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The Impact of Disaster Events on Investments 
Contagion Channels Perspective 

Executive Summary 

Weather and climate disasters occur every day somewhere in the world. These extreme weather and climate 

disasters claim tens of thousands of lives each year and have significant economic effects on the areas impacted. One 

critical characteristic of a powerful natural disaster is that it adversely affects large parts of the domestic economic 

sectors, and its negative impact may spread contagiously in the financial markets as a threat to financial stability.  

As a financial systemic risk, financial contagion has attracted substantial attention from investors, regulators, and the 

public. However, the investment contagion caused by disaster events is convoluted, and the contagious nature of the 

impact of large-scale disaster events on investments is not well studied yet in the literature. Due to the different 

nature and geographic locations of the natural disasters, they may have different direct and indirect spillover impacts 

on different asset classes and investment sectors. However, the natural disaster-driven financial contagion has not 

been fully investigated in the literature. This research aims to fill the gap. 

The focus of this research is to study the extent to which investment sectors have been contagiously affected by 

major disasters. To pursue this task, we first investigate the existence of financial contagion from cross-sector 

perspective on major types of natural disasters. Financial contagion is mostly defined as a significant increase in cross-

market linkages after a shock (Forbes and Rigobon, 2002). Following the recent technological advancement (Wang et 

al., 2021), this research proposes to use the dynamic copula-EVT (extreme value theory) model that incorporates both 

the tail behavior and the complex dependence structure between financial markets to examine the existence of 

disaster-driven financial contagion cross-sector of the US stock market.  

We find evidence that the financial contagion caused by natural disaster events is convoluted and heterogeneous 

under different types of natural disaster events. More specifically, our results confirm the existence of financial 

contagion during these types of disaster events, and the West Nile fever and oil spill events are the easiest to driven 

financial contagion, while the drought event has the least influence on financial market. Moreover, the automobile 

and wholesale sectors are the most affected by disasters and are found to be highly risky.  

We further identify the main contagion transmission channels during the natural disaster periods. While there is a 

sizable literature focusing on contagion transmission channels during financial crises, the implications from the 

previous literature may not be directly applicable to natural disaster-driven financial contagion. This research sheds 

light on this topic and provides new evidence that a majority of financial contagion driven by natural disasters is 

spread through portfolio rebalancing. 

To limit the contagion associated with wealth constraints, international financial risk managers could provide timely 

support to the struggling financial institutions so as to reduce investors' perceived risk. Also, policymakers and experts 

may reevaluate the global financial system regulation and take appropriate reactions to limit recessions. Our findings 

shed light on the transmission mechanism of disaster events on the sectors. 

 

https://soa.qualtrics.com/jfe/form/SV_e2KYFBjF87hLvz8
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Section 1: Introduction on Natural Disaster-Driven Financial Contagion 

Weather and climate disasters occur every day somewhere in the world. These extreme weather and climate disasters 

claim tens of thousands of lives each year and have significant economic effects on the areas impacted. According to 

the National Oceanic and Atmospheric Administration, from 1980-2021, there have been 300 extreme weather 

catastrophic events with losses exceeding $2,086 billion across the United States with total deaths of 15,030 people.1 

Globally, over 475,000 people perished in extreme weather and climate catastrophes over 20 years during the 2000 to 

2020 period (United Nation 2021)2. The US faced unprecedented natural disasters in 2021 with record fires on the 

West Coast, frequent hurricanes in the Southeast, and the deadliest late-season tornado outbreaks (of December 10-

11, 2021) ever recorded in the United States ravaged parts of the South and Midwest.  

The World Meteorological Organization (WMO) 2021 annual report shows evidence of an increasing number of 

extreme climate events considered as systemic risks.3 Scientists are pointing to increasing signs of extreme climate and 

its bigger and more damaging impacts on the planet and on people’s lives. The increased risk of extreme weather 

catastrophe such as prolonged droughts, recurrent heatwaves, record rainfall and damaging floods often exerts a 

disproportionate impact on the low and middle-income countries which could damage a large part of their production 

capacity. As Table 1 shows, the average number of annual billion-dollar disasters has grown from 2.9 per year in the 

1980s to 12.2 per year in the 2010s and was 22 in 2020 according to National Centers for Environmental Information 

(NCEI). 

Table 1 

SELECT TIME PERIOD COMPARISONS OF UNITED STATES BILLION-DOLLAR DISASTER STATISTICS (CPI-ADJUSTED) 

Time Period Billion-Dollar 
Disasters 

Events/Year Cost Percent of 
Total Cost 

Cost/Year Deaths Deaths/Year 

1980s (1980-1989) 29 2.9 $187.2B 9.00% $18.7B 2,870 287 

1990s (1990-1999) 53 5.3 $288.6B 13.80% $28.9B 3,045 305 

2000s (2000-2009) 63 6.3 $547.0B 26.20% $54.7B 3,091 309 

2010s (2010-2019) 123 12.3 $858.4B 41.10% $85.8B 5,224 522 

Last Year (2020) 22 22 $100.2B 4.80% $100.2B 262 262 

All Years (1980-2021)* 308 7.3 $2,086.2B‡ 100.0%‡ $49.7B‡ 15,030 358 

NOTE: Statistics valid as of October 8, 2021 

Global or regional climate risk pools could potentially help enhance climate resilience and prevent fiscal shocks in 

vulnerable countries. Regional and national efforts to step up climate risk pools have encompassed a host of initiatives. 

For example, the World Bank’s Global Index Insurance Facility supports the development of index-based disaster 

insurance for farmers. Yet the high uncertainty about future extreme events, the dynamics of assessing the increasingly 

unpredictable nature of weather patterns as well as the covariance among systemic risks pose important hurdles that 

must be overcome.  

 

 

1  https://www.ncdc.noaa.gov/billions/summary-stats  
2 https://www.scientificamerican.com/article/climate-fueled-disasters-killed-475-000-people-over-20-years/  
3 https://public.wmo.int/en/media/news/state-of-global-climate-observing-system-2021  

https://www.ncdc.noaa.gov/billions/summary-stats
https://www.scientificamerican.com/article/climate-fueled-disasters-killed-475-000-people-over-20-years/
https://public.wmo.int/en/media/news/state-of-global-climate-observing-system-2021
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Natural disasters could inflict serious damages on people’s lives, property, and economy. Powerful disasters such as 

earthquakes, hurricanes and wildfires may also cause heavy damage to the financial markets of individual investments 

and may even spillover to the broad financial markets (regions) as evident from the US Hurricane Katrina of 2005, the 

Japan earthquake and tsunami of 2011, and the Australia wildfires of 2020. The rapid outbreak of COVID-19 and the 

subsequent rapid spread of the financial crisis in 2020 highlight the similarity between the virus spread in population 

and the financial crisis spread across different asset classes or across countries. Not surprisingly, “contagion”—an 

epidemiological term—has been widely adopted to describe the nature of spillover impact of large-scale events on 

investments and financial markets.  

