y > k] = Pr[Y > t + k|Y > k]

= 1−Gξ,β(t + k)

1−Gξ,β(k)

=
(

1+ ξ
β
(t + k)

)− 1
ξ

(
1+ ξ

β
(k)
)− 1

ξ

=
(

1+ ξ t

β + ξk

)− 1
ξ

= 1−Gξ,β∗(t),

where β∗ = β + ξ k as required.
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If ξ = 0, then Y has an exponential distribution, with mean β and the
survival function for Z is

Pr[Z > t] = Pr[Y > t + k|Y > k] = e
− t+k

β

e
− k

β

= e
− t

β ,

which shows that the distribution of Z is also exponential with mean β (this is
known as the memoryless property of the exponential distribution).

The mean excess loss function for the GPDξ,β distribution is the expected
value of the random variable Z (i.e. β∗/(1− ξ)), expressed as a function of
the excess point k. That is,

e(k) =
⎧⎨⎩

β + ξ k

1− ξ
for 0 < ξ < 1,

β for ξ = 0.
(5.18)

For ξ ≥ 1, e(k) = ∞ since in this case the GPD distribution does not have a
finite first moment. �

The important point to note from this example is that for the GPD
distribution, the MEL function is a straight line. If ξ ∈ (0,1), it has slope
ξ/(1− ξ), and if ξ = 0, the MEL function is flat.

The relationship between the GPD and GEV distributions is captured in the
following theorem.

Theorem 5.4 The Pickands–Balkema–De Haan Theorem
Let F denote the distribution function of a random variable X which is
bounded above at xsup ≤ ∞. Then

F ∈ MDA
(
Hξ

) ⇐⇒ lim
d→xsup

sup
0≤x≤xsup

∣∣∣Fd(x)−Gξ,β(x)

∣∣∣ = 0, (5.19)

for some function β.

What this theorem tells us is that every distribution in the MDA of Hξ will
have a distribution for excess losses that converges to the Gξ,β distribution,
as the threshold tends to the maximum loss. In practice, this means that
for a sufficiently high threshold d , the excess loss random variable Yd will
(approximately) follow the GPD with the same shape parameter ξ as the GEV,
and with a scale parameter β. Since the left tail of Yd is fixed at 0, there is no
need for a location parameter.

In order to use the theorem, we need to identify the threshold beyond which
we can assume that excess losses are close to being GPD.

One approach is to examine the empirical mean excess loss function
for the data, as a function of the threshold d . Given an ordered sample,
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x(1),x(2), . . . x(n), we define the empirical mean excess loss function ê(x(j)),
for j = 1,2, . . . ,n− 1, as

ê(x(j)) =
n∑

k=j+1

x(k)

n− j
− x(j).

That is, for each ordered sample value x(j), we take the mean of the
observations which are larger than x(j), and subtract x(j) to get an estimator of
the MEL evaluated at x(j).

We know that the GPD mean excess loss function is a straight line,
even if the mean excess loss function of the underlying distribution is not.
Hence, the region where the empirical mean excess loss function becomes
approximately linear indicates where the GPD becomes a good approximation
to the distribution of excess losses.

Once we have chosen a suitable threshold, d∗, say, we consider the reduced
sample of values of X(j)−d∗ for all X(j) > d∗, and fit the GPD to the reduced
sample.

If the mean excess loss function has positive gradient, then we fit the tail
data to the Pareto distribution. If the mean excess loss function appears flat,
then we fit the tail data to the exponential distribution.

In practice, identifying an appropriate threshold can be challenging. As we
get up to the largest data points, the empirical MEL tends to be very volatile.
See Section 5.5 for an illustration.

5.4.3 Risk Measures for the GPD

Suppose we have a loss distribution function, FX, and that for some threshold
d, the excess loss random variable X − d|X > d may be assumed to follow
the GPD with parameters ξ and β.

We can estimate the VaR, assuming it lies above d, using the GPD for the
excess distribution above d .

For example, for ξ > 0, consider first the survival function for some x >

d. Let SX(x) denote the survival function of the original distribution, and let
Sd(y) denote the GPD survival function for the excess loss distribution.

