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Abstract Rotation of the age pattern of mortality decline refers to two phenomena
supposedly occurring simultaneously: decelerating mortality decreases at younger
ages and accelerating improvements in elderly populations. Several researchers have
documented these processes in the literature, especially in highly developed coun-
tries.
After a concise summary of the most relevant sources, a simple, largely data-driven
methodology with few assumptions is used to empirically examine the rotation phe-
nomenon in historical mortality datasets of the G7 countries1, using United Nations
data from the period between 1950 and 2015 for both genders.
In line with earlier findings about European Union member states, my results indicate
that the presence of rotation is far from universal, even in highly developed countries.
There is strong evidence of rotation in both male and female populations only in the
case of Japan, and no evidence of rotation whatsoever in US data. Therefore, it is nec-
essary to exercise appropriate caution before applying forecasting procedures such as
the variant of the popular Lee–Carter model including rotation.
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1 Introduction

Several mortality researchers have noted a historical pattern of diminishing mortal-
ity decline at relatively younger ages, accompanied by accelerating improvements
at more advanced ages (Christensen et al. [2009]). Li–Lee–Gerland [2013] call this
phenomenon the “rotation” of the age pattern of mortality decline, which is captured
by a counterclockwise rotation in Figure 1.
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Fig. 1 Rotation of the age pattern of mortality decline (stylized illustration, source: Vékás [2019])

A somewhat simplistic explanation of the rotation is that longevity increases used
to be driven by rapidly declining infant and childhood mortality rates (e.g., due to
widespread vaccination programs and improved child nutrition) – and to some ex-
tent, by improvements in middle-aged mortality –, where spectacular advances are
less and less possible, but on the other hand, better medications, nutrition and lifestyle
choices for the elderly and costly medical procedures to extend life at higher ages are
increasingly available.2 It should be noted that the investigation of the causes of the
rotation falls outside the scope this paper.

2 Li–Lee–Gerland [2013] argue that the rotation is more prevalent in developed countries characterized
by low mortality, which is consistent with this explanation. Elderly mortality itself is far from homoge-
neous, and this general description may hold for some age groups and countries and not for others.
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The practical significance of the topic lies in the fact that ignoring rotation in long-
term mortality forecasts leads to the systematic underestimation of the old-aged pop-
ulation, which exacerbates longevity risk. These underestimation errors have a cumu-
lative nature and may be suprisingly severe in the long run (see e.g. Vékás [2018]).
This may lead to serious financial consequences for life and health insurers as well
as pension schemes.
Mortality forecasting techniques play a key role in demography, life insurance and
pensions. Due to the immense and ever-growing literature on these methods (see
e.g. Booth–Tickle [2008] and Pitacco et al. [2009] for comprehensive reviews), an
exhaustive overview is not attempted here, but instead, this paper will only focus on
sources related to the rotation phenomenon.
The famous paper of Lee–Carter [1992] has probably been the most important break-
through in the history of mortality forecasting. The authors model the logarithm of
the central mortality rate at age x and calendar year t as

logmxt = ax +bxkt + εxt , (1)

where ax represents the mean of the observed logarithmic central mortality rates for
a given age, the time series kt captures the evolution of the overall level of mortality
across time, and bx denotes the speed of mortality decline for every age.
As the parameters bx do not depend on time, and the time series kt is overwhelmingly
assumed to follow a linear pattern (Tuljapurkar et al. [2000]), age-specific mortality
declines at a constant speed in the Lee–Carter model, and the rate of improvement
only depends on the age of the individual in question. The latter implicit assump-
tion of the model has attracted intense scrutiny by the scientific community (see
e.g. Kannisto et al. [1994], Horiuchi–Wilmoth [1995], Lee–Miller [2001], Carter–
Prskawetz [2001], Rau et al. [2008] and Christensen et al. [2009]).
Several approaches have been developed to address this inflexibility of the classic
Lee–Carter framework. Notably, Li–Lee–Gerland [2013] have incorporated the ro-
tation into the original procedure3, where instead of Equation (1), they model the
logarithms of central mortality rates as

logmxt = ax +B(x, t)kt + εxt . (2)

The parameters B(x, t) in Equation (2) capture the rotation phenomenon by converg-
ing smoothly across time from their initial levels corresponding to bx in Equation (1)
to their assumed ultimate levels, as life expectancy at birth advances from an initial
threshold to an upper ceiling (the authors propose 80 and 102 years, respectively) in
the original model described by Equation (1). It is important to note that the authors
recommend their model for low-mortality countries and very long forecasting hori-
zons, and knowledge of the estimated parameters of the original Lee–Carter model
is sufficient to fit the rotated model to data. Ševčı́ková et al. [2016] and Dion et al.
[2015] recently incorporated this technique into population projections for the United
Nations Population Division and Statistics Canada, respectively.
Another solution is to capture the rotation by modeling the evolution of age-specific