The systemic extreme weather and climate risk pooling can build on experiences of a number of existing catastrophe 

risk pools for natural disasters. For instance, the Caribbean Catastrophe Risk Insurance Facility (CCRIF) is the first multi-

country risk pool in the world. The African Risk Capacity (ARC) is created as a specialized agency of the African Union. 

The Pacific Catastrophe Risk Insurance pilot was designed by the World Bank, which was considered not to meet the 

optimistic expectations of advocates including development partners (Dornan and Cain, 2014). The Shenzhen Social 

Insurance Program is China’s large-scale experiment with a nationally funded city-wide model of disaster insurance.  

As a financial systemic risk, financial contagion has attracted substantial attention from investors, regulators, and the 

public. However, the investment contagion caused by disaster events is convoluted, and the contagious nature of the 

impact of large-scale disaster events on investments is not well studied yet in the literature. Due to the different 

natures and geographic locations of the natural disasters, they may have different direct and indirect spillover impacts 

on different asset classes and investment sectors.  

The focus of this research is to study the extent to which different asset classes and investment sectors have been 

contagiously affected by major disasters. To understand the disaster-driven financial contagion, it is critical to develop 

accurate techniques to detect and measure financial contagion. The nature of financial contagion requires the 

exploration of conditional extreme dependence rather than the widely used correlation between different markets. In 

this research, we propose to use the copula-based model to study the disaster-driven financial contagion. Most 

importantly, we propose to use the corner tail dependence which captures the circumstances when different markets 

move in the same direction at the extreme dependence as the measure of disaster contagion.  

When the disaster-driven financial contagion exists, the correlation between the sectors would increase significantly 

during crisis periods compared to tranquil periods. In this work, the lower tail dependence achieved by the copula-

based model is proposed as the measures of disaster-driven financial contagion to incorporate the complex tail 

dependence including non-linearity, asymmetry, and dynamic pattern.  We also use both the lower tail dependence 

and upper tail dependence to measure the asymmetric reactions to market boom and market crash and determine the 

channels of the disaster-driven financial contagion. 

Section 2: Literature Review  

Financial contagion is defined as a significant increase in cross-market correlation after extreme shocks (Forbes and 

Rigobon, 2002). Using this definition, the vector autoregression approach (Dungey et al., 2020) and the multivariate 

generalized autoregressive conditional heteroscedasticity (GARCH) family model (Niţoi and Pochea, 2019) have been 

employed to test the existence of financial contagion in the earlier literature. However, correlation measures mask the 

complex and nonlinear dependence between markets and fail to reveal the characteristics of tail dependence (Ming et 

al., 2022). To overcome this, a strand of literature focuses on financial contagion based on dependence instead of 

correlation. In particular, Wang et al. (2021) construct a dynamic copula-EVT model to detect the existence of financial 

contagion. The dynamic copula-EVT model incorporates both the tail behavior and the complex dependence structure 

between financial markets. Studies have mostly discussed the contagion effect among markets during financial crises, 
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such as the 1997 Asian financial crisis, the 2008 global financial crisis, the 2011 European debt crisis, and the 2020 

COVID-19 crisis (Boyer et al., 2006; Bekaert et al., 2014; Wang et al., 2021). 

Limited attention is dedicated to disaster events (such as earthquake, storm, flood, and transport accident) on financial 

contagion. Previous literature shows that weather and climate catastrophic risks induce extreme tail risks and systemic 

correlations in losses and thus may challenge the standard insurability conditions. Kunreuther et al. (1995) and 

Cummins and Trainar (2009) show that actuaries tend to charge much higher premiums if risks are not well specified or 

correlated. As a result, catastrophic insurances often have substantial high risk premium loadings (Froot, 2001; 

Hochrainer, 2006). Linnerooth-Bayer and Mechler (2007) indicate that it is often too costly to insure against very 

extreme risks occurring less frequently than every 500 years. The existence of systemic weather risk has been argued 

as the main reason for the failure of private crop insurance markets (Miranda and Glauber, 1997; Duncan and Myers, 

2000). 

On the other hand, by means of spatial statistics approach, Goodwin (2001) and Wang and Zhang (2003) suggest that 

only a moderate premium loading is necessary for covering the systemic yield risk if the risk pool is large enough. 

Okhrin et al. (2013) explore the possibility of spatial diversification of weather risk for agricultural production regions in 

China and find that the spatial diversification effect depends on the type of weather index and the strike level of the 

insurance. Xu et al. (2010) showed similar results on systemic weather risks for the German market. Using the Japanese 

311 earthquake in 2011 as a case study, Huang et al. (2018) provide evidence of spatial contagion for neighboring 

countries exporting to Taiwan. Li et al. (2021) shows that the Japan Kumamoto earthquakes in 2016 caused financial 

contagion effect and the contagion effect overweighs the competitive effect. More recently, a spate of literature focus 

on the COVID-19 pandemic and analyze its impact on economy and financial market (e.g., Duan et al., 2021; Foley et 

al., 2021; Huber et al., 2021; John and Li, 2021). For instance, according to Wang et al. (2021), the COVID-19 pandemic 

leads the financial contagion phenomenon between oil and stock markets and the magnitude of financial contagion 

exceeds that during the 2008 financial crisis.  

Provided that contagion appears to prevail on many markets, a natural stream of research is the analysis of the 

channels underlying the shock transmissions across markets. This topic is of importance, e.g., for investors seeking to 

hedge against market downturns and policymakers who aim to limit the consequences of such stressful periods. An in-

depth understanding of the mechanisms driving financial contagion will contribute to more appropriate decisions and 

provide for more targeted interventions. To the best of our knowledge, no research has been carried out to examine 

the channels of disaster-driven financial contagion. We believe that it is important to fill such a gap given the role 

played by the disaster events and the importance of this factor on the economy. 