Then

Pr[X > x] = Pr[X > d] Pr[X > x|X > d]

= Pr[X > d] Pr[X − d > x − d|X > d]

= SX(d) Sd(x − d) (5.20)

= SX(d)

(
1+ ξ

β
(x − d)

)−1/ξ

. (5.21)
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So we can treat the survival function as a combination of the underlying
survival function up to the threshold d , and the GPD survival function
beyond d.

If we replace x with the α-VaR, Qα(X), assuming Qα(X) > d, we have

Pr[X > Qα(X)] = 1− α = Pr[X > d] Pr[X > Qα(X)|X > d]

⇒ 1− α = SX(d)

(
1+ ξ(Qα − d)

β

)− 1
ξ

⇒ Qα = d + β

ξ

((
SX(d)

1− α

)ξ

− 1

)
. (5.22)

Equation (5.22) shows that the α-VaR can be calculated using the GPD
parameters β and ξ , together with SX(d), which is the survival probability
at the threshold d from the original distribution. In practice, we may not know
the distribution for the underlying X, which means that we must approximate
SX(d). The usual (and intuitive) non-parametric estimator is the proportion of
the sample which is greater than d . For example, suppose the threshold d is
selected at the 950th smallest sample value from a sample size of 1,000; that
is, d = x(950). Then there are 50 values greater than d which form the sample
for estimating the GPD parameters. The empirical probability that X > d is
Ŝ(d) = 50/1,000. So, in general, assuming that d is selected such that j

sample values exceed d , out of a sample of n values,

SX(d) ≈ Number of values of xi > d

Total number of values of xi

= j

n
. (5.23)

We can also use the GPD to evaluate extreme Expected Shortfall risk
measures. We assume, for convenience, that losses are continuous (at least in
the tail), in which case the α-Expected Shortfall of the loss is related to the
α-VaR (Qα), and the mean excess loss (MEL) function, eX(d), as follows:

ESα = E[X|X > Qα]

= Qα + E[X −Qα|X > Qα]

= Qα + eX(Qα). (5.24)

Suppose that for a continuous loss random variable X, and for a given
threshold d, the distribution of Yd = X − d|X > d is GPD with parameters
ξ,β. Suppose also that we are interested in the α-Expected Shortfall of X,
where Qα > d . If ξ ≥ 1, the Expected Shortfall does not exist (moments
higher than the (1/ξ)th are infinite for the GPD).

If ξ < 1, then we consider

X −Qα|X > Qα = Yd − (Qα − d)|Yd > (Qα − d).
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Let k = Qα − d , then from Example 5.5, we know that Z = Yd − k|Yd > k

follows a GPD with parameters ξ and β∗ where

β∗ = β + ξ k = β + ξ (Qα − d).

We will use E[Z] for the Expected Shortfall, as

eX(Qα) = E[Z] = β + ξ(Qα − d)

1− ξ

so

ESα = Qα + eX(Qα)

= Qα + β + ξ(Qα − d)

1− ξ

⇒ ESα = 1

1− ξ

(
Qα + β − ξ d

)
. (5.25)

Note that we have assumed that the α parameter for the risk measure is
sufficiently far into the tail of the distribution that the GPD distribution is
appropriate for the random variable X −Qα|X > Qα .

Example 5.6 An analyst is estimating risk measures for severity data for
auto insurance policies. She has a sample of 200 values, and has set the GPD
threshold at d = 1.0 (in $ millions). The parameters of the GPD are ξ = 0.80
and β = 0.65.

The 24 values from the sample which exceed the threshold are given in
Table 5.2, in descending order:

(a) Calculate the 95%, 99%, and 99.9% quantiles, using the GPD.
(b) Calculate the 95%, 99%, and 99.9% Expected Shortfalls, using the GPD.

Solution 5.6

(a) First, we check that the empirical 95% quantile lies above d = 1.0. We
see from the data that Q95% ≈ X(191) = 2.3 > d as required.

Table 5.2. Data points exceeding threshold, d = 1.0, from a sample of 200,
for Example 5.6

11.33 6.17 4.67 4.41 4.20 3.31 2.97 2.65 2.58 2.29 2.12 1.76

1.35 1.34 1.28 1.27 1.25 1.15 1.13 1.10 1.09 1.07 1.02 1.01
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Next, we estimate SX(1.0). From the sample, we have 24 values
exceeding the threshold from a total sample of 200 data values, so
SX(d) ≈ 24/200 = 0.12.