3 Li–Gerland [2011] present an earlier, not fully developed version of this approach.
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mortality improvement rates instead of mortality rates, as proposed by Haberman–
Renshaw [2012] and Mitchell et al. [2013], among others. Bohk-Ewald–Rau [2017]
follow this line in a Bayesian framework capable of combining mortality trends
of different countries. These approaches are data-driven, as opposed to Li–Lee–
Gerland [2013], who impose a somewhat arbitrary process on age-specific mortality
improvement rates, as they are of the opinion that empirical evidence of the rotation
is too subtle to govern forecasts.
Yet another alternative is the approach of Booth et al. [2002] and Hyndman–Ullah
[2007], who recommend using more than one interaction of age- and time-dependent
parameters in Equation (1) in order to capture the non-constant evolution of age-
specific mortality improvement rates, which produces so-called multi-factor mortal-
ity forecasting models. Bongaarts [2005] proposes a shifting logistic model to de-
scribe the transition in the age pattern of mortality decline. Li–Lee [2005], Cairns
et al. [2011], Russolillio et al. [2011] and Hyndman et al. [2013] model mortality
rates of several populations in a coherent framework. In a multi-population setting,
age-specific rates of mortality improvement are not necessarily constant due to in-
teractions among different populations. Further recent developments in this field are
described by de Beer–Janssen [2016] and Li–Li [2017].
Based on data from 28 European Union member states and the period between 1950
and 2015, Vékás [2019] concludes that the rotation only took place in a few member
states, with only 11 of them displaying statistically significant evidence for rotation at
the 5% level in case of both genders, while apparently no rotation at all (or even on the
contrary, an anti-rotation) in many others. Additionally, the rotation was more preva-
lent in female than male populations. Contrary to Li–Lee–Gerland [2013], Vékás
[2019] argues that the presence and strength of the rotation phenomenon appear to be
largely unrelated to life expectancies at birth in the European Union as a whole: pos-
itive and negative cases appear among both low- and high-mortality countries, and
the strength of the assocation between these two variables is apparently statistically
negligible. On the other hand, there is significant evidence for a positive correlation
between degrees of rotation and life expectancies at birth among member states that
used to belong to the Eastern Bloc during the Cold War.
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2 Data and methods

2.1 Demographic data

The statistical analysis presented in this paper was performed in R (R Development
Core Team [2008]) using mortality rates, life expectancies at birth and population
counts of the Group of Seven, which consists of Canada, France, Germany, Italy,
Japan, the United Kingdom and the United States of America These indicators are
available for both genders, all G7 countries, 22 age groups (0, 1-4, 5-9, 10-14, . . . ,
95-99 and 100 years and older) and 13 calendar periods (1950-1955, 1955-1960,
. . . 2010-2015).4 The grouping of ages and calendar years smooths the data (akin
to moving averages) so that they contain less undesirable random fluctuations. All
data are the courtesy of the UN World Population Prospects 2017 ([United Nations
[2018]]).
Mortality improvement rates pertaining to age group x ∈ {x1,x2, . . . ,x22}, calendar
period t ∈ {1,2, . . . ,12}, country c ∈ {c1,c2, . . . ,c28} and gender g ∈ {M,W}, de-
noted by rcg

xt and computed as

rcg
xt =− log

(mcg
x,t+1

mcg
xt

)
will be used throughout this paper instead of the corresponding mortality rates mcg

xt .
Based on these quantities, acceleration rates β

cg
x may be computed for every age

group x ∈ {x1,x2, . . . ,x22} and country c ∈ {c1,c2, . . . ,c7} as well as both genders
g ∈ {M,W}. Long-term mean acceleration is measured by the slope of the linear
trend of mortality improvement rates (Vékás [2019]):

β
cg
x =

∑
12
t=1 (r

cg
xt − r̄cg

x )(t− t̄)

∑
12
t=1 (t− t̄)2

. (3)

β
cg
x in Equation (3) may be interpreted as the mean growth of the mortality improve-

ment rate for age group x, country c and gender g over a 5-year period assuming a
linear trend. To determine the degree to which rotation has taken place (if at all) for a
given country and gender, it has to be examined whether the acceleration of mortality
decline has been more pronounced at advanced ages than in the earlier and mid-
dle stages of life (possibly characterized by deceleration). Following Vékás [2019],
Spearman’s ρ (Pinto da Costa [2015]), weighted by mean population counts over the
period 1990-2015, is used for this purpose:

ρ
cg =

∑
22
i=1 Pcg

xi (rank(β cg
xi )−µcg)(i−νcg)√

∑
22
i=1 Pcg

xi (rank(β cg
xi )−µcg)2

√
∑

22
i=1 Pcg

xi (i−νcg)2

((c,g) ∈ {c1,c2, . . . ,c7}×{M,W}),

(4)

where

µ
cg =

∑
22
i=1 Pcg

xi rank(β cg
xi )

∑
22
i=1 Pcg

xi

and ν
cg =

∑
22
i=1 Pcg

xi i

∑
22
i=1 Pcg

xi

.

4 Every period spans 5 years and starts and ends on July 1 of the respective years.
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Additionally, the one-sided z-test (Pinto da Costa [2015]) with

H0 : ρ
cg ≤ 0, H1 : ρ

cg > 0 ((c,g) ∈ {c1,c2, . . . ,c7}×{M,W}). (5)

is used to test whether degrees of rotation are significantly different from zero.

3 Conclusions

Figures 2 and 3 display degrees of rotation in male and female populations of the
G7 countries, based on Equation (4), as well as the critical values at the 5% and 1%
significance levels of the hypothesis test defined by Equation (5). Table 1 in the Ap-
pendix contains the exact numeric values of ρcg as well as the p-values of the above
test by country and gender.
Evidence for rotation is significant at the 5% level in male populations of Canada,
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Fig. 2 Degrees of rotation (measured by Spearman’s ρ) by country for male populations. The dashed and
dotted-dashed lines denote the one-sided critical values at the 5% and 1% significance levels, respectively.

Germany, Italy and Japan, as well as in female populations of Italy, Japan and the
United Kingdom. This suggests that rotation of the age pattern of mortality decline
was far from universal in the G7 countries between 1950 and 2015, similarly to the
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Fig. 3 Degrees of rotation (measured by Spearman’s ρ) by country for female populations. The dashed and
dotted-dashed lines denote the one-sided critical values at the 5% and 1% significance levels, respectively.

findings of Vékás [2019] about European Union member states.5

Apparently, no statistically significant rotation took place among either males or fe-
males in France and the United States of America. Results are even more mixed and
provide less evidence of the rotation if a 1% significance level or the Bonferroni ad-
justment are applied. Only Japan has strong evidence of rotation for both genders at
the 1% significance level.
As the rotation phenomenon may jeopardize the reliability of mortality forecasts for
pension schemes as well as life and health insurers, which may lead to severe finan-
cial consequences (Vékás [2018]), it is essential to be aware of the possibility of its
presence and apply appropriate forecasting procedures that take it into consideration,
whenever necessary.
As the immensely popular Lee–Carter [1992] mortality forecasting model ignores
rotation, in some cases, it is advisable to use the particularly promising Li–Lee–
Gerland [2013] variant of the original method, but if and only if there is enough
evidence for rotation in the data series. The methodology and results presented in
this paper may facilitate the choice of the appropriate forecasting technique in actu-
arial practice.

5 A stricter testing framework might take into account that 2 · 7 = 14 null hypotheses are being tested
simultaneously. Hence applying the popular Bonferroni adjustment for controlling the familywise error
rate (see Frane [2015] for a critical discussion), the p-values below 0.05/14 ≈ 0.0036 imply statistical
significance at the 5% level.
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4 Appendix

Men Women

Country ρ p-value ρ p-value

Canada 0.405 0.039 * 0.268 0.13
France -0.397 0.958 -0.072 0.617

Germany 0.475 0.017 * 0.334 0.076
Italy 0.422 0.032 * 0.946 < 0.001 ***

Japan 0.85 < 0.001 *** 0.924 < 0.001 ***
United Kingdom 0.249 0.148 0.592 0.003 **

United States of America 0.071 0.385 -0.206 0.805

Table 1 Degrees of rotation ρcg by country and gender and one-sided p-values (.: 0.05 < p < 0.1, *:
0.01 < p < 0.05, **: 0.001 < p < 0.01, ***: p < 0.001)
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Vékás, P. (2018). Changes in the age pattern of mortality decline in
Hungary (in Hungarian). Insurance and Risk, 5(3):34–47. https:

//mabisz.hu/wp-content/uploads/2018/08/biztositas-es-kockazat-
5-evf-3-szam-5-cikk.pdf.
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