The literature has recognized at least three possible channels of financial contagion, i.e., financial linkages, trade links, 

and investor behavior (Kaminsky et al., 2003). In the wake of the growing behavioral economics literature that points to 

the role played by investor attention and investor sentiment in the price formation and return co-movements (Ben-

Rephael et al., 2017; Gao et al., 2020; Gu and Kurov, 2020; Hsieh et al., 2020), we also evaluate the importance of a 

behavioral dimension. That is, our focus is on the testing of the investor behavior hypothesis in explaining the linkages 

between disasters and financial contagion in the US. As a consequence of the models developed by Kyle and Xiong 

(2001), the financial contagion of behavior dimension is spread through the wealth effect when investors suffering loss 

struggle to meet their liquidity constraints through fire sale. Yet, this theory implies asymmetric reactions to both 

market boom and market crash. An alternative investor behavior-induced financial contagion is through the portfolio 

rebalancing channel suggested by the rational expectations model of Kodres and Pritsker (2002). 
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Section 3: Natural Disaster-Driven Financial Contagious Detection Model 

3.1. THE COPULA-EVT MODEL 

The copula is a function that describes various patterns of dependence structures and has been widely used to 

measure financial contagion. The essence of copula is that a joint distribution of random variables can be expressed as 

a function of the marginal distributions. To make this notion precise, let’s review one of the most essential 

mathematical results in the copulas theorem: the Sklar theorem in 1959.  According to Sklar's (1959) theorem, let 1Z
 

and 2Z
 denote two random variables with bivariate joint distribution function 1 2,Z ZF

 and two continuous marginal 

distribution functions 1F
 and 2F

, then there is a unique copula C : 
2[0,1] [0,1]→  such that 

 
1 2, 1 2 1 1 2 2( , ) ( ( ), ( )).Z ZF z z C F z F z=  (1) 

 

Essentially, Sklar’s Theorem says, any joint distribution can be written in copula form, and the use of copula allows the 

separation of the marginal distribution from the dependence structure. Therefore, the joint distribution can be 

constructed from two independent components: the copula and the information of the marginal distributions. Copula 

fully captures the dependence relationship in a multi-variate distribution. The use of the copula allows the separation 

of the marginal distribution from the dependence structure. Therefore, the joint distribution can be constructed from 

two independent components: the copula and the information of the marginal distributions. Figure 1 illustrates the 

intuition of copula as the decomposition of marginal distribution and the dependence structure of the joint 

distributions. The scatter plot of the two uncertainties shows how one uncertainty is covarying with another 

uncertainty. If we extract out the marginal distribution of each uncertainty, whatever is left is the complete 

dependence structure between them, which is fully captured by a copula.  

Figure 1 

ILLUSTRATION OF COPULA AS DECOMPOSTION OF MARGINAL DISTRIBUTION AND DEPENDENCY STRUCTURE 
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There are many different types of copulas to describe different types of dependence relationships. The dependence 

relationship is commonly measured with linear correlations. There are more complex dependency structures. For 

instance, in some practical applications, there may be a stronger dependence between big losses, such as stock price 

movement when the market crashes, or between big gains with a market melt up. Such asymmetry of the dependence 

structure is called tail dependence.  

The elliptical copulas and Archimedean copulas are among the most popular copula families. The elliptical copulas and 

the Archimedean copulas differ significantly in modeling the tail dependency of distributions. The normal copula is the 

copula that underlies the multivariate normal distribution. It shares the same dependency structure with the 

multivariate normal distribution. The normal copula has upper and lower tail dependencies equal to zero. The t-copula 

presents symmetric and positive upper and lower tail dependence, which indicates a tendency for the t-copula to 

generate joint extreme events.  

Archimedean copulas model upper tail dependency, lower tail dependency, or both, so that they provide additional 

flexibility to describe the behavior of tail dependency in realistic situations. Clayton and Gumbel copulas are among the 

most popular Archimedean copulas. The Clayton copula exhibits asymmetric lower tail dependence and is best suited 

for applications in which two outcomes are likely to experience low values together. The Gumbel copula exhibits 

asymmetric upper tail dependence and is best suited for applications in which two outcomes are likely to experience 

high values together such as the performance of stock returns during a market jump.  Figure 2 illustrates the tail 

dependence of the most common copulas including normal copula, t copula, clayton copula and gumbel copula.  

Figure 2 

ILLUSTRATION OF TAIL DEPENDENCE OF DIFFERENT COPULAS 

 

 

We can also quantify the tail dependence. Tail dependency measures the probability that extreme events happen 

jointly. Upper tail dependence exists when there is a probability that positive extreme events happen jointly. Lower tail 

dependence is defined symmetrically. The tail dependency measure depends only on the copula and not on the 
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marginal distributions. One advantage of the copula models is that they can mathematically describe the tail 

dependence, which measures the probability that two variables exhibit extremely small values or extremely large 

values together. The lower tail dependence coefficient ( L ) and upper tail dependence coefficient ( U ) are 

correspondingly defined as 

 1 1

1 1 2 2
0 0

( , )
lim ( ) | ( ) lim ,L C

P Z F Z F
 

 
  



− −

→ →
 =   =   (2) 

 1 1

1 1 2 2
1 1

1-2 + ( , )
lim ( ) | ( ) lim ,

1-

U C
P Z F Z F

 

  
  



− −

→ →
 =   =   (3) 

where 1

1F −  and 1

2F −  are two marginal quantile functions and , [0,1]L U   . 
L  being 0 and positive implies 

independence and dependence of 
1Z  and 

2Z  in the lower tail, respectively. Larger 
L  suggests stronger 

dependence.  A similar statement holds for the dependence in the upper tail based on the value of 
U . 

3.2. MARGINAL DISTRIBUTION MODELING 

The use of copula takes care of the extreme tail dependences. We also need to take care of the extreme tail in the 

marginal distributions. The GARCH-type models are usually adopted to construct marginal distributions (Fenech and 

Vosgha, 2019; Ji et al., 2018). One drawback of the GARCH-type models is that they perform poorly in the tail 

distribution modeling (Koliai, 2016; Sahamkhadam et al., 2018), while the tail behavior is essential in measuring 

financial contagion.  

To overcome the disadvantage of GARCH-type models in tail distribution modeling (Koliai, 2016), we model the 

marginal distribution with EVT in combination with the GARCH-type model. More specifically, the Generalized Pareto 

Distribution (GPD) is used to specify the extreme values of the standardized residuals.  