Then using equation (5.22) we have

Qα = d + β

ξ

((
SX(d)

1− α

)ξ

− 1

)

⇒ Q95% = 1.0+ 0.65

0.80

((
0.12

0.05

)0.8

− 1

)
= 1.82,

Q99% = 1.0+ 0.65

0.80

((
0.12

0.01

)0.8

− 1

)
= 6.12,

Q99.9% = 1.0+ 0.65

0.80

((
0.12

0.001

)0.8

− 1

)
= 37.6.

(b) From equation (5.25) we have

ESα = 1

1− ξ

(
Qα + β − ξ d

)
⇒ ES95% = 1

0.2
(1.82+ 0.65− 0.8(1.0)) = 8.35,

ES99% = 1

0.2
(6.12+ 0.65− 0.8(1.0)) = 29.85,

ES99.9% = 1

0.2
(37.6+ 0.65− 0.8(1.0)) = 187.25. �

5.4.4 The Hill Estimator

An alternative approach to the empirical mean loss function for estimating d,
β, and ξ is the Hill estimator, which estimates the tail index, α = 1/ξ , for
ξ > 0.

The Hill estimator uses the fact that for distributions in the MDA of the
Fréchet distribution, the survival function can be written

S(x) = L(x) x−1/ξ = L(x) x−α,

where L(x) is slowly varying at infinity. We then find that the mean excess loss
function of the log of the loss data (we assume the losses are > 0) converges
to ξ = 1/α.

Reprinted from Quantitative Enterprise Risk Management, copyright 2022 Mary R. Hardy and David Saunders, with 
permission of Cambridge University Press.  Not for further distribution.



152 Extreme Value Theory

Suppose we have an ordered sample of loss data, x(1), . . . ,x(n). The Hill
estimator is

α̂H
j =

⎛⎝ n∑
k=j+1

log(x(k))

n−j+1
− log(x(j))

⎞⎠−1

,

which is a slight variant of the empirical MEL function above, applied to the
logs of the sample values.

Since different values of j will give different estimators, it is customary to
plot values for a range of j , towards the higher end of the sample.

We select a threshold at the (n − j)th sample value, that is, at d = x(n−j),
which means that the probability that X > d is estimated to be Ŝ(d) = j/n.
The Hill estimator for the survival function for x > x(n−j) is then

ŜH (x) = j

n

(
x

x(n−j)

)−α̂H
j

.

McNeil et al. (2015) show that this is similar to the estimate derived from
equation (5.21), replacing SX(d) with the empirical estimate j/n, but without
the scale parameter β.

5.5 Example: US Hurricane Losses, 1940–2012

In this section, we explore the use of extreme value distributions in the analysis
of data relating to losses in the United States of America between 1940 and
2012, from 179 hurricanes and tropical storms.1 The data is adjusted to 2017
values and losses are expressed in $millions.

The data is shown in Figure 5.5.
This analysis would be important, for example, for an insurer or reinsurer

with exposure to hurricane losses. Suppose we are interested in estimating the
99% VaR or Expected Shortfall of the hurricane severity distribution. The five
largest losses in the sample (in 2017 $millions) are

L(175) L(176) L(177) L(178) L(179)

54,660 65,900 71,790 79,110 91,130

The empirical estimate of the 99% VaR from the data is approximately
81,514 (unsmoothed). The empirical estimate of the 99% Expected Shortfall is

1 The data is derived from www.icatdamageestimator.com.

Reprinted from Quantitative Enterprise Risk Management, copyright 2022 Mary R. Hardy and David Saunders, with 
permission of Cambridge University Press.  Not for further distribution.



5.5 Example: US Hurricane Losses, 1940–2012 153

1940 1960 1980 2000

0
20

,0
00

40
,0

00
60

,0
00

80
,0

00

Date

Lo
ss

 (
$m

ill
io

ns
, 2

01
7)

Figure 5.5 US hurricane loss data, 1940-2012, in 2017 values (millions)

the average of the values greater than 81,514, but there is only one such value,
so the empirical Expected Shortfall is 91,130.