Figure 3 

ILLUSTRATION OF EXTREME VALUE THEORY 

 

The standardized residuals are from the AR(1)-GJR(1,1) model with skewed-t distribution (Fomby et al., 2012; Meine et 

al., 2016). The default GJR(P,Q) model is of the form 𝜀
𝑡
= 𝜎

𝑡
𝑧
𝑡
, with Gaussian innovation distribution and  𝜎𝑡

2 = 𝜅 +

∑ 𝛾𝑃
𝑖=1  𝜎𝑡−𝑖

2 + ∑ 𝛼𝑗𝜀𝑡−𝑗
2𝑄

𝑗=1 + ∑ 𝜉𝑗
𝑄
𝑗=1 𝐼[𝜀𝑡−𝑗 < 0]𝜀𝑡−𝑗

2 . The indicator function 𝐼[𝜀𝑡−𝑗 < 0] equals 1 if 𝜀𝑡−𝑗 < 0 and 0 
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otherwise. The default model has no mean offset, and the lagged variances and squared innovations are at consecutive 

lags.4   

To do so, we use the peaks over threshold method according to which, the distribution of excess returns (i.e., return 

minus extreme threshold) follows the GPD. Following Koliai (2016), we use the 10th (lower tail) and 90th (upper tail) 

percentiles of the standardized residual series as the extreme thresholds and model the tails of the marginal 

distributions beyond the extreme thresholds with GPD. The standardized residuals falling between the extreme 

thresholds are modeled using the empirical cumulative distribution function. The marginal distribution is thus given as 

follows 

 

 𝐹𝑖(𝑧𝑖) =

{
 
 

 
 
𝑁𝑢𝐿

𝑁
(1 − 𝜉𝐿

�̂�𝑖−𝑢𝐿

𝛽𝐿
)−1/𝜉𝐿 ,  �̂�𝑖 < 𝑢𝐿，

𝜑(𝑧𝑖) ,  𝑢𝐿 ≤ �̂�𝑖 ≤ 𝑢𝑈，

1 −
𝑁𝑢𝑈

𝑇
(1 + 𝜉𝑈

�̂�𝑖−𝑢𝑈

𝛽𝑈
)−1/𝜉𝑈 ,   �̂�𝑖 > 𝑢𝑈，

 (4) 

where z is the standardized residual series for stock index i ,  ,i L
 and ,i U

 are the lower and upper-tail thresholds, 

respectively; ,i L
N  ( ,i U

N ) is the number of observations below (above) the threshold ,i L
  ,( )i U

; ,i L
 and 

, , , ( ,  )i L i U i U  
 are the scale parameter and the shape parameter of the GPD on the lower (upper) tail, respectively; 

N  is the number of observations; and   is the empirical cumulative distribution function about zi.  

Section 4: Disaster-Driven Contagion Network 

4.1. DISASTER-DRIVEN CONTAGION NETWORK CONSTRUCTION 

A complex network is a collection of nodes linked by edges, and it is always employed to show the complex links 

between financial markets (Demange, 2018b; Gen¸cay et al., 2020; Schuldenzucker et al., 2020b; Huang et al., 2021; 

Cheng et al., 2022; Hurn et al., 2022). In this study, we propose a new disaster-driven financial contagion network 

based on the dynamic mixture copula-EVT model to investigate the characteristics of disaster-driven financial 

contagion. In our disaster-driven financial contagion network, the nodes are considered as 26 stock markets, and the 

edges between nodes represent the existence of disaster-driven financial contagion between the corresponding stock 

markets. The network structure of the edges can also be expressed as an asymmetrical binary matrix E: 

 𝐸 = (

𝑒11 𝑒12  ⋯ 𝑒1𝑛
𝑒21 𝑒22  ⋯ 𝑒2𝑛
 ⋮    ⋮    ⋱  ⋮
𝑒𝑛1 𝑒𝑛2  ⋯ 𝑒𝑛𝑛 

) (5) 

where n  is the number of the stock markets and 
, {0,1}i je  . If there is disaster-driven financial contagion 

between market i  and market j , then 
, 1i je = ; otherwise, 

, 0i je = . To test the existence of disaster-driven 

 

 

4 https://www.mathworks.com/help/econ/specify-gjr-models-using-gjr.html  

https://www.mathworks.com/help/econ/specify-gjr-models-using-gjr.html
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financial contagion and construct the asymmetrical binary matrix E , the dynamic mixture copula-EVT model is 

estimated, and lower tail dependence is used as the measurements of disaster-driven financial contagion. Specifically, 

we formulate a hypothesis to examine the existence of disaster-driven financial contagion as follows: 

 {
𝐻0: �̄�𝑐𝑟𝑖𝑠𝑖𝑠 ≤ �̄�𝑝𝑟𝑒−𝑐𝑟𝑖𝑠𝑖𝑠

𝐻1: �̄�𝑐𝑟𝑖𝑠𝑖𝑠 > �̄�𝑝𝑟𝑒−𝑐𝑟𝑖𝑠𝑖𝑠
 (6) 

where crisis
 and pre crisis −  are the dependence coefficients in the lower tail for the disaster and pre-crisis periods, 

respectively. The Fisher's z-transformation is used to test the hypothesis.  

4.2. NETWORK CENTRALITY MEASURES 

Measuring and analyzing structural metrics in the complex network is important for a deep understanding of financial 

contagion characteristics and systemic importance. We investigate four centrality measures (Wang et al., 2017; Liu et 

al., 2020), which are commonly used in network analysis, degree centrality, clustering coefficient centrality, closeness 

centrality, eigenvector centrality, and betweenness centrality. These centrality measures emphasize different structural 

aspects and represent different points of view. We include the detailed description of the centrality measures in 

Appendix 2. 

Section 5: Data Description and Empirical Analysis 

5.1. DATA AND DESCRIPTIVE STATISTICS 

As our aim is to investigate the financial contagion of disaster events on financial markets, we will need to collect both 

the financial data and the disaster data. We propose to use the Emergency Events Database (EM-DAT) 

(https://public.emdat.be) for the data on disasters and their impacts. EM-DAT contains essential core data on the 

occurrence and effects of over 22,000 mass disasters in the world from 1900 to the present day. 

Larger countries have a higher probability of experiencing a natural event, which will always influence the economic 

and financial markets within the country (Gassebner et al., 2010). We consider the disasters that occurred since 2000 

in the US and analyze the financial contagion of disaster events on the US financial markets. However, as already 

pointed out by Gassebner et al. (2010), many of the disasters recorded in the EM-DAT dataset seemed to cause few 

casualties or damages. It is conceivable that many of the disasters included in EM-DAT may not have any impact on the 

financial markets. For a disaster to have an empirically impact, it should be of a magnitude that can directly cause 

widespread damage to the economy and financial system within a country. For this reason, 10 types of disasters 

including earthquakes, transport accidents, epidemics, miscellaneous accident, storms, extreme temperatures, 

industrial accidents, drought, flood, and wildfires are considered, and the serious disaster event which caused the 

greatest loss on economic or the greatest number of people reported affected or killed in each types of disasters is 

used as the analyzed sample. The major disaster events considered are the 2001 earthquake, 2001 transport accident 

(Airbus-300), 2002 West Nile Fever, 2003 fire accident, 2005 Hurricane Katrina, 2006 heat wave, 2010 oil spill event oil 

platform “Deepwater Horizon”, 2012 drought, 2016 flood, and 2018 Camp fire, which are described in Table 2. 