It is interesting to re-estimate the risk measures using the generalized Pareto
distribution to model the tail of the severity distribution.

We first plot the empirical mean excess loss (MEL) function. The result
is shown in Figure 5.6 The lower plot omits the final five values – the MEL
typically fluctuates significantly in the tail. The increasing linear trend above
a threshold of around 20,000 indicates that a GPD with positive ξ parameter
should be the best fit.

Using the ‘fit.GPD’ function from the ‘QRM’ package in R, with a threshold
of 20,000, gives maximum likelihood estimates for the GPD parameters (with
associated standard errors) of

ξ̂ = 0.75(0.41), β̂ = 7,005(3,066).
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Figure 5.6 Empirical MEL for hurricane loss data
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15,700 19,200 21,100 21,900 22,200 22,300

x

Figure 5.7 MLE estimators for ξ using different numbers of tail values, for the
US hurricane loss data

Moving the threshold to 21,000 gives

ξ̂ = 1.2(0.53), β̂ = 3,850(1,960),

which demonstrates the difficulty of estimating the ξ parameter in practice. In
Figure 5.7, we show the ξ estimates and 95% confidence intervals for the storm
data, based on a range of the number of tail loss values to be included in the
calculation.

In Figure 5.8, we show the estimates of ξ , with 95% confidence bands, using
the Hill method. The range of thresholds is the same as in Figure 5.7, but the
estimated values of ξ are quite different. The Hill estimator is less accurate
than the maximum likelihood estimator used in Figure 5.7, and this sample
does not generate enough tail values for the method to be suitable.

We use the fitted GPD, assuming a threshold of 20,000, to estimate the risk
measures for the loss distribution. We use formula (5.22) for the estimated 99%
VaR. That is

Qα = d + β

ξ

((
1− α

SX(d)

)−ξ

− 1

)
,

where α = 0.99, d = 20,000, β = 7,005, ξ = 0.75. We estimate SX(d) using
the empirical survival function at d = 20,000; that is, using the proportion of
the data that is greater than 20,000. There are 179 values in the data set, and
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Figure 5.8 Hill estimators for ξ , using different threshold values, for the hurricane
loss data, with 95% confidence interval

19 are greater than the threshold, so we use SX(d) = 19/179 = 0.1061. This
gives an estimate of Q99% ≈ 65,567.

For the 99% Expected Shortfall we use formula (5.25),

ESα = 1

1− ξ

(
Qα + β − ξ d

)
,

with the same parameters as used for Qα . For α = 0.99, this gives a 99%
Expected Shortfall estimate of 230,291.

We see that the VaR estimate is fairly close to the empirical estimate.
The Expected Shortfall, however, is considerably larger than the maximum
observed loss; we use the GPD to extrapolate beyond the data, so our estimates
are not bounded by the values observed in the past. We see the influence of the
extrapolation in Table 5.3, which shows the empirical estimates of the VaR and
Expected Shortfall for several different values of α, using smoothed empirical
estimates for the VaR. We compare them with the estimates found using the
GPD. As the risk measure moves further into the tail, the Expected Shortfall
is highly influenced by the GPD. In the last row, we illustrate that for risk
measures using α beyond the availability in the data, the GPD extrapolation
can be used to give results consistent with the upper tail of the data.
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Table 5.3. Comparison of smoothed empirical and GPD estimates
of risk measures for US hurricane loss data (millions)

Empirical Empirical GPD GPD
α VaR ES VaR ES

0.90 21,140 38,783 20,424 49,716
0.95 26,070 56,273 27,081 76,345
0.99 81,514 91,130 65,567 230,291
0.999 n/a n/a 319,429 1,245,735

5.6 Notes and Further Reading

The two perspectives on EVT discussed in this chapter, block maxima and
points over threshold (POT), both have practical applications, but the POT
approach is much more useful in applied risk management, as it focuses on
exactly the statistic that is measured with the Expected Shortfall risk measure.
Both perspectives categorize the nature of the distribution in its extreme tail
using the ξ parameter; in practice, the uncertainty in the estimated value
of ξ can be a significant problem. Ultimately, the nature of extreme values
means that the available data is slim and, therefore, the uncertainty is high.
Nevertheless, EVT offers a valuable approach for evaluating far right tail risk
measures of loss.