  

https://public.emdat.be/
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Table 2 

DISASTER EVENTS 

Rank Disaster Type Event Notation Date Number of Casualties Damages 
(Billion) 

1 Earthquake Earthquake Earth Feb. 28, 
2001 

1 died, 400 affected 200 

2 Transport accident Airbus-300 Airb Nov. 12, 
2001 

265 died, 16 affected / 

3 Epidemic West Nile Fever WNF Jul. 9, 2002 214 died, 3523 affected / 

4 Miscellaneous 
accident 

Nightclub fire Nigh Feb.20, 2003 100 died, 150 affected / 

5 Storm Hurricane 
Katrina 

Hurr Aug. 29, 
2005 

656 died, 27 million 
affected 

125 

6 Extreme temperature Heat wave Heat Jul. 14, 2006 164 died / 

7 Industrial accident Oil spill Oils Apr. 20, 
2010 

11 died, 17 affected 20 

8 Drought Drought Drou Jun. 1, 2012 / 20 

9 Flood Flood Flood Aug.9, 2016 13 died, 70000 affected 10 

10 Wildfire Camp fire Camp Jun.1, 2018 88 died, 2500 affected 16.5 

Notes: The event name of oil spill is called Oil platform Deepwater Horizon. “/” Data are not available. 

As for the US financial market, we consider 30 sector indices of the US stock market before and after the 

aforementioned events as the sample. The 30 sector indices are listed in Table 3. Furthermore, we select six 

months before and after each major disaster event as the sample period. The daily average value-weighted 

returns in the 30 sector indices are obtained from Kenneth R. French’s 

database)http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  
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Table 3 

SECTOR NAME 
Sector Notation Sector Notation Sector Notation 

Apparel Appa Consumer Conu Other Other 

Automobiles Auto Electrical Elec Paper Paper 

Beer Beer Fabrication Fabr Retail Rtail 

Books Books Financial Fina Services Serv 

Business Busi Food Food Smoke Smoke 

Carry Carry Games Game Steel Steel 

Chemicals Chem Healthcare Heal Textiles Text 

Coal Coal Meals Meal Transportation Tran 

Communication Comm Mines Mine Utilities Util 

Construction Cons Oil Oil Wholesale Whol 

Notes: The sector “other” includes sanitary services, steam and air conditioning supplies, irrigation systems, and cogeneration. 

Table 4 presents the descriptive statistics for daily returns of 30 sectors from the period of January 1, 2000 to 

November 30, 2021. Note that the communication sector has the lowest mean with 0.019, while the coal sector has 

the highest standard deviations. These descriptive statistics indicate that there are lower returns for the 

communication sector, while the coal sector is more volatile. Besides, the Jarque-Bera statistics for each sector are 

significant at the 1% level that rejects the null-hypothesis of Gaussian distribution for the series. In addition, the 

augmented Dickey Fuller (ADF) test results indicate that all the return series are stationary at the 1% confidence level. 

Finally, the Ljung-Box Q (LBQ) and ARCH tests show the presence of autocorrelation and heteroscedasticity at the 10% 

significance level. Thereby, we can use the copula-EVT model to estimate the upper and lower tail dependence. 
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Table 4 

DESCRIPTIVE STATISTICS OF SECTOR RETURN 
Sector Mean Std Jarque-Bera ADF LBQ ARCH 

Food 0.039 1.015 21236.804∗∗∗ -80.230∗∗∗ 49.795∗∗∗ 1288.406∗∗∗ 

Beer 0.041 1.139 35321.088∗∗∗ -79.984∗∗∗ 49.557∗∗∗ 1554.526∗∗∗ 

Smoke 0.069 1.478 27658.760∗∗∗ -75.888∗∗∗ 4.488 508.670∗∗∗ 

Games 0.057 1.809 8033.230∗∗∗ -72.057∗∗∗ 18.133∗∗∗ 1052.249∗∗∗ 

Books 0.021 1.533 28290.447∗∗∗ -75.485∗∗∗ 6.239 819.687∗∗∗ 

Consumer 0.034 1.114 97411.221∗∗∗ -80.474∗∗∗ 71.435∗∗∗ 488.008∗∗∗ 

Apparel 0.063 1.603 10131.415∗∗∗ -74.634∗∗∗ 15.166∗∗∗ 919.105∗∗∗ 

Healthcare 0.041 1.159 9819.357∗∗∗ -77.830∗∗∗ 29.863∗∗∗ 1288.428∗∗∗ 

Chemicals 0.048 1.567 11642.399∗∗∗ -78.038∗∗∗ 22.400∗∗∗ 1296.260∗∗∗ 

Textiles 0.047 2.011 41863.747∗∗∗ -71.557∗∗∗ 17.271∗∗∗ 743.084∗∗∗ 

Construction 0.050 1.707 14933.129∗∗∗ -74.532∗∗∗ 9.688∗ 1381.355∗∗∗ 

Steel 0.036 2.276 7917.513∗∗∗ -75.507∗∗∗ 6.263 1225.890∗∗∗ 

Fabrication 0.057 1.737 8650.066∗∗∗ -77.468∗∗∗ 18.915∗∗∗ 1411.614∗∗∗ 

Electrical 0.043 1.681 11785.652∗∗∗ -77.106∗∗∗ 16.298∗∗∗ 1225.072∗∗∗ 

Automobiles 0.057 1.950 9985.035∗∗∗ -73.941∗∗∗ 24.998∗∗∗ 1042.828∗∗∗ 

Carry 0.051 1.624 34977.344∗∗∗ -74.395∗∗∗ 14.779∗∗ 1229.939∗∗∗ 

Mines 0.053 2.008 9477.118∗∗∗ -74.725∗∗∗ 10.136∗ 1344.722∗∗∗ 

Coal 0.050 3.214 5364.99∗∗∗ -72.504∗∗∗ 13.680∗∗ 981.184∗∗∗ 

Oil 0.042 1.808 35651.4∗∗∗ -79.702∗∗∗ 36.111∗∗∗ 1143.756∗∗∗ 

Utilities 0.043 1.214 55949.785∗∗∗ -80.232∗∗∗ 50.310∗∗∗ 1667.858∗∗∗ 

Communication 0.019 1.349 21246.371∗∗∗ -77.967∗∗∗ 17.099∗∗∗ 1214.724∗∗∗ 

Services 0.040 1.532 10360.974∗∗∗ -79.360∗∗∗ 31.411∗∗∗ 1062.032∗∗∗ 

Business 0.045 1.833 10394.745∗∗∗ -77.120∗∗∗ 16.410∗∗∗ 833.049∗∗∗ 

Paper 0.036 1.281 8857.279∗∗∗ -79.107∗∗∗ 27.516∗∗∗ 1246.627∗∗∗ 

Transportation 0.049 1.466 11667.164∗∗∗ -76.967∗∗∗ 13.616∗∗∗ 922.494∗∗∗ 

Wholesale 0.041 1.271 15416.252∗∗∗ -77.337∗∗∗ 10.890∗ 1541.389∗∗∗ 

Rtail 0.047 1.321 8007.007∗∗∗ -77.227∗∗∗ 24.306∗∗∗ 777.445∗∗∗ 



  16 

 

Copyright © 2022 Society of Actuaries Research Institute 

Meal 0.055 1.300 36040.972∗∗∗ -76.520∗∗∗ 8.983 1141.605∗∗∗ 

Financial 0.042 1.721 39267.083∗∗∗ -82.653∗∗∗ 80.039∗∗∗ 1200.03∗∗∗ 

Other 0.026 1.406 18210.155∗∗∗ -78.011∗∗∗ 28.087∗∗∗ 990.584∗∗∗ 

 

5.2. EMPIRICAL ANALYSIS: DISASTER-DRIVEN FINANCIAL CONTAGION DETECTION 

As previously discussed, we first use the AR-GJR-EVT model to estimate the marginal distribution. Then the 

suitable copula will be selected to estimate the dependence between any two sectors. Considering that the 

lower tail dependence and upper tail dependence are the main measurements in this study, the copula 

functions that describe both the upper and lower tail dependence are preferred. Therefore, we use four 

dynamic mixture copulas, dynamic Clayton-Gumbel, dynamic Clayton-survival Clayton, dynamic Gumbel–

survival Gumbel, and dynamic Symmetric–Joe Clayton (DSJC), to measure lower tail and upper tail 

dependence. For each pair of sectors, the four dynamic mixture copula-EVT models are estimated using the 

maximum likelihood estimation method. According to the Akaike information criterion, the best fitting 

copula is selected and the tail dependence coefficients for each pair of sectors are estimated.  

We then use the 10% significance level to verify the existence of disaster-driven financial contagion and then 

construct the disaster-driven financial contagion network as shown in Figure 5 which provides a visual 

expression of disaster-driven financial contagion between any two sectors in each disaster event. As the 

existence of financial contagion would make sectors more exposed to risk and weaken the advantage of 

portfolio diversification, the result has great practical importance for investors to make decisions regarding 

portfolio selection.  

Figure 5 

DISASTER-DRIVEN FINANCIAL CONTAGION NETWORK AMONG SECTORS IN THE DISASTER EVENTS 

 

  

(1) Earthquake (b) Airbus-300 

  

(c) West Nile Fever (d) Nightclub fire 
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(e) Hurricane Katrina (f) Heat wave 

  

(g) Oil spill (h)Drought 

  

(i) Flood (j) Camp fire 

 

5.3. CENTRALITY ANALYSIS OF DISASTER-DRIVEN FINANCIAL CONTAGION 

Figure 6 shows the network density of the disaster-driven financial contagion network for each disaster event. It 

clearly shows that the network density changes under different types of disaster events. For instance, the network 

densities for West Nile Fever (WNF) and oil spill (Oils) events are the highest and greater than 0.9, while the drought 

(Drou) event has the smallest network density less than 0.4. These indicate that the West Nile fever and oil spill 

events cause severe damage to these sectors and are the easiest to drive financial contagion between sectors, while 

the drought event has the lowest influence on the sectors, consistent with the fact that the drought tends to be 

normalizing due to its high frequency, long duration, and wide range of influence. 
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Figure 6 

NETWORK DENSITY FOR EACH DISASTER EVENT 

 

Note: The corresponding full name for each disaster event is presented in Table 3. 

We now investigate centrality measures to quantify the topological features of the disaster-driven financial 

contagion network. Figure 7 demonstrates the values of the degree centrality for the sectors during the ten disaster 

events, which reveals different responses of different sectors to systemic risks under different types of disaster 

events. We also include figures of all four centrality measures (degree centrality, closeness centrality, betweenness 

centrality, eigenvector centrality) in Appendix 2. From Figure 7, we can see that with the darkest color in the first 

column, steel and auto sectors have the highest values for the degree centrality measure in the earthquake (Earth) 

event, while these values for the oil sector in the second column (Airbus-300 (Airb) event) are the highest. This 

shows that the steel and automobile sectors are critical nodes of risk contagion network when the earthquake event 

occurs. They are seriously influenced and the financial contagion from them is faster and stronger, while the oil 

sector has a similar importance in the Airbus-300 event and plays an important role for the spread of financial 

contagion. To prevent the spread of systemic risk contagion, it is necessary to implement dynamic supervision 

according to the nature of disasters. On the other hand, the values of the degree centrality measure are 0 for the 

textile sector in the earthquake, for the beer sector in the oil spill, and for the book sector in the flood. This 

phenomenon confirms that the textile, beer, and book sectors will not be influenced by corresponding disaster 

events, and they can be used as the principal risk diversifiers. Sectors with higher centrality measures should be put 

under special supervision and those with the value 0 of centrality measures should be considered as the risk 

diversifiers.  
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Figure 7 

DEGREE CENTRALITY VALUES FOR THE NODES OF NETWORKS.  

 

Note: The areas with darker blue in the map represent sectors with stronger centrality. The corresponding full names for each sector and 
disaster event are presented in Table 2 and Table 3 

5.4. FINANCIAL CONTAGION CHANNEL DETECTION 

We next turn to determine the transmission channels for these contagious sectors for each disaster event. As 

discussed previously, if the co-movement is stronger in extreme market downturns than in extreme market upturns, 

the financial contagion is driven by the wealth effect due to the presence of liquidity constraints during extreme 

market downturns. Conversely, if crises spread due to portfolio rebalancing behavior, co-movements are expected 

to be equal or weaker in extreme market downturns than in extreme market upturns. Similar to the work of Jayech 

(2016) and Horta et al. (2016), we use the mean lower tail dependence coefficient and mean upper tail dependence 

coefficient obtained from the dynamic mixture copula-EVT model to capture the dependence for extreme market 

downturns and upturns. Therefore, the hypothesis to check whether the financial contagion is caused by the wealth 

effect or by portfolio rebalancing can be formulated as: 
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 and 
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 are the mean lower and upper tail dependence coefficients during the 

 disaster period for all pairs of contagious markets, respectively. 
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Fisher’s z-transformation is used to test this hypothesis, the results for the contagion channels 

in the disaster events are provided in Table 5. The z-statistic is positive and significant at 

the 5% level in all disaster events except in the West Nile fever event. This indicates that the financial contagion 

between sectors in these disaster events is spread through the wealth effect, except the spread through portfolio 

rebalancing in the West Nile fever event. This finding shed light on the transmission mechanism of the financial 

contagion driven disaster events between sectors and is helpful for risk managers to prevent the spread of risk 

driven by disaster events. To avoid financial contagion driven by the West Nile fever event, risk managers can 

impose limits on capital movements to mitigate the effect of financial contagion, since the risk from the West Nile 

fever event is spread through rebalancing behavior. Moreover, risk managers can provide timely support for 

struggling financial sectors to reduce investors' perceived risk to avoid the spread of financial contagion driven by 

the other disaster.  