Embrechts et al. (2013) offers a deep exploration of EVT in risk manage-
ment, with a focus on insurance and finance.

5.7 Exercises

Exercise 5.1 Describe the advantages of using EVT to calculate tail risk
measures of a distribution, compared with a parametric model of the full loss
distribution.

Exercise 5.2 Describe the trade-off involved in selecting block sizes for the
block maxima approach to estimating ξ . Explain how the selection influences
(i) the bias and (ii) the variance of the estimate.

Exercise 5.3 The normal distribution is in the MDA of the Gumbel extreme
value distribution.
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(a) Explain in words what this means.
(b) The normal distribution is symmetric, while the Gumbel distribution is

positively skewed. Explain why this is not inconsistent.

Exercise 5.4 Show that, if X follows the GEV distribution with parameters
ξ < 0, μ, and θ > 0, then Y = 1+ξ(x−μ)/θ follows the Weibull distribution
defined in Section 4.4.2, and identify the parameters of the standard Weibull
distribution.

Exercise 5.5 Consider an exponential distribution with distribution function

F(x) = 1− e−x/β .

(a) Show that F is in the maximum domain of attraction of the Gumbel
distribution, using normalizing sequences cn = β and dn = β log n.

(b) Let M denote the maximum of 80 observations of an exponential
distribution with mean 100. Calculate the probability that M > 1,000
using (i) the exponential distribution and (ii) the Gumbel distribution.

(c) Comment on your results.

Exercise 5.6 Describe the trade-off involved in selecting a threshold for the
points over threshold approach to estimating ξ . Explain how the selection
influences (i) the bias and (ii) the variance of the estimate.

Exercise 5.7 You are given the following information about three random
variables that are in the MDA of the GEV distribution. State with reasons
whether ξ < 0, ξ = 0, or ξ > 0.

(a) The first random variable, X, is greater than 0, unbounded on the right
side, and has finite kth moment for all k = 1,2,3, . . .

(b) The second random variable, Y , is equal to −X.
(c) The third random variable has a finite number of moments.

Exercise 5.8 A company is modelling losses from cyberattacks.
The following table shows the largest 20 values of a sample of 1,000

observations of the losses, sorted in decreasing order:

196.1 148.2 79.8 35.8 27.1 22.9 21.8 20.9 16.7 15.8
15.5 13.7 13.0 12.5 11.5 10.3 9.7 9.4 8.3 8.0

(a) Estimate the 99% VaR of X.
(b) Estimate the 99% Expected Shortfall of X.
(c) Assume that the losses are from a distribution which is GPD for

Y = X − d|X > d , where d = 10, with shape parameter γ = 0, and
scale parameter β = 30.

Reprinted from Quantitative Enterprise Risk Management, copyright 2022 Mary R. Hardy and David Saunders, with 
permission of Cambridge University Press.  Not for further distribution.



5.7 Exercises 159

(i) Show that

Pr[X > x] = SX(d)
(
e−(x−d)/β

)
for x > d .

(ii) Estimate the 99% VaR and 99% Expected Shortfall using the GPD
for the tail probabilities.

(iii) Comment on the differences between your estimates in (a) and (b),
and your estimates using the GPD.

Exercise 5.9 Consider the one-parameter GEV distribution

F(x) = e−x−1/γ

, 0 < γ < 1.

Show that E[X] = �(1− γ ), where �(u) =
∫ ∞

0
tu−1 e−t dt .

Exercise 5.10 Consider the Pareto distribution with distribution function

F(x) = 1−
(

θ

θ + x

)α

.

(a) Show that this distribution is in the Fréchet MDA, with distribution
function e−y−α

, using normalizing sequences

cn = θ n1/α, and dn = −θ .

(b) Hence determine the normalizing sequences c∗n and d∗n such that the
limiting distribution for the maximum is the GEV distribution

H(x) = e−(1+γ x)−1/γ

.

(c) Given θ = 200, α = 3.0,

(i) Compare the exact probability that Mn ≤ m with the probability
using the GEV distribution applied to normalized Mn, for n = 25
and m = 500.

(ii) Repeat (i) for m = 500, and n = 50, and n = 100.
(iii) Repeat (i) with n = 25, m = 1,000, and m = 2,000.
(iv) Comment on your results.