Table 5 

FINANCIAL CONTAGION CHANNELS 

Disaster U

disaster
 

L

disaster
 

z-statistic p Conclusion 

 Earthquake 0.141  0.494  3.130  0.001  Wealth effect 

Airbus-300 0.161  0.438  2.409  0.008  Wealth effect 

West Nile fever 0.307  0.372  0.583  0.280  Portfolio Rebalancing 

Nightclub fire 0.257  0.459  1.830  0.034  Wealth effect 

Hurricane Katrina 0.259  0.459  1.812  0.035  Wealth effect 

Heat wave 0.152  0.508  3.208  0.001  Wealth effect 

Oil spill 0.203  0.582  3.616  0.000  Wealth effect 

Drought 0.223  0.484  2.550  0.005  Wealth effect 

Flood 0.160  0.478  2.812  0.002  Wealth effect 

Camp fire 0.059  0.558  4.449  0.000  Wealth effect 

 

5.5. DISCUSSION ON DISASTER-DRIVEN EMPIRICAL ANALYSIS 

Financial contagion driven by disasters has a damaging impact on portfolio diversification. Our study will be of a 

certain interest to investors and policymakers as it allows a better understanding of the disaster-driven financial 

contagion between sectors. According to our contagion results, both the sector characteristics and the nature of the 

disasters are important to investors wishing to utilize the safest sectors in their portfolios. ``Thematic'' portfolios 

that focus on specific sectors might turn out to be particularly risky for sectors that are known to be particularly 

sensitive to financial contagion driven by disasters, such as automobile and wholesale sectors. On the other hand, 

the investor should give a specific focus on the West Nile fever and oil spill events as it is easier to spread financial 

contagion across sectors. Moreover, the investors also can effectively predict the future trend of the market by 

analyzing the contagion characteristics of the sectors in each type of disaster event, which contributes to their asset 

allocation and investment decisions. The sectors themselves can maintain the stable growth of market value by 

improving innovation ability and realizing industrial transformation and upgrading. Finally, our results also provide 
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important insights for risk managers to forestall and defuse the spread of financial contagion according to the 

analysis of the contagion channel on different types of disaster events. 

Section 6: Conclusion 

Disasters have significant economic and financial effects in which they occur and would increase investors' risk 

perception that spreads the disaster risk (Huang et al., 2022). In this paper, we investigate the contagion effect of 

several types of disaster events since 2000 on the US sectors. We utilize the dynamic mixture copula-EVT model and 

the complex network approach to detect the existence of disaster-driven financial contagion, quantitatively analyze 

the contagion characteristics, and determine the contagion channel during these disaster events. 

Our results confirm the existence of financial contagion during all disaster events and show heterogeneous 

responses of different sectors to different types of disaster events. The West Nile fever and oil spill events are found 

to be the easiest to drive financial contagion, while the drought disaster has the least influence on the markets. 

Moreover, the automobile and wholesale sectors are the most affected by disasters and are found to be highly risky. 

They are the most important sectors in the disaster-driven financial contagion network and the contagion from the 

two sectors is the easiest, fastest, and strongest in the disaster events. In addition, we also find that the textile 

sector in an earthquake, the beer in an oil spill, the beer, financial, and meal sectors in a drought, and the book 

sector in a flood are immune to financial contagion and therefore are capable to diversify the tail risk. This finding 

provides essential insights for investors to design risk hedging strategies during disaster events. 

Finally, the financial contagion between sectors in these disaster events is found to be spread through the wealth 

effect, except the financial contagion in the West Nile fever event that is spread through the portfolio rebalancing. 

To limit the contagion associated with wealth constraints, the international financial risk managers could provide 

timely support to the struggling financial institutions so as to reduce investors' perceived risk. Also, policymakers 

and experts may reevaluate the global financial system regulation and take appropriate reactions to limit the 

recession. Our findings shed light on the transmission mechanism of the disaster event on the sectors. 

This research focuses on the disaster-driven financial contagion among the sectors in the US stock market based on 

the 10 types of disaster events that happened in the US. For future research, the disaster events can be expanded to 

include the monetary policy event, virus event, bank default event, and terrorist attack events in other major 

economies, such as the UK, China, and Japan. Moreover, we can further investigate the disaster-driven financial 

contagion across other important asset classes including foreign exchange, credit derivatives, and energy markets, 

and the impact of macroeconomics such as financial links on the disaster-driven financial contagion. 

During the disaster-driven financial turmoil, it is possible to observe the flight-to-quality phenomenon occurring 

when investors sell what they perceive to be higher-risk investments and purchase perceived safe haven 

investments in a market crash. Additionally, the increasing cost of natural disasters is also accomplished with the 

increasing importance of environmental, social, and governance (ESG) investment as a potential new “safe-haven” 

asset. In future work, we could also use the diagonal tail dependence as the measure of potential flight-to-quality, 

i.e., the negative extreme dependence across markets during the financial contagion and the role of ESG investing in 

such contagion.  

  

https://soa.qualtrics.com/jfe/form/SV_e2KYFBjF87hLvz8
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Appendix 1 

Now that we have different types of copulas that can capture different types of tail dependences, we can introduce 

the unified version of copulas that can handle both upper tail and lower tail dependence as well as independence in 

one functional form, which is called dynamic mixture copula. We select four dynamic mixture copulas, dynamic 

Clayton-Gumbel, dynamic Clayton-survival Clayton, dynamic Gumbel–survival Gumbel, and dynamic Symmetric–Joe 

Clayton (DSJC), to measure tail dependence. The copula function C and the corresponding lower and upper tail 

dependence coefficients regarding the four dynamic mixture copula-EVT models are detailed as follows. 

The dynamic Clayton-Gumbel copula (CDCG) is expressed as 

 ( , ; , ) ( , ; ) (1 ) ( , ; ),DCG C G DC C DG GC u v k k C u v k C u v k = + −  (8) 

where ω is the weight parameter with ω ∈ [0,1], and CDC and CDG are the dynamic Clayton copula and dynamic 

Gumbel copula, respectively. The evolution process of the dependence parameters kC and kG in Eq. (5) are defined as 

 𝑘𝑡
𝐶  = (𝑤1 + 𝛽1𝑘𝑡−1

𝐶 + 𝛼1 ⋅
1

10
∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|
10
𝑖=1 )

2

, (9) 

 𝑘𝑡
𝐺  = 1 + (𝑤2 + 𝛽2𝑘𝑡−1

𝐺 + 𝛼2 ⋅
1

10
∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|
10
𝑖=1 )

2

, (10) 

where 
 )0,C

tk  +
 and 

 )1,G

tk  +
. The dependence coefficients of the lower tail and upper tail at time t  are 

correspondingly given by: 

1/
2

C
tkL

t  −
= 

, 

1/
(1 ) (2 2 )

G
tkU

t = −  −
. 

The dynamic Clayton-survival Clayton copula (CDCSC) is expressed as 

 ( , ; , ) ( , ; ) (1 ) ( , ; ),DCSC C SC DC C DSC SCC u v k k C u v k C u v k = + −  (11) 

where CDC and CDSC are the dynamic Clayton copula and dynamic survival Clayton copula, respectively. The 

evolution process of the dependence parameters kC and kSC in Eq. (8) are defined as 

 𝑘𝑡
𝐶 = (𝑤1 + 𝛽1𝑘𝑡−1

𝐶 + 𝛼1 ⋅
1

10
∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|
10
𝑖=1 )

2

, (12) 

 𝑘𝑡
𝑆𝐶 = (𝑤2 + 𝛽2𝑘𝑡−1

𝑆𝐶 + 𝛼2 ⋅
1

10
∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|
10
𝑖=1 )

2

, (13) 

where 𝑘𝑡
𝐶  ∈ [0, + ∞) and 𝑘𝑡

𝑆𝐶 ∈ [0, + ∞). The dependence coefficients of the lower and upper tails at time t are 

accordingly given by: λt
L = ω · 2−1/𝑘𝑡

𝐶, λt
U = (1 − ω) · 2−1/ 𝑘𝑡

𝑆𝐶. 

The dynamic Gumbel–survival Gumbel copula (CDGSG) is expressed as 

 ( , ; , ) ( , ; ) (1 ) ( , ; ),DGSG SG G DSG SG DG GC u v k k C u v k C u v k = + −  (14) 

where 
DSGC  and 

DGC  are the dynamic survival Gumbel copula and dynamic Gumbel copula, respectively. The 

evolution process of the dependence parameters 
SGk  and 

Gk  in Eq. (11) are defined as 
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where 
 )1,SG

tk  +
 and 

 )1,G

tk  +
. The dependence coefficients of the lower and upper tails at time t  are 

accordingly given by: 

1/
(2 2 )

SG
tkL

t =  −
, 

1/
(1 ) (2 2 )

G
tkU

t = −  −
. 

The DSJC copula (CDSJC) is expressed as 

 𝐶𝐷𝑆𝐽𝐶(𝑢, 𝑣; 𝜆𝑈 , 𝜆𝐿) = 𝜔𝐶𝐽𝐶(𝑢, 𝑣; 𝜆𝑈 , 𝜆𝐿) + (1 − 𝜔)(𝐶𝐽𝐶(1 − 𝑢, 1 − 𝑣; 𝜆𝑈 , 𝜆𝐿) + 𝑢 + 𝑣 − 1), (17) 

where 
DJCC  is the dynamic Joe Clayton copula. The dynamic evolution equations of the tail dependence 

coefficients 
U  and 

L  in Eq. (14) are accordingly specified as 

 𝜆𝑡
𝑈 =∧ (𝑤1 + 𝛽1𝜆𝑡−1

𝑈 + 𝛼1 ⋅
1

10
∑ |𝑢𝑡−𝑖 − 𝑣𝑡−𝑖|
10
𝑖=1 ), (18) 

where 
1( ) (1 )xx e − = + . 

We also construct variations of the dynamic mixture copulas to model the upper-lower and lower-upper tail 

dependence through the 90-degree counterclockwise rotation of dynamic mixture copulas. The best-fitting dynamic 

mixture copula is selected based on the Akaike information criteria and Bayesian information criteria.  

Figure 4 

ILLUSTRATION OF ROTATION OF DYNAMIC MIXTURE COPULAS 
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Appendix 2 

(1) Degree centrality. The degree of a node is defined as the number of all edges connected to the nodes. In terms 

of the adjacency matrix E with elements, the node degree indexed i  can be formalized as: 
,

1,

n

i i j

j j i

D e
= 

= 
. The 

sector with a higher degree is more likely to exhibit financial contagion.  

 

(2) Closeness centrality. Closeness centrality measures the speed of the information flow from a given node to other 

nodes. It is defined as the normalized inverse of the sum of the topological distances. For a node i with the shortest 

path between nodes i and j, the closeness centrality of node i is formalized as 

1
( )

( , )
i j

N
CC i

d i j


−
=


. The sector 

with larger closeness centrality is faster to exhibit financial contagion in the network. 

(3) Betweenness centrality. Betweenness centrality provides a way to detect the influence degree of a node on the 

information flow. In the case of betweenness centrality, a node is well connected if it is located on many of the 

shortest directed paths between other nodes. The betweenness centrality of node i is formulated as 

,

( ) /i jk jk

j k

BC g i g=
,where 

i j k 
, jkg

 is the number of shortest paths connecting nodes 
j

 and k , and 

( )jkg i
 is the number of shortest paths connecting nodes 

j
 and k  and node i  is on.  

(4) Eigenvector centrality. Eigenvector centrality assesses a node's systemic importance in the network. In terms of 

the adjacency matrix E with the largest eigenvalue  , a node's eigenvector 

centrality indexed i is defined as the sum of neighboring node j's eigenvector centralities and can be formalized as: 

1
( ) ( )ij

j

EC i e EC j


= 
. The financial market with higher eigenvector centrality implies a greater contagion 

strength in the network. 
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From the mean values of the four centrality measures in the last row of the four sub-figures, the financial contagion 

is easier to spread during the West Nile fever and oil spill events, while that is stronger and faster during the 

nightclub fire and hurricane Katrina. On the other hand, the mean values of the four centrality measures in the last 

column show that the automobile and wholesale sectors are mostly affected by the ten types of disaster events, 

they are the easiest to spread financial contagion, and the contagion for them is the fastest and strongest. The beer 

and carry sectors suffer a smaller impact and show risk diversification effects. For this reason, to prevent systemic 

risk contagion driven by disaster events, it is necessary to strengthen the supervision of the automobile and 

wholesale sectors. Overall, our results verify that the automobile and wholesale sectors are the most affected, while 

the beer and carry sectors are relatively safe from financial contagion driven by disasters. 
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