Exercise 5.11 You are given that the maximum of a sample of n independent
variables has a Fréchet distribution, with parameters α and θ (μ = 0).

Show that the maximum of a sample of 2n variables also has a Fréchet
distribution, and determine the parameters.

Exercise 5.12 You are given that the monthly maximum for a financial series
monitored daily has a Gumbel distribution, with location and scale parameters
μ and θ .
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Show that the annual maximum also has a Gumbel distribution, and
determine the parameters.

Exercise 5.13 You are given that the Fréchet distribution with parameter α is
in the MDA of the Fréchet distribution, with the same parameter α. You are
also given that for this distribution the normalizing sequence dn = 0. What is
the cn normalizing sequence in this case?

A distribution with the property that it lies in the MDA of the same
distribution, with the same parameter is called a max stable distribution.

Exercise 5.14 An investment firm is interested in fitting an extreme value
distribution to portfolio losses. The data set comprises 300 values for the
monthly percentage loss in portfolio value.

The analyst has assumed the data is a random sample of independent
identically distributed observations. She has calculated the empirical MEL
function, which is shown in the figure below.
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You are also given the 20 largest values from the data, sorted from high
to low:

24.3 18.4 15.6 11.4 10.5 10.2 9.6 9.5 9.3 8.8
8.8 8.6 8.6 8.4 8.3 8.2 8.1 7.4 7.4 6.9
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(a) (i) Estimate the 98% Expected Shortfall from the data.
(ii) Calculate the empirical MEL function, ê(x) at x = 10.0.

(b) The analyst decides to use the GPD with threshold d = 8. Explain why
this choice appears reasonable.

(c) The MLE estimators for the GPD distribution, with d = 8, are ξ̂ = 0.55,
β̂ = 1.5.

(i) Calculate the 98% Expected Shortfall using the GPD distribution.
(ii) Calculate the 99.9% Expected Shortfall using the GPD distribution.

(d) Comment on the difference between the Expected Shortfall estimates
from (a)(i) and (c)(i). Which method would you recommend?

Exercise 5.15 A shipping company is reviewing its expected losses from
events at sea, in order to determine how much insurance cover is needed.

The number of journeys each year, denoted N , has a Poisson distribution
with expected value 100.

In 80% of journeys, there is no loss. In 19% of journeys, there is a minor
loss, with severity following a lognormal distribution, with parameters μ = 7,
σ = 1.6. In the remaining 1% of journeys, there is a major loss, and the severity
in these cases follows a Pareto distribution with parameters a = 2.1 and θ =
66,000.

Let Yj denote the loss from the j th voyage, and let I denote the type of loss
involved, where I ∈ {No Loss, Minor Loss, Major Loss}.

You are given that Yj are i.i.d. and are independent of N .

(a) Calculate the mean of the aggregate annual loss.
(b) The company is interested in insuring jumbo losses, defined as losses

exceeding 50,000.

(i) Calculate Pr[Yj > 50,000|I = Minor Loss] and
Pr[Yj > 50,000|I = Major Loss], and hence determine
Pr[Yj > 50,000].

(ii) Given that an individual loss exceeds 50,000, calculate the
probability that the loss arose from a major loss event.

(c) You are given that the lognormal distribution lies in the Gumbel MDA,
and the Pareto lies in the Fréchet MDA.

A consultant claims that Yj will be in the Gumbel MDA, because there
is a higher probability that Yj comes from the lognormal distribution than
from the Pareto distribution. Critique this claim.

(d) The company insures losses from major loss events only. The remaining
uninsured loss will therefore be
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Y ∗j =
{
Yj I �= Major Loss,
min(Yj,50,000) I = Major Loss.

Show that the expected value of the annual aggregate uninsured loss is
102,700 to the nearest 100.

(e) The insurer offers the cover at a cost of 47,000. As an alternative, it offers
a co-insurance policy with the same expected value of insured losses for
only 37,000. Under a co-insurance policy, the insurer pays a fixed
proportion of all losses.

(i) Determine the proportion of each loss retained by the shipping firm
under the co-insurance.

(ii) Comment on how the shipping company might decide between the
two policies.
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